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Abstract 

GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves 
as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing 
essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Func-
tional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions 
as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions 
of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes 
regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition proper-
ties will be pivotal in advancing this research field.
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Introduction
The human YEATS family comprises four members: 
all1-fused genes from chromosome 9 (AF9), eleven-
nineteen-leukemia (ENL), glioma amplified sequence 41 
(GAS41), and YEATS2 (Fig.  1). The acronym "YEATS" 
stems from the initial letters of five related domain pro-
teins (Yaf9, ENL, AF9, Taf14, and Sas5) [1]. The family 
exhibits a conserved YEATS domain at the N-terminus 
(Fig. 1) and plays diverse roles in chromatin dynamics, 
histone modifications, and gene regulation [2]. YEATS 
primarily governs transcriptional elongation, histone 
modification, histone variant (H2A.Z) deposition, and 
chromatin remodeling in epigenetics (Fig. 2). AF9 and 
ENL act as fusion chaperones for human mixed lineage 
leukemia proteins (MLL) resulting from chromosomal 

translocations and contribute to acute myeloid leuke-
mia [3, 4]. At the molecular level, AF9 recruits tran-
scription factors such as the super elongation complex 
(SEC) [5] and polymerase-associated factor 1 (PAF1) 
[6] to recognize acetylation modifications and regulate 
downstream transcriptional elongation (Fig. 2). Acety-
lation is one of diverse acylation. The type of acyla-
tion depends primarily on the acyl groups attached to 
the lysine residue, including acetyl-, succinyl-, malo-
nyl-, crotonyl-, β-hydroxybutyryl-, lactyl-, myristoyl-, 
and palmitoyl-CoA [7]. Furthermore, AF9 is involved 
in histone methylation through AF10 [8] and histone-
lysine N-methyltransferase DOT1L [9] (Fig. 2). ENL, in 
combination with the monocytic leukemia zinc (MOZ) 
complex [10], and the BRG1-associated factor (BAF) 
[11] facilitates histone acetylation reading and chroma-
tin remodeling (Fig. 2). Extensive research has unveiled 
MLL as a classical downstream target gene of AF9 and 
ENL [12, 13]. Additionally, AF9 targets a crucial set of 
genes associated with epithelial-to-mesenchymal tran-
sition (EMT) [14]. Apart from MLL, the well-known 
proto-oncogene MYC is also targeted by ENL [14], and 
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it holds great potential as a candidate for cancer ther-
apy [15]. YEATS2 acts as a distinct reader of histone 
crotonylation [16] and serves as a novel oncogene in 
various cancers [17–19]. YEATS2 has also been found 
to activate the TAK1/NF-κB and PI3K/AKT signal-
ing pathways, influencing cancer cell survival [20, 21]. 
To delve into the underlying mechanisms, YEATS2 is 
known to recruit the Ada-two-A-containing (ATAC) 
complex [22] to identify specific histone modifica-
tions and facilitate histone modifications (Fig.  2). It is 
noteworthy that ATAC functions as a transcription-
ally active complex involved in chromosome remod-
eling [23], comprising transcription factors such as 

general control non-depressible protein 5 (GCN5) [24], 
ATAC2, alternation/deficiency in activation-3 (ADA3) 
[25] and zinc finger ZZ-type containing 3 (ZZZ3) [26]. 
YEATS2 is highly expressed in human pancreatic ductal 
adenocarcinoma (PDAC) and can positively regulate 
the growth, survival, and tumorigenesis of PDAC cells 
[21]. The binding of YEATS2 is crucial for maintain-
ing transforming growth factor beta-activated kinase 1 
(TAK1) activation and NF-κB transcriptional activity. 
Of importance, YEATS2 promotes NF-κB transcrip-
tional activity through modulating TAK1 abundance 
and directly interacting with NF-κB as a co-transcrip-
tional factor [21]. GAS41, a polymorphic protein, plays 

Fig. 1  Structure of the human YEATS family. A Schematic diagram of the one-dimensional structure of the YEATS family. GAS41 is the shortest one, 
comprising 227 amino acids and a CC region at the C-terminus, whereas YEATS2 is the longest amino acid sequence and contains a histone fold 
at the end. B PDB structure of the YEATS domain. File from PBD: 7eic, 5j9s, 7eif, 7eie. ‘aa’: amino acid, ‘CC’: coiled-coil, ‘α/β’: α helix and β hairpin motif, 
’HF’: histone fold
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a crucial role in recognizing lysine-acylated histones 
through its YEATS domain [27]. GAS41 selectively 
recognizes histone modifications that are frequently 
associated with downstream diseases, including can-
cer [28]. Complex structural studies have revealed that 
the YEATS domain utilizes a common binding pocket 
to interpret distinct lysine acylation modifications [29]. 
The acylated lysine side chain extends into the YEATS 
domain, where it interacts with a set of aromatic resi-
dues, forming the well-known aromatic sandwich 
model (also referred to as ‘π-π-π’) [28]. Notably, the 
aromatic amino acids W93, F96, and Y74 play a cen-
tral role in the representative structure of the GAS41-
YEATS-H3K27ac complex [30, 31]. Intriguingly, GAS41 
has been characterized as a novel oncogene with indi-
cations of aberrant amplification in various cancers 
[32]. Importantly, GAS41 has been found to target 
downstream regulators such as Zinc finger E-box-bind-
ing homeobox  1 (ZEB1) [33], transforming acidic 
coiled-coil 1 (TACC) [34], and (Transcription elonga-
tion factor A protein 1) TCEA1 [35] to modulate cancer 
progression (Fig. 2). In conclusion, GAS41 exhibits dual 
identities in the organism, functioning either as a tran-
scription factor involved in epigenetic regulation or as 
a signal transduction protein participating in intracel-
lular signal transduction within cancer cells.

The oncogenic potential of GAS41
GAS41, originating from the chromosome 12q13-15 
region of glioma cells, is frequently amplified in glio-
mas [36]. Notably, most gene amplifications in gliomas 
occur in advanced tumor stages. However, the early-stage 
amplification of GAS41 suggests its significant oncogenic 
activity during early tumor progression [37]. Overexpres-
sion of GAS41 has been observed in various cancer types, 
such as breast cancer [38], non-small cell lung cancer [31, 
39], hepatocellular carcinoma [35, 40], pancreatic cancer 
[41, 42], gastric cancer [43, 44], colorectal cancer [45, 46], 
atypical adipose carcinoma [47], ovarian cancer [48], and 
uterine fibroids [49, 50]. These findings have prompted 
researchers to reevaluate the oncogenic properties of 
GAS41.

GAS41 as a transcription factor
Initially identified in the nucleus, GAS41 demonstrates 
transcription factor properties [51]. Notably, GAS41 
shares significant sequence homology with the human 
mixed spectrum leukemia translocation protein (MLLT1/
MLLT3), commonly referred to as ENL and AF9 [13, 
52]. Studies have revealed that GAS41 participates in 
the assembly of two multi-subunit complexes, namely 
tat-interactive protein 60 / e1a-binding protein p400 / 

Fig. 2  Epigenetic functions of the YEATS family Map of biological functions and mechanisms of the YEATS family. YEATS acts as an epigenetic reader 
to recognize histone modifications. Ac acetylation, Me methylation, Cr crotonylation, Bz benzoylation, Succ succinylation
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transcription/transformation domain-associated protein 
(TIP60/p400/TRRAP) and SNF2-related CBP activa-
tor protein (SRCAP) [53]. The involvement of activating 
enhancer-binding protein 2-beta (AP-2β) [54] and RNA 
polymerase-associated proteins 30(RAP30) [55] is essen-
tial for the recognition of histone acylation modifications 
by GAS41 (Fig. 2). By recognizing histone modifications, 
GAS41 facilitates the participation of histones in nucleo-
some remodeling, thereby influencing gene transcription 
[1, 28, 56].

Role of GAS41 in the context of epigenetic signaling
Epigenetic signaling is the biological process that leads to 
changes in epigenetic marks such as DNA methylation, 
histone modifications (Kac, Kcr, Klac, etc.), non-coding 
RNAs (miRNAs and siRNAs), and chromatin accessibil-
ity [57–60]. Functional readouts of histone modifications 
serve as an important mechanism for epigenetic signal-
ing. GAS41 is involved in epigenetic signaling primar-
ily as a reader recognizing histone modifications [61], 
including histone acetylation (H3K27ac and H3K14ac) 
[30, 31], benzoylation (H3K27bz) [62], crotonylation 
(H3K27cr) [63], and succinylation (H3K122suc) [64]. 
Histone modifications typically affect nucleosome stabil-
ity and serve as anchors for chromatin-associated pro-
tein complexes [28]. GAS41 likely establishes a signaling 
axis that links histone modification readouts to H2A.Z 
deposition. For example, the readouts of H3K27ac and 
H3K14ac by GAS41 could recruit Tip60/p400 or SRCAP 
complexes to deposit H2A.Z into specific chromatin 
regions [30, 31]. GAS41 could recruit the Dot1l-RNA 
polymerase (Pol) II complex to the gene promoter by rec-
ognizing H3K27ac, thereby initiating gene transcription 
[65]. By binding to H3K27cr, GAS41 can be recruited by 
MYC to the SIN3A-HDAC1 co-repressor to repress the 
transcription of p21-related genes [63]. H3K122suc is 
recognized by GAS41 in a pH-dependent manner and 
is co-enriched with GAS41 at the p21 promoter [64]. In 
parallel to histone modifications, GAS41 can also partici-
pate in epigenetic signaling through non-coding RNAs. 
lncAKHE, a long non-coding RNA highly expressed in 
hepatocellular carcinoma, was found to cooperate with 
GAS41 to enhance the expression of NOTCH2-related 
genes [40]. Additionally, GAS41 is a pivotal component 
of RNAi and has been identified as a potential epige-
netic regulator of miR-203, miR-218, and miR-10b [46, 
66, 67]. A recent study indicated that HDAC3 mediates 
transcriptional repression through GAS41 and the co-
repressor DMAP1 [68]. Such evidence provides addi-
tional context for the epigenetic regulatory functions of 
GAS41 beyond the well-described mechanisms primarily 
associated with histone modification.

GAS41: Advancing cancer research
The exploration of the role of GAS41 in cancer has been a 
gradual process, with significant attention being directed 
to this field only in recent years. Initially, Park et al. iden-
tified that loss of GAS41 function resulted in the upregu-
lation of two tumor suppressors, p14ARF and p53 [53]. 
Building upon these findings, Llanos et  al. proposed 
GAS41 as a robust negative regulator of p53, independ-
ent of the chromatin removal or modification complexes 
[69]. Subsequent investigations revealed a novel onco-
genic mechanism of p53 dephosphorylation by GAS41 
through the phosphatase specificity of the GAS41-PP2Cβ 
complex, specifically targeting phosphorylated ser-
ine at position 366 of p53 [37]. Studies have shown that 
increased GAS41 inhibits apoptosis. The collaboration 
between GAS41 and lncAKHE activates the NOTCH2 
pathway, which plays a critical role in controlling the 
apoptosis of hepatocellular carcinoma cells [40]. The 
coexistence of GAS41 and lncRNA implies a complex 
regulatory mechanism for GAS41. Fu et.al uncovered 
that miR-218 sensitized HCT-116/L-OHP (Oxaliplatin) 
cells to L-OHP-induced cell apoptosis via inhibition of 
cytoprotective autophagy by targeting GAS41 expres-
sion. Xian et.al indicated that the upregulation of GAS41 
promotes DNA damage repair and prevents cell death, 
whereas its downregulation inhibits DNA replication 
and induces apoptosis [70]. Moreover, GAS41 enhances 
the proliferation of gastric cancer cells by upregulating its 
expression to activate the Wnt/β-catenin signaling path-
way [43]. However, while many studies have focused on 
the role of GAS41 in promoting cancer cells, there is still 
a pressing need to understand its contributions to cancer 
invasion and metastasis. In this context, we present the 
existing reported pathways involving GAS41 in cancer to 
lay the foundation for further investigations on GAS41 
(Fig. 3 and Additional file 1: Fig. S1).

GAS41 in Hepatocellular Carcinoma (HCC)
Hepatocellular carcinoma (HCC) is a highly lethal liver 
malignancy with a rising global incidence [71]. The chal-
lenging aspects of early diagnosis and the aggressive, 
metastatic, and recurrent nature of HCC contribute to 
its poor prognosis [72]. Therefore, investigating the key 
pathways involved in HCC development is crucial, as 
it may provide valuable insights into identifying early 
biomarkers and potential therapeutic targets. Previous 
studies show that TCEA1 is significantly upregulated 
in HCC [73]. DDX3 was first known for its role in the 
proliferation and transformation of eternalized human 
breast cancer epithelial cells [74]. Studies have hinted at 
DEAD box protein 3 (DDX3) growth-regulatory func-
tions in hepato-carcinogenesis and progression [75, 76]. 
Upregulation of TCEA1 increased the stability of DDX3 
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protein and enhanced the proliferation and colony for-
mation of HCC cells [35]. You et al. uncover that GAS41 
is significantly upregulated in HCC and correlates with 
poor prognosis, tumor size, differentiation, and metasta-
sis [35]. GAS41 enhances the transcription of TCEA1 by 
binding to the TCEA1 promoter, resulting in the upregu-
lation of TCEA1 expression, which stabilizes DDX3 pro-
tein and promotes proliferation and colony formation of 
HCC cells [35]. Furthermore, recent findings highlight 
the strong expression of lncAKHE in HCC tissues, and 
its interaction with GAS41 activates the NOTCH2 path-
way [40]. These observations strongly support the poten-
tial role of GAS41 in HCC (Fig. 3). Consequently, GAS41 
emerges as a promising therapeutic target and prognostic 
indicator for HCC.

GAS41 in breast cancer (BC)
Breast cancer (BC) is a prevalent malignancy affecting 
the epithelial cells of the breast, and it ranks as the sec-
ond most common cancer in women, leading to signifi-
cant morbidity and mortality [77]. Although BC is often 
curable in the early stages, its metastatic nature poses 
significant challenges for treatment. Therefore, there is 
an urgent need to identify biomarkers associated with 
metastatic BC [78]. Previous research has established a 
strong correlation between GAS41 and the breast cancer 
suppressor TACC [79], with GAS41 shown to interact 
with TACC1 and TACC2 of the TACC family [80]. How-
ever, the exact role of this interaction in the oncogenic 
process is currently unknown. TACC has been instru-
mental in BC cell proliferation, and the immunohisto-
chemical status of TACC2 has emerged as a potential 

Fig. 3  An overview of cancer-associated roles of GAS41. An overview of the molecular mechanisms of GAS41 in numerous cancers. HCC 
hepatocellular carcinoma, BC breast cancer, NSCLC non-small cell lung cancer, PC pancreatic cancer, GC gastric cancer, CRC​ colorectal cancer, ULs 
uterine fibroids, LPS liposarcoma, OC ovarian cancer
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prognostic marker of poor prognosis of BC patients [81]. 
TACC proteins have recently emerged as important play-
ers in the complex process of regulating microtubule 
dynamics during cell division [82, 83]. TACC proteins are 
usually localized to centrosomes [84] and all phenotypes 
of altered TACC expression are associated with defects in 
microtubule stability [85, 86]. Therefore, it is reasonable 
to speculate that the binding of GAS41 and TACC may 
affect the cytokinesis process in cancer cells. Notably, 
overexpression of GAS41 in BC reinforces the malignant 
features, especially inducing epithelial-mesenchymal 
transition (EMT), which contributes to an aggressive 
phenotype in both vitro and vivo models [38]. In contrast, 
the knockdown of GAS41 suppresses cell growth, pro-
motes mesenchymal-epithelial transformation (MET), 
and inhibits BC metastasis [38]. The positive regulatory 
impact of GAS41 on ZEB1 transcription through the rec-
ognition of histone H3K27 acetylation (H3K27ac) under-
lies these biological behaviors [38]. In summary, GAS41 
can influence breast cancer progression either through 
its interaction with the TACC pathway or by regulating 
ZEB1 expression (Fig. 3). The documented significance of 
GAS41 in BC progression and metastasis underscores the 
potential therapeutic value of targeting GAS41 expres-
sion in BC treatment.

GAS41 in non‑small cell lung cancer (NSCLC)
Non-small cell lung cancer (NSCLC) comprises approxi-
mately 80–85% of all lung cancers [87]. Unfortunately, 
only a small fraction of NSCLC patients are diagnosed 
at an early stage (stage I/II) when surgical resection is 
a viable treatment option. The majority of lung cancer 
patients (more than 60%) present with locally advanced 
or metastatic disease (stage III/IV) at the time of diag-
nosis [88]. Pikor et  al., through their gene expression 
analysis, identified GAS41 as a novel candidate onco-
gene for NSCLC. Moreover, they revealed that GAS41 is 
an important negative regulator of the p21-p53 pathway 
[39]. Frequent amplification of GAS41 in NSCLC has 
been observed, and its presence is crucial for the survival 
and transformation of NSCLC cells [31]. Intriguingly, 
ChIP-seq results have shown that GAS41 co-localizes 
with H3K27ac and H3K14ac at the promoters of actively 
transcribed genes. The knockdown of GAS41 or disrup-
tion of the interaction between the YEATS domain and 
acetylated histones impairs the association of the histone 
variant H2A.Z with chromatin, thereby inhibiting the 
growth and survival of NSCLC cells both in vitro and in 
vivo [31]. These findings suggest that GAS41 influences 
the deposition of H2A.Z on chromatin by recognizing 
histone acetylation modifications, ultimately regulating 
the promotion of NSCLC (Fig.  3). Recent studies have 
reported the development of a new dimeric analog with 

a nanomolar activity that targets lung cancer cells by 
blocking the interaction between GAS41 and acetylated 
histone H3. This analog effectively inhibits the growth 
of NSCLC cells [27]. The investigation of the regulatory 
mechanisms of GAS41 in NSCLC and the identifica-
tion of small molecule inhibitors could offer a promising 
framework for the treatment of NSCLC.

GAS41 in pancreatic cancer (PC)
Pancreatic cancer (PC) is a highly aggressive malignancy 
with a discouraging 5-year overall survival rate of only 
11% [89]. In the early stages, PC often presents with no 
noticeable symptoms, and clinical manifestations typi-
cally appear once the tumor invades surrounding tissues 
or metastasizes to distant organs. Remarkably, epige-
netic alterations, including DNA methylation, histone 
modifications, and alterations in non-coding RNAs, can 
profoundly impact gene function in PC [90]. Elevated 
expression of GAS41 has been observed in clinical PC 
specimens and mouse models, and the expression level of 
GAS41 is associated with PC cell growth, migration, and 
invasion [41]. Mechanistic investigations have revealed 
that GAS41 interacts with β-catenin and acts as a positive 
regulator to activate β-catenin/TCF signaling to promote 
PC cell growth and metastasis [41, 91, 92]. It is important 
to note that GAS41 has previously been shown to pro-
mote H2A.Z deposition via recognition of histone acet-
ylation [31]. Recent studies have reported that H2A.Z.2 
is overexpressed in human PC tissues and cell lines, and 
exogenous expression of GAS41 or H2A.Z.2 promotes 
NOTCH and NOTCH-mediated cancer cell stemness 
and GEM resistance [42]. However, a number of ques-
tions remain to be addressed. For example, what is the 
mechanism by which GAS41 promotes the deposition of 
ac H2A.Z.2. In summary, the association of GAS41 with 
PC is mediated through the β-catenin/TCF pathway and 
the NOTCH pathway (Fig.  3). Understanding the intri-
cate mechanisms involving GAS41 in PC progression 
provides valuable insights for developing targeted thera-
peutic strategies against this devastating disease.

GAS41 in gastric cancer (GC)
Gastric cancer (GC) is a significant global concern, with 
the majority of cases being diagnosed at stage IV of the 
disease, and poor prognosis [93]. Late-stage diagnosis 
and high mortality rates highlight the urgent need for 
novel therapeutic targets in GC. Claudin-18.2 [94], inhib-
itors of the fibroblast growth factor receptor 2 (FGF2) 
pathway [95], and combinations of anti-angiogenesis with 
immune checkpoint blockade are three recognized ther-
apeutic targets for GC [96]. It has been established that 
GAS41 is highly expressed in GC tissues and cell lines, 
and its increased expression has been linked to enhanced 
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cell proliferation and attenuated apoptosis through acti-
vation of the Wnt/β-catenin signaling pathway [43, 70]. 
Furthermore, an analysis of five GC cell lines and 135 
GC primary tumor samples revealed that patients with 
GAS41 overexpressing tumors have lower overall sur-
vival rates, and cell lines with GAS41 knockouts exhibit 
significantly increased chemosensitivity to CDDP (Cis-
platin) and L-OHP [44]. In summary, GAS41 regulates 
the survival of GC cells by activating the Wnt/β-catenin 
signaling pathway (Fig. 3). The role of GAS41 as a prog-
nostic factor and potential therapeutic target highlights 
its contribution to tumor malignancy in GC. Therefore, 
modulating GAS41 expression holds promise as an effec-
tive therapeutic approach for GC.

GAS41 in colorectal cancer (CRC)
Colorectal cancer (CRC) ranks as the second most com-
mon cancer in women and the third most common can-
cer in men [97]. Globally, approximately 10% of cancer 
cases and cancer-related deaths can be attributed to CRC 
[98]. The majority of CRC cases arise from stem cells or 
stem cell-like cells [99], resulting from the accumula-
tion of genetic and epigenetic alterations. An analysis of 
GAS41 expression in 85 pairs of CRC and paracancerous 
tissues reveals that inhibition of GAS41 expression leads 
to cell cycle arrest in the G0/G1 phase and a significant 
increase in apoptotic cell numbers [45]. Additionally, a 
recent discovery unveiled that miR-218 inhibits cyto-
protective autophagy by targeting GAS41, thereby sen-
sitizing CRC cells to apoptosis induced by Oxaliplatin 
(L-OHP) [46]. MiRNAs have been extensively implicated 
in tumor proliferation, invasion, angiogenesis, and drug 
resistance [100], and dysregulation of several miRNAs 
has been reported in CRC [101, 102]. These findings 
represent a potential breakthrough in the diagnosis and 
treatment of colon cancer. Collectively, these studies 
indicate that GAS41 may serve as a critical modulator of 
proliferation and apoptosis in CRC cells and could regu-
late drug sensitivity in CRC through miRNAs (Fig. 3).

GAS41 in uterine leiomyomas (ULs)
Uterine leiomyomas (ULs) represent the most preva-
lent benign gynecological tumors observed in women 
of reproductive age and postmenopausal women [103]. 
Abnormalities in various epigenomes have been identi-
fied in ULs, suggesting their involvement in the devel-
opment and growth of these tumors [104]. In a recent 
clinical study utilizing genome-wide datasets to analyze 
UL origins, somatic mutations in six genes encoding the 
SRCAP histone loading complex were identified as bio-
markers [50]. Notably, germline mutations in GAS41 
and ZNHIT1 were found to predispose women to ULs. 
Tumors harboring these mutations exhibited impaired 

deposition of the histone variant H2A.Z [50]. Therefore, 
GAS41 may regulate the formation of uterine fibroids by 
influencing the deposition of the histone variant H2A.Z 
(Fig.  3). Additionally, a comprehensive evaluation of 
protein-coding genes in an extended exome sequencing 
cohort of 233,614 white European women further con-
firmed GAS41 as a significant contributor to UL suscep-
tibility [49]. However, the biological function of GAS41 in 
ULs remains largely unknown, as current investigations 
are predominantly limited to bioinformatic analyses. Fur-
ther research is needed to elucidate the precise role of 
GAS41 in ULs.

GAS41 in liposarcoma (LPS)
Liposarcoma (LPS) is a rare malignant tumor charac-
terized by adipocytic differentiation [105]. It is classi-
fied into four major subtypes: highly differentiated LPS 
(WDLPS, also known as atypical lipomatous tumors), 
dedifferentiated LPS (DDLPS), mucinous-like LPS 
(MLPS), and pleomorphic LPS (PLPS) [47]. Previous 
studies have suggested that GAS41 may serve as a critical 
oncogene in atypical LPS [106]. Barretina et  al. showed 
that the knockdown of GAS41 significantly reduced cell 
proliferation in DDLPS [107]. Moreover, recent literature 
has reported aberrant amplification of GAS41 in atypical 
LPS [108]. Collectively, these findings suggest a potential 
active role for GAS41 in liposarcoma. However, the pre-
cise function of GAS41 in LPS and the underlying signal-
ing pathways involved remain unclear.

GAS41 in ovarian cancer (OC)
Ovarian cancer (OC) is a highly life-threatening malig-
nancy affecting women worldwide, necessitating the 
urgent discovery of effective biomarkers [109]. This rap-
idly proliferating cancer exhibits temporary chemosensi-
tivity, imposes pressure on internal organs, and exhibits 
a cure rate of only 30% [110]. An inherent challenge in 
OC treatment is that most patients are diagnosed with 
advanced-stage disease, and long-term chemotherapy 
often leads to drug resistance [111]. In a study by Kim 
et al., the analysis of drug resistance-associated transcrip-
tion factors (TFs) in OC highlighted GAS41 as a key tran-
scription factor that induces chemoresistance through 
an intrinsic apoptosis-related pathway [48] (Fig.  3). To 
future elucidate the role and mechanism of GAS41 in the 
pathogenesis of OC, comprehensive investigations are 
warranted.

Continued research on GAS41
Cells employ a diverse repertoire of transcriptional 
regulatory proteins to finely modulate gene expression 
[32]. Studies have established the crucial role of recog-
nizing post-translational modifications of histones in 



Page 8 of 14Ji et al. Cancer Cell International          (2023) 23:245 

transcriptional regulation [112]. A relatively recent dis-
covery, the YEATS domain proteins, constitute a family 
of epigenetic reader proteins [1, 2, 62, 113]. Dysregula-
tion of epigenetic reader proteins is frequently observed 
in cancer, making them attractive targets for the devel-
opment of small molecule inhibitors [27, 114–116]. Lis-
tunov et  al. have developed a nanomolar active dimeric 
analog that disrupts the interaction between GAS41 and 
acetylated histone H3 [27]. Subsequently, Londregan 
et  al. have identified selective small molecule inhibitors 
with a bias toward the YEATS domain [117]. Biochemi-
cal investigations have shown that the YEATS domain of 
GAS41 recognizes histone acetylation, benzoylation, suc-
cinylation, and crotonylation [31, 62–64, 118] (Table 1). 
Notably, Liu et al. assume a three-phase traffic-light sys-
tem model describing three different H3K27 modifica-
tions as distinct chromatin states for gene transcription 
[63]. H3K27me3 (stop) marks for transcriptional silenc-
ing, H3K27cr (pause) for transcriptional repression, and 
H3K27ac for transcriptional activation (go) [63]. Aber-
rant patterns of histone acylation are closely linked to 

human cancers [119], influencing gene expression and 
cell signaling processes within tumors [7, 120]. Under-
standing the mechanisms underlying histone acyla-
tion recognition and deposition is vital for developing 
effective anti-cancer strategies [7]. While the functional 
aspects of acetylation are relatively well-established 
and comprehensive, studying the functional disparities 
between non-acetylated and acetylated histones remains 
challenging. Histone Kcr levels are reduced in prostate 
cancer, HCC, GC, and kidney cancer [121, 122], while 
they are increased in intestinal cancer, thyroid cancer, 
esophagus cancer, PC, and NSCLC [122, 123]. Thus, the 
level of histone Kcr directly or indirectly affects the char-
acteristics of cancer cells. Histone Ksucc is implicated in 
PC [124], esophageal squamous cell carcinoma [125], GC 
[126], renal cell carcinoma [127], HCC [128], CRC [129], 
and glial blastoma [130]; however, its role in tumor devel-
opment is context-dependent. All the evidence suggests 
that GAS41 holds significant potential for association 
with various cancers through the recognition of acylated 
modifications (Fig. 4, Additional file 2: Fig. S2).

Table 1  Summary of recognizable histone modifications of GAS41

Acylation Histone lysine Binding affinity KD(μM) Target gene Specificity Association with cancer References

Kac H3K23acK27ac 13.6 ± 0.3 Unknow Diacetylation Unknow [63]

H3K27ac, H3K14ac 32.7, 13 H2AFV, H2AFZ H2A.Z deposition NSCLC [31]

Kbz H3K27bz 62.96 ± 11.24 Unknow Open-end reader pocket Unknow [65]

Ksucc H3K122succ 2.937 ± 0.21 (pH6.0), 
48.34 ± 3.8 (pH7.0)

p21 pH dependent pH imbalance [67]

Kcr H3K27cr 22.9 p21 Three-phase traffic light 
system

CRC​ [57]

Fig. 4  A working model for GAS41 in regulating carcinoma. GAS41-H3K27ac is derived from PDB (5xtz). Green indicates GAS41and orange is part 
of the H3 peptide. Pink represents the three key residues: W93, F96, and Y74
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Conclusions and outlooks
Cancer cells rely on chromatin regulatory pathways and 
transcriptional mechanisms to maintain an oncogenic 
state, making these processes attractive targets for drug 
development. Metabolic remodeling is a hallmark of can-
cer cells, leading to abnormal accumulation of metabo-
lites. Covalent modification of proteins through lysine 
acylation by various metabolites contributes to epige-
netic remodeling. Aberrant epigenetic landscapes in can-
cer cells often exploit chromatin mechanisms to activate 
oncogenic gene expression programs. The recognition of 
histone modifications by "reader" proteins is a key process 
in these events. As a representative of the reader mod-
ule for short-chain lysine acylation, the YEATS domain 
plays a critical role in lysine acylation biology, serving as 
a link between metabolism and gene regulation. GAS41, 
a novel epigenetic reader of acylated modifications, holds 
significant potential for association with pathophysi-
ological processes in relevant cancers through its recog-
nition of acylated modifications (Additional file  2: Fig. 
S2). Histone lactylation (Klac) is a recently discovered 
component of the human cellular epigenetic landscape 
(Fig.  5B), sensitive to both exogenous and endogenous 
lactate levels [131]. Elevated lactate levels in the tumor 
microenvironment (TME) lead to increased intracel-
lular lactylation, and both lactylation and lactate have 

been considered for cancer therapy [132]. Lactylation 
has been implicated in tumor immune escape mediated 
by tumor-infiltrating myeloid cells (TIMs) [133]. Lactate 
enhances the stemness of CD8+ T cells and improves 
anti-tumor capacity [134]. Controlling the glycolytic 
switch marked by lactylation presents therapeutic oppor-
tunities for cancer [135]. Lysine glutarylation (Kglu), 
another newly characterized protein lysine modification 
(Fig.  5C), exhibits diverse functions in eukaryotic cells 
[136–139]. However, the role of Kglu as a reader in cells 
and its contribution to cancer remains unclear. Given its 
chemical structural properties resembling Kac and Ksucc 
modifications, GAS41 is likely to act as a reader for Klac 
and Kglu (Fig. 5). Currently, there are limited studies on 
GAS41’s recognition of acylated modifications in cancer 
cells. Therefore, establishing a comprehensive framework 
to understand the complexity and specificity of GAS41 
is crucial. Moving forward, investigating GAS41’s rec-
ognition of histone acylation modifications to target 
downstream oncogenes and developing small molecule 
inhibitors to disrupt this process will be promising areas 
of research. In summary, further in-depth exploration is 
required to enhance our understanding of GAS41 as a 
signaling transduction protein and transcription factor.

Fig. 5  GAS41 plays a role in various cancers by reading novel modifications. Schematic representation of the hypothesis that GAS41 recognizes 
novel histone acylation modifications. A GAS41 recognizes the histone modifications through the YEATS domain. B Chemical structural formulae 
of some lysine acylation modifications. Lac lactylation modification; Glu glutarylation modification
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