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Abstract
Background Gene status has become the focus of prognosis prediction. Furthermore, deep learning has frequently 
been implemented in medical imaging to diagnose, prognosticate, and evaluate treatment responses in patients with 
cancer. However, few deep learning survival (DLS) models based on mutational genes that are directly associated with 
patient prognosis in terms of progression-free survival (PFS) or overall survival (OS) have been reported. Additionally, 
DLS models have not been applied to determine IO-related prognosis based on mutational genes. Herein, we 
developed a deep learning method to predict the prognosis of patients with lung cancer treated with or without 
immunotherapy (IO).

Methods Samples from 6542 patients from different centers were subjected to genome sequencing. A DLS model 
based on multi-panels of somatic mutations was trained and validated to predict OS in patients treated without IO 
and PFS in patients treated with IO.

Results In patients treated without IO, the DLS model (low vs. high DLS) was trained using the training MSK-MET 
cohort (HR = 0.241 [0.213–0.273], P < 0.001) and tested in the inter-validation MSK-MET cohort (HR = 0.175 [0.148–
0.206], P < 0.001). The DLS model was then validated with the OncoSG, MSK-CSC, and TCGA-LUAD cohorts (HR = 0.420 
[0.272–0.649], P < 0.001; HR = 0.550 [0.424–0.714], P < 0.001; HR = 0.215 [0.159–0.291], P < 0.001, respectively). 
Subsequently, it was fine-tuned and retrained in patients treated with IO. The DLS model (low vs. high DLS) could 
predict PFS and OS in the MIND, MSKCC, and POPLAR/OAK cohorts (P < 0.001, respectively). Compared with tumor-
node-metastasis staging, the COX model, tumor mutational burden, and programmed death-ligand 1 expression, the 
DLS model had the highest C-index in patients treated with or without IO.

Conclusions The DLS model based on mutational genes can robustly predict the prognosis of patients with lung 
cancer treated with or without IO.
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Background
To optimize treatment regimens, predicting the prog-
nosis of patients with lung cancer is vital. Accordingly, 
gene status has gradually become the focus of prognosis 
prediction. Based on high-throughput sequencing, multi-
panels have been routinely evaluated in clinical treat-
ment, revealing various candidate genes. For instance, 
the KRAS-G12C mutation is associated with poorer out-
comes in surgically resected lung adenocarcinoma than 
wild-type KRAS [1]. Meanwhile, the SMARCA4 mutation 
is an independent predictive factor for poor prognosis in 
lung cancers, however, is also associated with immuno-
therapy (IO) sensitivity [2]. Additionally, mutations in 
EGFR, STK11, and B2M, or MDM2 amplification, are 
related to IO resistance or hyperprogressive disease [3–
5], while TP53, KRAS, and POLE mutations are positively 
associated with a good response in advanced non-small 
cell lung cancer (NSCLC) [6–9].

Deep learning has frequently been implemented in 
medical imaging (including magnetic resonance imaging, 
computed tomography, and positron emission tomogra-
phy) to diagnose, prognosticate, and evaluate treatment 
responses in patients with cancer [10–12]. Previous stud-
ies have used several genes or immune cell subtypes to 
develop models to predict IO or chemo-IO responses by 
machine learning. These studies achieved highly reliable 
and accurate results [13–15]. However, few deep learning 
survival (DLS) models based on mutational genes that 
are directly associated with patient prognosis in terms of 
progression-free survival (PFS) or overall survival (OS) 
have been reported, and their potential value remains 
unclear. Additionally, DLS models have not been applied 
to determine IO-related prognosis based on mutational 
genes.

The current study employed a DLS algorithm utiliz-
ing a panel of mutated genes to create a robust survival 
model to identify individuals with lung cancer and good 
prognosis in several large centers. Based on whole-
genome sequencing (WGS), next-generation sequencing 
(NGS), and whole-exome sequencing (WES) databases, 
the DLS model was used to predict OS in patients with 
lung cancer who were treated without IO and to predict 
PFS in patients with lung cancer who were treated with 
IO. The predictive ability of the DLS model was com-
pared with that of clinical tumor-node-metastasis (TNM) 
staging and the COX model. In addition, the ability of the 
DLS model to predict PFS in those who received IO was 
compared with that of the COX model, tumor mutational 
burden (TMB), and programmed death-ligand 1 (PD-L1) 
expression. A robust survival prediction model based on 
genomics panels will aid oncologists in implementing 
appropriate treatment strategies for patients with lung 
cancer.

Methods
Patients treated without IO
MSK-MET cohort
A total of 25,775 patients with metastatic cancers were 
included in the MSK-MET cohort [16]. However, 21,711 
with other tumors were excluded, resulting in a final 
cohort comprising 4064 patients with lung cancer. Addi-
tionally, 271 patients had incomplete clinical or survival 
data and were thus excluded from this study. Ultimately, 
the data for 3793 patients with lung cancer were ana-
lyzed. The MSK-MET cohort was classified into train-
ing (n = 2504) and inter-validation (n = 1289) cohorts; all 
tumor samples were evaluated by NGS.

OncoSG cohort
The OncoSG cohort comprised 305 patients from East 
Asia countries. Eight patients lacking clinical or survival 
data were excluded [17]. Hence, 297 patients with lung 
adenocarcinoma were included in an independent valida-
tion cohort. All tumor samples were evaluated by WES.

MSK-CSC cohort
This cohort comprised 10,945 patients, of which, 9588 
patients with other tumors were excluded [18]. Fur-
ther, 417 patients without clinical or survival data were 
excluded. Thus, 940 patients with lung cancer comprised 
an independent validation cohort. All tumor samples 
were assessed by NGS.

TCGA-LUAD cohort
Among the 566 patients with lung adenocarcinoma, 52 
were excluded due to a lack of clinical data (https://www.
cell.com/pb-assets/consortium/pancanceratlas/pan-
cani3/index.html). Moreover, 26 patients without com-
plete survival data were excluded. Thus, 488 patients with 
lung adenocarcinoma comprised an independent valida-
tion cohort; all tumor samples were assessed by WGS.

Patients treated with IO
MIND cohort
A total of 247 patients with lung cancer from the Memo-
rial Sloan Kettering Cancer Center (MSKCC) cohort 
were recruited [19]. All patients received anti-PD-1/
PD-L1 treatment. One patient was excluded due to a lack 
of clinical data. Hence, 246 patients were included in this 
training cohort. All tumor samples were evaluated by 
NGS.

MSKCC cohort
A total of 349 patients from a clinical trial and retro-
spective analysis (NCT01454102, NCT01295827) who 
received anti-PD-1/PD-L1 monotherapy or combina-
torial treatment with anti-CTLA4 were included [20]. 

https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
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These patients constituted another validation cohort. All 
tumor samples were analyzed by NGS.

POPLAR/OAK cohort
The POPLAR and OAK studies (NCT01903993, 
NCT02008227) recruited 1137 patients with advanced 
or metastatic NSCLC [21, 22]. Patients treated with 
docetaxel (n = 568) and those without blood TMB data 
(n = 140) were excluded. Ultimately, the POPLAR/OAK 
cohort comprised 429 patients as a validation cohort. All 
blood samples were tested by NGS.

This study (2023-LUNSHEN-02) was approved by the 
institutional review board of the Second Affiliated Hos-
pital of Guizhou Medical University and was performed 
in accordance with the Declaration of Helsinki. Informed 
consent was obtained from all patients for tissue or blood 
use.

Study design
Figure 1 illustrates the flowchart of proposed DLS mod-
els for predicting OS and PFS. In the MSK-MET (train-
ing) cohort, optimal mutated genes were identified by the 
least absolute shrinkage and selection operator (LASSO) 

algorithm based on five-fold cross-validation. The 
selected genes served as input for training the DLS mod-
els to predict OS. The training parameters were adjusted, 
and the DLS models were validated for OS in the MSK-
MET (inter-validation), OncoSG, MSK-CSC, and TCGA-
LUAD cohorts. The LASSO algorithm for predicting PFS 
was also used to select the mutated genes in the MIND 
cohort in patients treated with IO. The trained DLS 
model was fine-tuned and retrained in the MIND cohort 
and, subsequently, tested in the MSKCC and POPLAR/
OAK cohorts. The COX models were analyzed in patients 
treated with and without IO. The performance of the 
DLS model, COX model, and TNM staging for predict-
ing OS in patients treated without IO was compared (via 
the C-index). Furthermore, the performance of the DLS 
model, COX model, TMB, and PD-L1 expression level 
for predicting PFS was compared among patients treated 
with IO using the C-index.

TMB, PD-L1 expression analysis, and selection of optimal 
mutated genes
Based on WES, WGS, and NGS profiling, a TMB ≥ 10 
mutations (muts)/Mb or a total number of somatic 

Fig. 1 Flowchart of the proposed deep learning survival (DLS) model to determine disease prognosis. The somatic mutational databases were derived 
from non-small cell lung cancer (NSCLC) samples. In the MSK-MET cohort (training), the selected genes were trained to predict overall survival (OS) using 
deep learning. After adjusting the training parameters, the DLS models were validated for OS in the MSK-MET (inter-validation), OncoSG, MSK-CSC, and 
TCGA-LUAD cohorts. The trained DLS model was fine-tuned and re-trained using the MIND cohort. The DLS model was validated in the MSKCC and POP-
LAR/OAK cohorts. The COX models were analyzed in all patients. The C-indices of the DLS model, COX model, and tumor-node-metastasis (TNM) staging 
were compared in patients treated without immunotherapy (IO) regarding OS. The C-indices of the DLS model, COX model, tumor mutational burden 
(TMB), and programmed death-ligand 1 (PD-L1) expression were also compared among patients treated with IO regarding progression-free survival (PFS).
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nonsynonymous mutations ≥ 200 was defined as a high 
TMB. The tumor cells were considered to have a high 
PD-L1 expression level when > 50% stained positive. All 
mutated genes were defined as “1” and wild-type genes 
were defined as “0.” The optimal mutated genes were 
selected via LASSO and five-fold cross-validation sam-
pling (Fig. 2). The mutated genes were separately selected 
to predict OS in patients treated without IO and PFS in 
patients treated with IO. The selected genes served as 
input variables for the deep learning model.

DLS model and implementation
As presented in Fig.  2, the DLS model is a multi-layer 
perceptron similar to the Faraggi–Simon network 
(https://github.com/jaredleekatzman/DeepSurv). How-
ever, the DLS model comprises multiple additional hid-
den layers as well as various new methods, including 
weight-decay regularization, batch normalization, recti-
fying linear units, dropout, Stochastic gradient descent 

using gradient pruning, learning rate scheduling, and 
Nesterov momentum. A single node served as an output 
of the network that estimated the weight of the risk func-
tion parameterized by the network. The loss function was 
set as a negative log-likelihood function represented by 
Eq. (1):

 
l (θ) = −

∑
i,Ei=1

(ĥθ (x) − log
∑

j∈R(T i)
e
ĥθ(xj)

) (1)

The selected genes were imported into the DLS model 
as vectors. The maximum number of epochs was set to 
100 to ensure proper implementation of the training 
procedure. TensorFlow-1.14 in Python (https://www.
python.org/) was utilized to implement deep learning. 
The experiment was conducted in Windows with the fol-
lowing configurations: 3.7  GHz Intel i7-12700KF CPU, 
NVIDIA GeForce RTX 3090, and 32 GB of RAM.

Fig. 2 Flowchart of the selection method and the deep neural network architecture. Least absolute shrinkage and selection operator (LASSO) based on 
five-fold cross-validation was used to select optimal genomics features. The selected genes were imported into the deep learning survival (DLS) model as 
eigenvectors. The DLS contains multiple hidden layers, weight-decay regularization, rectifying linear units, batch normalization, dropout, and stochastic 
gradient descent using Nesterov momentum, gradient pruning, and learning rate scheduling. The network output is a single node that estimates the 
weight of the risk function parameterized through the network. IO, immunotherapy

 

https://github.com/jaredleekatzman/DeepSurv
https://www.python.org/
https://www.python.org/
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Statistical analysis
This study employed the LASSO algorithm, which uti-
lized five-fold cross-validation, to select the optimal 
non-zero coefficients. A deep learning algorithm-based 
survival model was applied to predict OS in patients 
treated without IO and PFS in patients treated with IO. 
The DLS model’s performance was evaluated in the train-
ing and other validation cohorts. The optimal cutoff value 
for predicting OS or PFS was defined with the X-tile 
software (https://medicine.yale.edu/lab/rimm/research/
Software/). The Kaplan–Meier approach was employed 
to analyze the PFS and OS curves, which were then plot-
ted with the “survivminer” package. The COX model 
was based on selected genes using the “rms” package. 
The accuracies of different models were compared using 
the C-Index; higher C-indices indicated more accurate 
model predictive ability. The statistical analyses for this 
study were performed utilizing R version 3.5.1 (https://
www.r-project.org/) and GraphPad Prism 7.01 (https://
www.graphpad.com/). Statistical significance was set at 
P < 0.05.

Results
Characteristics of individuals treated without and with IO
The basic clinical characteristics of patients with NSCLC 
treated without IO in the MSK-MET, OncoSG, MSK-
CSC, and TCGA-LUAD cohorts are shown in Supple-
mentary Table 1. There were 2064 (54.42%), 150 (50.50%), 
461 (49.05%), and 229 (46.93%) male patients in the 
MSK-MET, OncoSG, MSK-CSC, and TCGA-LUAD 
cohorts, respectively. In the MSK-MET, OncoSG, and 
TCGA-LUAD cohorts, 2060 (54.31%), 183 (61.62%), 
and 325 (66.60%) patients were aged > 60 years. Most 
patients (62.29%) were never smokers in the OncoSG 
cohort. Moreover, 817 (21.54%), 24 (8.08%), 218 (23.20%), 
and 173 (35.45%) patients, respectively, had a high TMB 
(≥ 200 or > 20 muts/Mb) and the TMB status was diverse 
in the different populations.

The basic clinical features of individuals with NSCLC 
treated with IO in the MIND, MSKCC, and POPLAR/
OAK cohorts are presented in Supplementary Tables  2, 
with 112 (45.53%), 172 (49.28%), and 275 (78.80%) male 
patients, respectively. In the 3 cohorts, 190 (77.23%), 222 
(67.15%), and 265 (75.93%) patients, respectively, were 
aged > 60 years. Most individuals in the MSKCC (80.51%) 
and POPLAR/OAK (80.51%) cohorts were current or 
ever smokers. Additionally, in the 3 cohorts, 15 (3.50%), 
71 (20.34%), and 175 (27.22%) patients, respectively, had 
a high TMB (≥ 200 or > 20 muts/Mb) with diverse TMB 
status among the populations. In the MIND, MSKCC, 
and POPLAR/OAK cohorts, 119 (48.37%), 43 (12.32%), 
and 59 (12.33%) individuals, respectively, had positive 
PD-L1 expression (> 1%). In these 3 cohorts, 81 (32.93%), 

218 (62.46%), and 295 (68.76%) patients, respectively, 
achieved durable clinical benefits.

Selection of mutational genes associated with prognosis in 
patients with and without IO
Based on the five-fold cross-validation, LASSO was 
applied to select the optimal mutational genomics from 
the MSK-MET cohort (training). In total, 45 somatic 
mutations were selected (Fig. 3a; Supplementary Table 3). 
High-mutational-frequency genes, such as TP53, EGFR, 
STK11, KRAS, and KEAP1, were selected in the MSK-
MET cohort (training). Similarly, in the MIND cohort, 27 
somatic mutations were identified in patients with lung 
cancer treated with IO (Fig.  3b). The Kyoto Encyclope-
dia of Genes and Genomes analysis revealed that the 45 
mutational genes were associated with various cancer 
pathways, including hepatocellular carcinoma, head and 
neck squamous cell carcinoma, and breast cancer (false 
discovery rate [FDR]: P < 0.001; Fig.  3c). An association 
was observed between the 27 mutational genes for pre-
dicting PFS in the MIND cohort and immunology sig-
naling pathways (FDR: P < 0.001; Fig.  3d), including the 
regulatory circuits of the STAT3 signaling pathway and 
cellular response to DNA damage stimuli. Subsequently, 
a panel of 45 mutational genes was employed to train the 
model in predicting OS in the MSK-MET cohort (train-
ing) treated without IO based on deep learning algo-
rithms. The model was the retrained using a panel of 
27 mutational genes to predict PFS in the MIND cohort 
treated with IO.

Training and testing the DLS model for OS in patients 
treated without IO
The DLS model was run using the TensorFlow 1.14 plat-
form (https://tensorflow.google.cn/install/source). The 
MSK-MET cohort (training) was trained in 100 epoch 
processes, and the MSK-MET cohort (inter-validation) 
was used for validation (Supplementary Fig.  1). The 
OncoSG, MSK-CSC, and TCGA-LUAD cohorts were 
tested using the trained DLS model. According to the 
cutoff value (0.50) of DLS scores as the X-tile (https://
en.freedownloadmanager.org/Windows-PC/X-tile-FREE.
html), individuals with NSCLC treated without IO were 
stratified into high (> 0.50) and low (≤ 0.50) DLS groups. 
The high DLS group had a shorter median OS than the 
low DLS group (24.18 months vs. not reached [NR]; 
hazard ratio [HR] = 4.13 [3.66–4.67], P < 0.001; Fig.  4a) 
in the MSK-MET cohort (training) treated without IO 
(Fig. 4a). In the MSK-MET cohort (inter-validation), the 
high DLS group also had a shorter median OS than the 
low DLS group (19.68 months vs. NR; HR = 5.71 [4.85–
6.72], P < 0.001; Fig.  4b). In the OncoSG and MSK-CSC 
cohorts, the high DLS group was validated and had a 
shorter median OS than the low DLS group (OncoSG: 

https://medicine.yale.edu/lab/rimm/research/Software/
https://medicine.yale.edu/lab/rimm/research/Software/
https://www.r-project.org/
https://www.r-project.org/
https://www.graphpad.com/
https://www.graphpad.com/
https://tensorflow.google.cn/install/source
https://en.freedownloadmanager.org/Windows-PC/X-tile-FREE.html
https://en.freedownloadmanager.org/Windows-PC/X-tile-FREE.html
https://en.freedownloadmanager.org/Windows-PC/X-tile-FREE.html
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59.00 months vs. NR; HR = 2.37 [1.54–3.67], P < 0.001; 
MSK-CSC: 25.40 months vs. NR; HR = 1.82 [1.40–2.35], 
P < 0.001, Fig.  4c, d). Likewise, in the TCGA-LUAD 
cohort, the high DLS group had a shorter median OS and 
PFS than the low DLS group (OS: 32.45 vs. 63.10 months; 
HR = 4.63 [3.43–6.25], P < 0.001; PFS: 22.49 vs. 51.55 
months; HR = 2.08 [1.58–2.75], P < 0.001, Fig. 4e, f ).

DLS model fine-tuning and retraining for PFS in patients 
treated with IO
In determining the prognosis of patients receiving 
anti-PD-1 therapy, the DLS model was fine-tuned and 
retrained via 27 selected mutational genes. Individu-
als with NSCLC treated with IO were categorized into 
the high (> 0.50) and the low (≤ 0.50) DLS groups. The 
low DLS group had a longer median PFS than the high 
DLS group (12.80 vs. 2.00 months; HR = 3.41 [2.58–4.98], 
P < 0.001; Fig. 5a) in the MIND cohort treated with IO. In 
the MSKCC and POPLAR/OAK cohorts, the low DLS 
group exhibited better PFS than the high DLS group 
(both P < 0.001; Fig. 5b, c). The DLS model’s ability to pre-
dict OS in the MIND cohort was validated; the low DLS 
group had a considerably longer median OS duration 
(24.50 vs. 7.00 months; HR = 4.34 [3.11–6.06], P < 0.001) 

than that of the high DLS group (Fig. 5d). The low DLS 
group had better OS than that of the high DLS group in 
the MSKCC and POPLAR/OAK cohorts (both P < 0.001; 
Fig. 5e, f ).

Comparison of the DLS model with clinical features and 
the COX model
In all 4 cohorts treated without IO, a routine model was 
developed using the COX method based on the selected 
panel of 45 mutational genes. The high COX group had 
a longer median OS than that of the low COX group 
(70.67 vs. 32.00 months; HR = 0.48 [0.44–0.53], P < 0.001; 
Fig.  6a). The C-index of the DLS model was signifi-
cantly higher than that of the TNM stage or COX model 
(0.74 vs. 0.60 vs. 0.63). The low DLS group had a better 
OS than that of the TNM stage I–II groups (P < 0.010; 
Fig. 6b). In all three cohorts (MIND, MSKCC, and POP-
LAR/OAK) treated with IO, the low COX group had a 
longer median PFS than the high COX group (6.34 vs. 
2.37 months; HR = 0.53 [0.47–0.61], P < 0.001; Fig.  6c). 
The C-index of the DLS model was significantly higher 
than that of the COX model (0.70 vs. 0.61). The low 
DLS group had a better PFS than that of the high PD-L1 
group (P < 0.001; Fig. 6d) and high TMB group (P < 0.001; 

Fig. 3 Least absolute shrinkage and selection operator (LASSO) selection of genes and pathway analysis. (a, b) Optimal somatic mutations selected in 
patients with non-small cell lung cancer who did or did not receive immunotherapy. (c, d) Enrichment analysis of somatic mutations and different signal-
ing pathways
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Fig. 5 Development and validation of the deep learning survival (DLS) model for progression-free survival (PFS). (a–c) DLS model for predicting PFS 
comprising 27 selected genes was constructed in the MIND cohort and validated in the MSKCC and POPLAR/OAK cohorts. (d–f) Overall survival curves 
of patients in the MIND, MSKCC, and POPLAR/OAK cohorts

 

Fig. 4 Development and validation of the deep learning survival (DLS) model for overall survival (OS). (a, b) DLS model comprising 45 selected genes in 
the training MSK-MET cohort was tested in the inter-validation MSK-MET cohort. (c, d) OS curves of patients from the OncoSG and MSK-CSC cohorts. (e, 
f) OS and progression-free survival curves of patients from the TCGA-LUAD cohort
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Fig. 6d). The C-index of the DLS model was significantly 
higher than that of the PD-L1 and TMB groups (0.70 vs. 
0.55 vs. 0.54).

Discussion
In this study, deep learning methods were employed 
using multi-center sequencing data to develop predictive 
models for OS or PFS in individuals with NSCLC from 
several cohorts treated with or without IO. As per our 
knowledge, this is the largest study to determine progno-
sis based on sequencing data from patients with NSCLC. 
Moreover, to prevent over-fitting of the DLS model, the 
LASSO algorithm was initially utilized to select optimal 
genes. Ultimately, 45 somatic mutations were selected 
to predict OS in patients treated without IO. The DLS 
model was validated in the MSK-MET (inter-validation), 
OncoSG, MSK-CSC, and TCGA-LUAD cohorts. After 
fine-tuning and retraining the parameters, a DLS model 
based on 27 somatic mutations was applied to pre-
dict PFS in the MIND cohort treated with IO. The DLS 

model was also validated in the MSKCC and POPLAR/
OAK cohorts. Further, the COX model and TNM staging 
were compared with the DLS model in all cohorts treated 
without IO, revealing that the DLS model had the highest 
C-index. The DLS model also exhibited superior predic-
tive performance compared to the TMB, PD-L1 expres-
sion, and COX models in all cohorts.

Although the WGS, NGS, and WES databases have 
been used increasingly and extensively in cancer 
research, most studies have focused on several gene pan-
els or sole driver mutational genes. Consequently, the 
large amount of sequencing data available is not being 
efficiently utilized, particularly for somatic mutations 
[23–30]. In contrast, the current study focused primar-
ily on employing a relatively small panel of mutational 
genes to develop a robust predictive model for disease 
prognosis. To the best of our knowledge, this is the first 
study to use deep learning to train somatic mutations for 
predicting OS in patients treated without IO or routine 
images. Importantly, different sequencing methods did 

Fig. 6 Deep learning survival (DLS) compared with the COX model and other clinical predictive methods. (a, b) Comparison of the DLS model with the 
COX model and clinical staging in all cohorts treated without IO in predicting OS. (c, d) Comparison of the DLS model with the COX model, tumor muta-
tional burden (TMB), and programmed death-ligand 1 (PD-L1) expression in all cohorts with IO in predicting PFS.
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not affect predictive ability. However, additional research 
is needed to investigate whether DLS can classify OS pre-
diction utilizing a large amount of data obtained from 
WES, NGS, or WGS without relying on simple somatic 
mutations. The genomic sequencing data analyzed in 
this study were obtained from tumor DNA. Moreover, 
the training model was validated with data from the 
other four cohorts (MSK-MET, OncoSG, MSK-CSC, 
and TCGA-LUAD), all of which underwent tumor tissue 
sequencing. Based on these results, it can be concluded 
that the DLS model is a feasible and robust method for 
accurately predicting the OS of patients with NSCLC. 
Moreover, the DLS model could predict PFS in the 
TCGA-LUAD cohort undergoing surgery, indicating that 
this model can be applied to predict recurrence time via 
sequencing data.

Several machine-learning models have been used to 
predict PFS and OS in patients who received IO [31–33]. 
However, herein, a deep learning algorithm based on 
somatic mutations was used for the first time to directly 
predict PFS. In this study, patients with low DLS had sig-
nificantly better PFS and OS than did those with high 
DLS in the MIND, MSKCC, and POPLAR/OAK cohorts. 
These findings imply that the DLS model could efficiently 
evaluate clinical prognosis in patients with NSCLC 
treated with or without IO. In contrast, TMB and PD-L1 
expression exhibited unsatisfactory outcomes in predict-
ing PFS and OS in the three cohorts. It is hypothesized 
that using various detection platforms or different cutoff 
values for TMB might have led to an uncertain predic-
tive impact. Indeed, the PD-L1 assay may have employed 
diverse reagents from several manufacturers [34, 35], 
and the expression levels of PD-L1 from different tumor 
regions may have differed [36]. Hence, the DLS model is 
a viable tool that can overcome the drawbacks of TMB 
or PD-L1 expression levels to predict clinical outcomes in 
patients with NSCLC treated with IO.

Employing deep learning to predict disease prognosis, 
involving medical images or clinical features, has gradu-
ally been introduced in cancer research [37–39]. How-
ever, acquiring a large database of clinical features to train 
models is difficult, especially regarding genomic muta-
tions and patients with cancer who receive IO. Transfer 
learning is a promising strategy for addressing the issue 
of small sample sizes [40]. The current study used transfer 
learning to train the DLS model with similar predictive 
objectives. The DLS model for predicting OS in patients 
treated without IO was first trained using larger sequenc-
ing data after selecting optimal somatic mutations, 
avoiding overfitting during training. Although the deep 
learning method had more parameters and complexities, 
it also had a higher and more consistent ability to predict 
OS than the COX model (C-index: 0.74 vs. 0.63). More-
over, deep learning based on genomic mutations could 

better reflect the prognostic status than simple clinical 
staging. This indicates that analysis of sequencing muta-
tion information would greatly improve the development 
of molecular typing in lung cancer. Nevertheless, large-
scale sequencing data is difficult to acquire, particularly 
for patients receiving IO or chemotherapy plus IO. In our 
study, after the DLS model was trained in patients who 
did not receive IO, it was retrained using a smaller data-
set (MIND cohort), indicative of transfer learning. This 
method could allow for training with smaller-scale muta-
tional data in other cancers while maintaining model 
stability. The DLS model also presented higher predic-
tive ability than that of the COX model in patients who 
received IO (C-index: 0.70 vs. 0.61). Therefore, this novel 
deep-learning algorithm has the capacity to increase the 
identified associations between prognosis and gene status 
greatly.

This study has few limitations. First, although the study 
included many patients from numerous centers, sev-
eral clinical variables (e.g., PFS and tumor biomarkers) 
were missing in the MSK-MET, OncoSG, and MSK-CSC 
cohorts. Therefore, the DLS model could not incorporate 
these clinical variables to optimize predictive perfor-
mance further. Additionally, although a panel of selected 
somatic mutations based on WES, WGS, or NGS data 
was employed, copy number variation, mRNA expres-
sion, radiomics, and pathology grade were not utilized to 
predict OS and PFS. A deep learning method based on a 
multi-omics model could be evaluated. Furthermore, cir-
culating tumor DNA analysis of peripheral blood samples 
is a noninvasive approach only conducted in the POP-
LAR/OAK cohort. Hence, the predictive performance of 
the DLS model for prognosis based on circulating tumor 
DNA could be further investigated.

Conclusions
Herein, deep learning based on a panel of mutational 
genes served as a novel and reliable algorithm for deter-
mining the prognosis in patients with NSCLC who did or 
did not receive IO. The DLS model can predict OS and 
PFS better than the COX model, TNM staging, TMB, 
or PD-L1 expression. Our findings provide new insights 
for predicting clinical outcomes in patients with NSCLC 
based on the WGS, NGS, and WES databases. This new 
deep learning algorithm from high-throughput sequenc-
ing can be exploited to inform pan-cancer clinical 
decisions.
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