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Abstract 

This work compared the metabolic profile of a parental MDA-MB-231 cisplatin-sensitive triple negative breast cancer 
(TNBC) cell line with that of a derived cisplatin-resistant line, to characterize inherent metabolic adaptations to resist-
ance, as a means for marker and new TNBC therapies discovery. Supported by cytotoxic, microscopic and biochemi-
cal characterization of both lines, Nuclear Magnetic Resonance (NMR) metabolomics was employed to characterize 
cell polar extracts for the two cell lines, as a function of time (0, 24 and 48 h), and identify statistically relevant dif-
ferences both between sensitive and resistant cells and their time course behavior. Biochemical results revealed 
a slight increase in activation of the NF-κB pathway and a marked decrease of the ERK signaling pathway in resistant 
cells. This was accompanied by lower glycolytic and glutaminolytic activities, possibly linked to glutamine being 
required to increase stemness capacity and, hence, higher survival to cisplatin. The TCA cycle dynamics seemed to be 
time-dependent, with an apparent activation at 48 h preferentially supported by anaplerotic aromatic amino acids, 
leucine and lysine. A distinct behavior of leucine, compared to the other branched-chain-amino-acids, suggested 
the importance of the recognized relationship between leucine and in mTOR-mediated autophagy to increase resist-
ance. Suggested markers of MDA-MB-231 TNBC cisplatin-resistance included higher phosphocreatine/creatine ratios, 
hypotaurine/taurine–mediated antioxidant protective mechanisms, a generalized marked depletion in nucleotides/
nucleosides, and a distinctive pattern of choline compounds. Although the putative hypotheses generated here 
require biological demonstration, they pave the way to the use of metabolites as markers of cisplatin-resistance 
in TNBC and as guidance to develop therapies.
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Background
Platinum [Pt(II)]-based compounds, namely cisplatin 
(cDDP), carboplatin and oxaliplatin, have been exten-
sively used in chemotherapy regimens for several types of 
solid tumors (e.g. head and neck, cervical, breast, ovarian, 
testicular and colon) [1, 2]. Nevertheless, the clinical use 
of these drugs has been limited due to their acute toxic-
ity and associated tumor resistance [3]. Indeed, Pt(II)-
resistance seriously hinders treatment efficacy, with 
initial response rates of ca. 20% and 70–90% for intrin-
sic and acquired resistances, respectively [4], the latter 
characterized by cancer recurrence within 6 months after 
first-line treatment (ca. 80% [5]). While Pt(II)-intrinsic 
resistance is common in colorectal and non-small lung 
cancers, acquired resistance is described in gynecologi-
cal cancers [6], testicular, head and neck [4] and breast 
cancer (BC) [7]. Generally, Pt(II)-acquired resistance is a 
multifactorial condition believed to involve an adaptive 
response of tumor cells in terms of at least one of the fol-
lowing molecular events: (i) improvement of DNA repair 
mechanisms to remove DNA-drug adducts (e.g. nucleo-
tide/base excision and mismatch repair) [3]; (ii) reduc-
tion of intracellular bioavailability of Pt(II)-drugs through 
regulation of its influx and/or efflux by selected cell 
membrane transport systems (e.g. copper transporters, 
Ctr1 and Ctr2, and ATP binding cassette transporters) 
[8]; (iii) drug inactivation or decreased drug bioavail-
ability induced by Pt(II) coordination to sulfur-contain-
ing biomolecules (e.g. cysteine/methionine proteins, 
glutathione, or metallothionein [7, 9]); (iv) alteration in 
signaling pathways to promote anti-apoptotic behavior 
of tumors cells (e.g. MAPK/ERK, PI3K/AKT, NF-κB and 
FAS/FASL) [10]; and (v) improvement of cancer stemness 
progression induced by self-renewal and differentiation 
of cancer stem cells subpopulations [10]. Ultimately, it is 
believed that the effect of these resistance mechanisms 
is the metabolic reprogramming of resistant cells, which 
become more strongly reliant on glucose, glutamine 
and fatty acids [11]. Thus, it is important to character-
ize the inherent metabolic traits of Pt(II)-resistant cells, 
as well as their response to metallo-agents, in an attempt 
to develop new treatment strategies able to circum-
vent resistance and, therefore, lead to improved patient 
outcomes.

Untargeted metabolomics (either using mass spec-
trometry (MS) or nuclear magnetic resonance (NMR) 
spectroscopy) is an invaluable analytical strategy to 
access information on such metabolic rewiring, for 
instance through comparison of the metabolic profiles 
of Pt(II)-sensitive or Pt(II)-resistant cells. Up to this date, 
in  vitro metabolomic studies have mainly focused on 
ovarian cancer [12–15] and colon cancer [16, 17]. Such 
studies have either only characterized the metabolism 

of untreated resistant cells compared to sensitive cells 
[12, 15, 17], or also considered the effects of exposure to 
cDDP [13, 14], oxaliplatin [13, 16] or carboplatin [13] on 
both cell lines (sensitive and resistant). The comparison 
of untreated resistant and sensitive cell lines is important 
to enable the identification of inherent mechanisms later 
reflected in cell behavior when under cDDP exposure. 
In general, untreated resistant cancer cells (namely, of 
colon and ovarian cancers) have been shown to exhibit 
a higher glycolytic activity directed towards lactic fer-
mentation (Warburg effect) or the pentose phosphate 
pathway (PPP), leading to reduced oxidative phosphoryl-
ation (OXPHOS) [15–17]. In addition, more active glu-
taminolysis has been observed in these cases (glutamine 
functioning as a carbon source and maintaining redox 
homeostasis), as well as a less active cysteine/methionine 
metabolism and a reduced polyamine catabolism [12, 16, 
17]. Disruptions in cell membrane metabolism have also 
been reported for an untreated resistant ovarian cancer 
cell line (namely expressed by increased levels of phos-
phocholine (PC) and glycerophosphocholine (GPC) and 
decreased levels of choline) [13], which suggest mem-
brane changes to later mediate Pt(II) cellular uptake 
upon exposure. Furthermore, distinct variations in the 
biosynthesis of the reduced form of glutathione (GSH) 
and other metabolites related to the cellular antioxidant 
defense were observed for different untreated Pt(II)-
resistant ovarian cancer cell lines, namely, increased lev-
els of GSH and taurine in C200 cells [12] and A2780 [13] 
cells, respectively, while GSH, hypotaurine and taurine 
levels were found to be decreased in PEA2 cells [14].

Regarding breast cancer, the most prevalent cancer 
among the female population (affecting 2  M (24.5%) 
women worldwide) [18], to the best of our knowledge, 
no metabolomic studies have addressed Pt(II)-resistance, 
although targeted biochemical measurements have inves-
tigated resistance to several non-metallic drugs, such as 
tamoxifen (endocrine agent) [19–22] and doxorubicin 
(anthracycline agent) [23, 24] in BC luminal A subtype 
(MCF-7 cells). Furthermore, in spite of the aggressive 
and metastatic nature of triple-negative breast cancer 
(TNBC) [25], commonly treated with Pt(II)-based thera-
pies, the few existing metabolomic reports have, to our 
knowledge, only addressed sensitive cell lines, to describe 
the impact of cDDP (namely on MDA-MB-231, MDA-
MB-468 or SUM-159PT cell lines), compared to other 
agents such as tamoxifen, doxorubicin and a Cu(II)-che-
late [26–28]. Metabolomics has also addressed the meta-
bolic response of MDA-MB-231 cells to cDDP alone and 
in combination with valproic acid, an antiepileptic drug 
with anticancer properties as histone deacetylase inhibi-
tor, believed to influence resistance acquired by epige-
netic modifications [29].
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This paper presents, for the first time to the authors’ 
knowledge, an untargeted metabolomics study of the 
polar metabolome of untreated MDA-MB-231 parental 
(cDDP-sensitive) cells and derived MDA-MB-231/R cells 
(cDDP-resistant), the latter having been previously estab-
lished as a model of acquired cDDP-resistance [30]. An 
NMR metabolomics strategy was applied, with a view to 
assess the short-term (up to 48 h) metabolic dynamics of 
each untreated cell line, aiming at identifying metabolic 
traits characterizing cDDP-acquired resistance in TNBC. 
The unveiled metabolic characteristics of cDDP-resist-
ance contribute to the identification of the mechanisms 
involved in the process, thus paving the way for early 
prediction of cDDP response and aid the development of 
new strategies to overcome cDDP-resistance.

Methods
Cell culture
The human TNBC cell line MDA-MB-231 (ATCC 
HTB-26; absence of estrogen and progesterone recep-
tors, HER2 overexpression) was purchased from ATCC 
(Manassas, VA, USA). BC cells were cultured in DMEM-
HG cell growth medium supplemented with 10% (v/v) 
FBS and maintained under a humidified atmosphere 
of 5%  CO2 at 37  °C. The cDDP-resistant cell line was 
established as previously described [30]. Briefly, MDA-
MB-231 cells were continuously treated with increasing 
concentrations of cDDP (up to a maximum of 2 µM) dur-
ing 6  months. When a consistent cell growth rate was 
achieved, in the presence of cDDP, the resulting cell line, 
designated as MDA-MB-231/R, was stored at − 80 °C. All 
subsequent experiments were performed within 10 pas-
sages, for both cDDP-sensitive and -resistant cell lines, 
maintaining the MDA-MB-231/R cell line in growth 
medium in the absence of cDDP. Under these conditions, 
the population doubling times were 25.5 ± 0.9  h and 
30.6 ± 1.1  h for MDA-MB-231 (sensitive, designated as 
S) and MDA-MB-231/R (resistant, designated as R) cells, 
respectively. The two cell lines will be designated, when 
possible, as R and S for MDA-MB-231/R and MDA-
MB-231, respectively. The cell cultures were routinely 
screened for mycoplasma contamination, all assays hav-
ing yielded negative results.

Cell growth assays
Cells were seeded in 96-well microplates at the cell den-
sity 1.5 ×  104 cells/cm2 (final volume 200  µL/well) and left 
to attach for 24  h. Label-free kinetic live monitoring of 
cell growth was performed using LionheartFX automated 
microscope (BioTek, Winooski, VT, USA) with direct 
image acquisition of cells in microplates at 48 h. The 4X 
images acquired were processed using the Gen 5 Image 
Analysis software (BioTek, Winooski, VT, USA) that 

allows for identification and counting of individual cells 
per image.  IC50 (half maximal inhibitory concentration) 
values were calculated for both S and R cell lines incu-
bated for 48 h with increasing concentrations of cDDP (5, 
10 and 20 μM) [30].

ERK1/2 phosphorylation assays and NF‑κB 
phosphorylation assays
Changes in phosphorylated ERK1/2 (p-ERK) were 
detected using the AlphaScreen SureFire p-ERK1/2 Kit 
following the methods described in detail elsewhere [31, 
32]. Briefly, 10 μL of total protein lysate were transferred 
into 384-well ProxiPlates and a mixture of acceptor beads 
and donor beads were added, following the manufactur-
er’s instructions. In addition, changes in phosphorylated 
NF-κB (p-NF-κB) were measured using the AlphaS-
creen SureFire p-NF-κB Kit, following the same protocol 
described above.

Cell assays statistical analysis
In relation to cell assays, the data was expressed as the 
mean ± standard error of the mean (SEM), with each of 
three independent experiments, in triplicate (n = 3). Sta-
tistical analysis of cell assay results was performed using 
(i) non-linear regression analysis of the corresponding 
dose–response curves to calculate the  IC50 values; (ii) 
the two-tailed Student’s t-test to compare R vs. S cells; 
(iii) one-way ANOVA to compare each cell line with the 
respective controls, followed by the Dunnett’s t-test. The 
GraphPad Prism 7 Software (San Diego, CA, USA) was 
used. A p-value lower than 0.05 was considered statisti-
cally significant.

Cells collection and extraction
MDA-MB-231 parental (cDDP-sensitive) and resist-
ant cells were seeded at a density of 3 ×  104  cells/cm2 
onto 150  mm Petri dishes (ø 135.5  mm), cultured in a 
humidified atmosphere of 5%  CO2 at 37  °C and allowed 
to adhere for 24  h. The cells were then incubated and 
collected at 0, 24 and 48 h, with basis on the population 
doubling times mentioned above. At each time-point, 
cells were harvested using a 0.25% (v/v) trypsin–EDTA 
solution, washed twice with PBS and centrifuged (300 g, 
5 min, 20 °C). The cell pellets were stored at − 80 °C until 
analysis. Three independent experiments with triplicates 
were performed for each cell line and time-point.

The cellular polar extracts were obtained using a 
biphasic extraction method of methanol/chloroform/
water previously reported [33]. Briefly, cell pellets were 
suspended in 650  µL of 80% (v/v) methanol-miliQ 
water solution, transferred to microcentrifuge tubes 
with 150  mg of glass beads (ø = 0.5  mm) previously 
weighted, and vortexed for 5 min to aid cells disruption. 
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Subsequently, 260 µL of 100% chloroform and 260 µL of 
100% chloroform plus 220  µL MiliQ water were added 
to samples, which were vortexed for 5  min between 
solvents addition. Samples were stored at −20  °C for 
10 min and centrifuged (2,000 g, 15 min, room tempera-
ture). The aqueous phase was collected into a new tube, 
vacuum-dried and stored at − 80  °C until further analy-
sis. All samples and reagents were kept in ice during 
the extraction procedure. Before NMR analysis, the dry 
aqueous extracts were suspended in 650 µL of 100 mM 
sodium phosphate buffer (pH 7.4, in  D2O containing 
0.25% 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP) 
for chemical shift referencing) and transferred into 5 mm 
NMR tubes.

NMR spectroscopy and statistical analysis of spectra
The NMR spectra were recorded on a Bruker AVANCE 
III spectrometer, equipped with a 5 mm TXI probe, oper-
ating at 500.13  MHz for 1H observation, and at 298  K. 
Standard 1D 1H NMR spectra of aqueous extracts were 
acquired using a water presaturation pulse sequence 
(“noesypr1d” from Bruker library, Rheinstetten, Ger-
many), with 7002.801 Hz spectral width, 32 k data points, 
2.34 s acquisition time and 2 s relaxation delay and 512 
scans. Prior to Fourier transformation, each free-induc-
tion decay was zero-filled to 64 k points and multiplied 
by a 0.3 Hz exponential line-broadening function. Spec-
tra were manually pre-processed including phase cor-
rection, baseline adjustment and internal calibration of 
chemical shifts to TSP. For peak assignment, 2D NMR 
homonuclear total correlation (TOCSY) and heteronu-
clear single-quantum correlation (HSQC) spectra were 
acquired for selected samples, along with comparison 
with existing literature and spectral databases, such as 
Bruker BIOREFCODE (AMIX-viewer 3.9.14, Bruker Bio-
spin, Rheinstetten, Germany), human metabolome data-
base (HMDB) [34] and Chenomx NMR Suite (Chenomx 
Inc, Edmonton, AB, Canada).

The unidimensional proton NMR spectra were con-
verted into matrices (AMIX 3.9.14, Bruker Biospin, 
Rheinstetten, Germany), excluding methanol (δ 3.36, sin-
glet) and water (δ 4.4–5.4) spectral regions. The spectra 
were aligned by recursive segment-wise peak alignment 
(RSPA) to minimize chemical shift variations (Matlab 
8.3.0, The MathWorks Inc., Natick, Massachusetts, USA), 
and normalized to total spectral area to account for dif-
ferent cells numbers. Multivariate analysis was carried 
out using unsupervised principal component analysis 
(PCA) and supervised partial least squares–discrimi-
nant analysis (PLS-DA), upon unit variance (UV) scal-
ing (SIMCA-P 11.5; Umetrics, Umeå, Sweden). PLS-DA 
models with corresponding values of predictive power 
 (Q2) higher than 0.50 were considered statistically robust. 

PLS-DA loadings were back-transformed, multiply-
ing each variable by its standard deviation, and colored 
according to variable importance to the projection (VIP) 
(Matlab 8.3.0, The MathWorks Inc., Natick, MA, USA). 
The respective loading plots revealed the resonances rel-
evant for class separation, which were selected for area 
integration (AMIX 3.9.14, Bruker BioSpin, Rheinstetten, 
Germany), normalization, and variation assessment by 
univariate analysis. Univariate analysis of metabolites 
combined effect size (ES) [35] and statistical significance 
(Shapiro–Wilk test to assess data normality, Student’s 
t-test or Wilcoxon test for normally distributed or non-
normally distributed data, respectively) (R statistical 
software). For multiple testing, p-values of significantly 
changed metabolite levels (|ES|> ES error and p < 0.05) 
were corrected by false discovery rate (FDR), based on 
the Benjamini and Hochberg method [36]. Significant 
metabolite differences between S and R cell lines were all 
confirmed by posterior visual inspection of the spectra, 
and putatively interpreted based on information derived 
from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database [37].

Results
Cytotoxic, microscopic and biochemical characterization 
of MDA‑MB‑231/R (R) compared to MDA‑MB‑231 (S) cells
In order to demonstrate cDDP-resistance in R cells, the 
impact of increasing concentrations of cDDP (5, 10 and 
20  μM) on S or R cells, incubated for 48  h, was evalu-
ated through cell growth measurements (Fig.  1a). The 
results showed that S cells were highly sensitive to cDDP 
treatment, while the response of R cells to cDDP was 
considerably attenuated (Fig.  1a), with similar doubling 
times for both cell lines (25.5 ± 0.9 h and 30.6 ± 1.1 h for 
S and R cell lines, respectively). This was consistent with 
the reported cDDP half maximal inhibitory concentra-
tions  IC50 (48 h) of 1.0 μM and 32.4 μM for S and R cells, 
respectively [30]. The above results are consistent with 
data previously reported for other MDA-MB-231 cDDP-
resistant human cell lines [38–40].

Morphological analysis revealed a normal spindle-
shaped phenotype for both S and R cells, although R cells 
were characterized by an enriched portion (Fig. 1b) and a 
larger cell size (566.4 ± 20.7 μm2 in S vs. 779.4 ± 27.4 μm2 
in R cells, p < 0.0001, Fig. 1c) of polyploid giant (cancer) 
cells (PGCCs) as compared to S cells. Furthermore, the 
basal phosphorylation profiles of ERK1/2 and NF-κB 
proteins in S and R cells were measured and compared 
(Fig.  1d), as the MAPK/ERK pathway plays a crucial 
role in the survival and development of tumor cells [41, 
42], whereas the NF-κB pathway has also been linked to 
cancer survival [43]. For R cells, the basal phosphoryla-
tion of NF-κB showed an increasing tendency of nearly 
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17% (p = 0.1380), while a significant decrease was noted 
in the basal levels of phosphorylated ERK1/2 (near 50% 
decrease, p = 0.0077), compared to S cells (Fig. 1d).

Overall metabolic profiling of MDA‑MB‑231/R (R) 
compared to MDA‑MB‑231 (S) cells
The average 1H NMR spectrum of polar extracts of 
untreated S cells (0 h) (Fig. 2a) reflects the presence of 
over 20 amino acids and derivatives, 3 choline com-
pounds (choline, phosphocholine (PC), glycerophos-
phocholine (GPC)), 17 nucleotides and derivatives, 8 
organic acids and 4 other compounds (dimethylamine 

(DMA), glycerol, m-inositol and trimethylamine 
N-oxide (TMAO)) (see table of assignments, Additional 
file 1). This is consistent with previously reported NMR 
data for polar extracts of this cell line [27, 44]. At 0 h, 
some changes are apparent through visual inspection 
of the average spectrum of R cells (arrows in Fig.  2b), 
compared to that of S cells, namely increased alanine, 
glutathione (reduced form, GSH) and glutamine, and 
decreased acetate, glutamate, adenosine-mono/di/
triphosphate (AMP, ADP, ATP), pseudouridine, uridine 
diphosphate glucose/glucuronic acid (UDP-Glc/GlcA) 
and nicotinamide adenine dinucleotide  (NAD+), all of 

Fig. 1 Cytotoxicity, microscopy and biochemical comparison of MDA-MB-231 and MDA-MB-231/R cells. a Proliferation of MDA-MB-231 
and MDA-MB-231/R cells treated with 0.5, 10 and 20 μM of cisplatin for 48 h. Values are expressed as mean ± SEM, n = 3 experiments (triplicates). 
Significant differences from control (MDA-MB-231): p < 0.0001 (####); Significant differences from control (MDA-MB-231/R): p < 0.01(+ +); 
p < 0.0001 (+ +  + +); Significant differences from MDA-MB-231 cells: p < 0.001 (***), p < 0.0001 (****); b Representative photomicrographs 
of MDA-MB-231/R cells (left) and MDA-MB-231 (right). 4 independent experiments were carried out under a fluorescent objective lens (upper 
panel) or a phase-contrast objective lens (lower panel) of the LionheartFX microscope. Scale bar = 100 μm; c Area of polyploid giant cancer 
cells in MDA-MB-231 (white) and MDA-MB-231/R cells (black). Values are expressed as mean ± SEM, n = 3 experiments (triplicates). Significant 
differences from MDA-MB-231 cells: p < 0.0001 (****); d Phosphorylation of ERK1/2 and of NF-κB in MDA-MB-231 (white) and MDA-MB-231/R cells 
(black) detected using AlphaScreen Sure Fire technology. Values are expressed as mean ± SEM, n = 3 experiments (triplicates). Data are expressed 
as mean ± SEM, n = 3. Significant differences from MDA-MB-231 cells: p < 0.01 (**)
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these variations having been confirmed upon statistical 
analysis, as described below.

PCA and PLS-DA models were used to compare all R 
and S samples (full and open symbols, respectively, in 
Fig. 3, top) showing that the metabolic profile is signifi-
cantly distinct between the two cell lines, independently 
of culture time and with slightly more dispersion for sen-
sitive cells. PLS-DA LV1 loadings (Fig.  3, bottom) seem 
to indicate that some of the most consistent differences 
affect glutamate, glutamine, GSH, GPC,  NAD+, tau-
rine, aspartate, several nucleotides, UDP-Glc/GlcA and 
hypoxanthine (HX).

Such differences were confirmed by spectral integra-
tion and statistical assessment, which produced a more 
complete list of reliable differences between all R and S 
cells, independently of time point (Table 1). Overall, the 
results evidence that cDDP-resistant cells differ from 
sensitive cells in the levels of 38 identified compounds: 

14 amino acids and derivatives, choline and GPC, 15 
nucleotides and derivatives, 5 organic acids, DMA and 
m-inositol. The most significant differences (p ≤  10–10 
and |ES|≥ 2.0) in resistant cells include (i) higher levels 
of GSH, glutamine, phosphocreatine (PCr), taurine and 
lower levels of glutamate; and (ii) overall lower levels of 
adenine, adenosine,  NAD+ and UDP-Glc/GlcA (Table 1, 
bold and underlined metabolites), although all listed vari-
ations are important (e.g. depletion in choline, GPC, and 
in  a wide range of nucleosides/nucleotides), all organic 
acids detected (including lactate) and m-inositol, as they 
remain statistically meaningful after FDR correction.

The average differences between R and S cell lines have 
a perceptible dependence on culture time (Fig.  4), with 
a general tendency for higher amino acid levels at 0 and 
24  h in R cells (except for glutamate and proline), with 
several amino acids showing depletion at 48  h in the 
same cells. It is clear that R cells are markedly depleted 

Fig. 2 Average 500 MHz 1H NMR spectra of aqueous extracts from triple-negative breast cancer cells. a sensitive (S), MDA-MB-231, and b resistant 
(R), MDA-MB-231/R to cDDP, at the beginning of the experiment (t = 0 h). * Cut-off of water suppression region (δ 4.4–5.4), not considered 
in the multivariate analysis. The arrows identify metabolic variations found with visual inspection of spectra of R cells in relation to S cells. 3-letter 
code for amino acids; ADP adenosine diphosphate, AMP adenosine monophosphate, ATP adenosine triphosphate, BCAAs branched-chain 
amino acids (Ile, Leu and Val), Cho choline, Cr creatine, GPC glycerophosphocholine, GSH glutathione (reduced), GTP guanosine triphosphate, HX 
hypoxanthine, m-Ino myo-Inositol, Lac lactate, NAD+ nicotinamide adenine dinucleotide (oxidized), PC phosphocholine, Pseudourd. Pseudouridine, 
Tau taurine, UDP-Glc/GlcA uridine diphosphate-glucose/glucuronate, UDP-GlcNAc uridine diphosphate N-acetyl-glucosamine
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in choline compounds and in many nucleotides and 
derivatives, at all time points (Fig.  4). Notably, analysis 
of distinct time points unveils several new variations in 
addition to the overall average changes listed in Table 1, 
namely in (i) tricarboxylic acid cycle (TCA) intermedi-
ates citrate, malate and succinate; (ii) amino acids ala-
nine, leucine, N-acetyl-aspartate (NAA) and tyrosine; (iii) 
other compounds: ATP and glycerol. Hence, it is clear 
that, not only average metabolite pools are significantly 
different between the two cell lines, but also that time 
point comparisons unveil additional varying metabolites.

Metabolic trajectories (0–48 h) in MDA‑MB‑231/R (R) 
compared to MDA‑MB‑231 (S) cells
In order to examine each metabolite trajectory overtime, 
pairwise PLS-DA models were obtained for each cell 
line, revealing high predictive power values  (Q2) of ca. 
0.75 and 0.80–0.84 for S and R cells, respectively (Fig. 5a, 
b) and thus confirming that culture time significantly 

changes the metabolic profile of each cell line. In particu-
lar, this knowledge is relevant for drug exposure studies, 
where time course markers may be defined. Indeed, at 
48  h, the metabolic profile of each cell line is markedly 
distinct from that at 0 h, with  Q2 approaching the maxi-
mum value of 1.0 (0.92–0.94) (Fig.  5c). The metabolite 
changes taking place as a function of time (and for the 
0/48  h comparison) are quantified in Additional file  2 
and Additional file  3 for S and R cell lines, respectively 
(most changes surviving FDR correction), and illustrated 
for each cell line in a heatmap form (Additional file 4). In 
general, both S and R cell lines exhibit a general increase 
in amino acids from 0 to 24 h (except for glycine which 
decreases in S cells), followed by a tendency for amino 
acid stabilization from 24 to 48 h (less number of varia-
tions, particularly in R cells). Considering the respective 
errors (Additional file 2 and Additional file 3), the most 
evident net differences (48 h vs 0 h) in R cells, compared 
to S cells, comprise: (i) lower/no increases in alanine, 

Fig. 3 Multivariate analysis of spectra of aqueous extracts from MDA-MB-231 cells (S) vs. MDA-MB-231/R cells (R). Score scatter plots of PCA 
and PLS-DA models (top) and LV1 loadings (bottom), considering the trajectory of the three experimental time-points: t = 0 h (orange triangles, 
n = 9/cell type), t = 24 h (black squares, n = 9/cell type), t = 48 h (green circles, n = 9/cell type). Validation parameters  (R2 and Q.2) are shown 
for the PLS-DA model. Loadings’ peak assignments are indicated for the metabolites most relevant for group separation according to the color 
representation of variable importance to projection color (VIP). Abbreviations as defined in Fig. 2
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isoleucine, leucine and (N-acetyl-aspartate) NAA; (ii) 
more marked increases in creatine (Cr), methionine and 
taurine. Resistant cells show raised choline levels (no 

changes in S cells) and no change in GPC (decreased 
in S cells). The nucleotides profile of R cells is remark-
ably stable compared to S cells (Additional file  4), only 

Table 1 Statistically significant (|ES|> ES Error and p < 0.05) metabolite variations observed in the polar metabolome of MDA-MB-231/R 
(R) compared to MDA-MB-231 (S) (not considering time-course evolution)

All metabolites remain statistically significant (p < 0.05) after False Discovery Rate (FDR) correction

3-letter code for amino acids; Ado adenosine, DMA dimethylamine, IMP inosine monophosphate, Ino inosine, PA pantothenate, PCr phosphocreatine, UDP uridine 
diphosphate, UMP uridine monophosphate; other abbreviations as defined in the caption of Fig. 2

Metabolites in bold and underlined show more marked differences in levels (p ≤  10–10 and |ES|≥ 2.0)
† Tentative assignment

Metabolite δH (multiplicity) R vs. S

ES ± Error p‑value

Amino acids and deriva-
tives

Cr 3.04 (s) 0.9 ± 0.6 1.5 ×  10–3

GSH 2.96 (m) 3.8 ± 0.9 2.2 ×  10–18

Gln 2.45 (m) 2.8 ± 0.8 2.1 ×  10–13

Glu 2.36 (m) −3.4 ± 0.8 5.6 ×  10–15

Gly 3.55 (s) 0.6 ± 0.5 4.9 ×  10–2

Ile 0.94 (t) 1.4 ± 0.6 5.5 ×  10–6

Lys 1.73 (m) −1.2 ± 0.6 1.3 ×  10–4

Met † 2.64 (t) 2.6 ± 0.7 1.3 ×  10–8

PCr 3.05 (s) 2.2 ± 0.7 3.1 ×  10–10

Phe 7.33 (m) −0.7 ± 0.6 1.8 ×  10–2

Pro 1.98 (m) −0.9 ± 0.6 1.2 ×  10–2

Sarcosine 2.76 (s) 0.9 ± 0.6 1.5 ×  10–3

Tau 3.43 (t) 2.4 ± 0.7 1.2 ×  10–11

Val 1.05 (d) 0.8 ± 0.6 3.8 ×  10–3

Choline compounds Cho 3.20 (s) −1.7 ± 0.6 1.5 ×  10–7

GPC 3.23 (s) −2.3 ± 0.7 2.3 ×  10–6

Nucleotides and related 
metabolites

Adenine 8.19 (s) −2.9 ± 0.8 1.5 ×  10–12

Ado 8.27 (s) −3.0 ± 0.8 3.0 ×  10–10

ADP 8.54 (s) −0.8 ± 0.6 1.5 ×  10–2

AMP 8.61 (s) −1.7 ± 0.6 2.5 ×  10–8

HX 8.20 (s) −1.9 ± 0.7 7.6 ×  10–9

IMP 8.58 (s) −2.0 ± 0.7 2.3 ×  10–7

Ino, Ado 8.35 (s) −1.3 ± 0.6 8.4 ×  10–5

NAD+ 8.43 (s) −3.4 ± 0.8 3.8 ×  10–10

Pseudouridine 7.68 (s) −0.9 ± 0.6 1.5 ×  10–3

UDP 8.01 (d) −1.0 ± 0.6 1.3 ×  10–4

UDP-GlcNAc 5.52 (dd) −1.2 ± 0.6 4.4 ×  10–5

UDP‑Glc/GlcA 7.95 (d) −3.2 ± 0.8 3.2 ×  10–14

UMP 8.11 (s) −2.1 ± 0.7 2.4 ×  10–9

Uracil 5.81 (d) −0.9 ± 0.6 3.3 ×  10–3

Uridine 7.88 (d) −1.2 ± 0.6 6.8 ×  10–5

Organic acids Acetate 1.92 (s) −1.6 ± 0.6 1.2 ×  10–6

Formate 8.46 (s) −0.6 ± 0.5 4.0 ×  10–2

Fumarate 6.52 (s) −2.0 ± 0.7 3.4 ×  10–9

Lactate 4.10 (q) −1.0 ± 0.6 6.1 ×  10–4

PA 0.90 (s) −1.4 ± 0.6 8.8 ×  10–6

Other compounds DMA 2.73 (s) 2.6 ± 0.7 2.5 ×  10–8

Myo-Inositol 4.06 (t) −1.3 ± 0.6 8.4 ×  10–4
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6 metabolites changing (against 16 in S cells), either in 
the same direction but lower magnitude then for S cells 
(ADP, hypoxanthine (HX), UDP and uridine) or in oppo-
site direction i.e. decreased in R cells  (NAD+ and uri-
dine diphosphate N-acetyl-glucosamine (UDP-GlcNAc)) 
(Additional file 4). The S cells exhibit contrastingly strong 
overtime variations for adenine and uracil and deriva-
tives (Additional file  4). As to organic acids, the R cells 
show similar trajectories to S cells (decreased acetate and 
formate, and increased fumarate, lactate and malate), 
although without changes in citrate, panthothenate (PA) 
and succinate as observed in S cells (Additional file  4). 
Glycerol hardly varies in R cells (strongly decreased in 
S cells), whereas m-inositol increases more clearly in R 
cells) (Additional file 4).

The trajectory graphs (Additional file  5, Additional 
file 6, Additional file 7) of all varying metabolites simul-
taneously highlight differences in levels and trajectories. 
Within these, the strongest distinguishing metabolites 
(defined as differing at least in two time points with 
p ≤ 0.0001) are shown in Fig. 6. Resistant cells are clearly 
differentiated at all time points by richer pools of glu-
tamine, GSH, methionine, PCr (leading to higher PCr/
Cr ratios at longer times, Additional file 8a), taurine and 
dimethylamine (DMA); and depleted pools of glutamate, 
GPC, adenine, adenosine, AMP, HX,  NAD+, UDP-Glc/
GlcA, UDP-GlcNAc, uridine (barely detectable in resist-
ant cells), acetate and fumarate (Fig.  6). Consequently, 
R cells exhibit consistently lower glutamate/glutamine, 
GPC/PC, GPC/Cho and  NAD+/NADH ratios than S 
cells (Additional file  8). Although ATP and ADP start 
off depleted in R cells (0  h), both metabolites evolve to 
comparable levels at 48 h in both cell lines and ADP/ATP 
significantly distinguishing cell lines only at 24 h (lower 
ADP/ATP ratio in R cells). The full set of metabolite 
changes in R cells, compared to S cells, and their depend-
ence with culture time are represented in Fig. 7.

Discussion
Cytotoxic, microscopic and biochemical characteristics 
of MDA‑231/R (R) and MDA‑MB‑231 (S) cells
The cytotoxicity results currently obtained clearly illus-
trate the high cDDP-resistance of R cells as compared 
to S cells. This evidence is accompanied by the presence 
of a higher number of PGCCs in the resistant cells, con-
firming previous reports of a relationship between the 
number of PGCCs with tumor chemo-resistance and 
aggressiveness [45, 46]. PGCCs are cells with multiple 
nuclei or a single giant nucleus containing multiple com-
plete sets of chromosomes and it is well documented 
that these cells are present in several solid tumors, usu-
ally in lower numbers in sensitive cells before treatment, 
compared to resistant cells [45]. Moreover, a positive 

Fig. 4 Heatmap significant effect size variations of MDA-MB-231/R 
(R) compared to MDA-MB-231 (S) considering each time-point. 
Increasing values of effect size (ES) are colored from blue to red 
corresponding to negative and positive values, respectively. 
Abbreviations: Cho, choline; other abbreviations as defined in Fig. 2 
and Table 1. †Tentative assignment. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001 for the comparison R vs. S cells in each time-point
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correlation has been formerly described between the 
number of PGCCs and glioma stage and grade [47].

Furthermore, a basal phosphorylation of NF-κB is 
observed in S and R cells, although in the R cells a ten-
dency to an increase in p-NF-κB is observed consistent 
with a slight higher activation of the NF-κB pathway 
and, hence, cell survival, as shown by reports of the rela-
tionship between NF-κB pathway activation, through 
the IKKα pathway, and cell survival under conditions of 
cDDP exposure [48]. In addition, a significant decrease in 
the basal levels of phosphorylated ERK1/2, compared to S 
cells, seems to characterize the resistance of TNBC cells 
to cDDP. Again, this is consistent with previous reports 
associating cancer cells (e.g. cervical carcinoma) (in)sen-
sitivity to cDDP with the downregulation of ERK pathway 
activation [49, 50]. Considering that the ERK1/2 pathway 
may crosstalk with other signaling pathways, and that 
reports are found on both ERK 1/2 and the NF-κB being 

involved in cDDP-acquired resistance in BC cells [51, 52], 
we propose that the constitutive activation of NF-κB and 
of ERK1/2 pathways is modified by exposure of S cells 
to cDDP, with a slightly increase of NF-κB as well as a 
downregulation of ERK1/2 pathways that might be asso-
ciated with TNBC survival and its more aggressive char-
acteristics. A similar hypothesis has been advanced in 
cervical carcinoma, for which increased cDDP-resistance 
has been observed in association with reduction of acti-
vation of the MEK to ERK2 pathway (in the presence of 
a MEK1-selective inhibitor, 2’-amino-3’-methoxyflavone) 
and involving, at least in part, an increase of NF-κB acti-
vation [50].

Comparative metabolic features of MDA‑MB‑231/R (R) 
and MDA‑MB‑231 (S) cells
Two of the main metabolic features that R cells main-
tain overtime is lower anaerobic glycolytic activity (lower 

Fig. 5 Multivariate analysis of time course variations in MDA-MB-231 cells (S) and MDA-MB-231/R cells (R). PCA and PLS-DA scores scatter plots 
for 1H NMR spectra of aqueous extracts of MDA-MB-231 (S, left) and MDA-MB-231/R (R, right) cells, obtained for time-course pairwise analysis: a, 
d 24 h (black symbols) (black) vs. 0 h (orange symbols); b, e 48 h (green symbols) vs. 24 h (black symbols); c, f 48 h (green symbols) vs. 0 h (orange 
symbols). Validation parameters  (R2 and  Q2) are indicated for each PLS-DA model and robust predictive power  (Q2) are highlighted in bold
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Fig. 6 Bar charts of relevant metabolite variations. Significant variations (p < 0.001/0.0001 at least in two time-points) on the polar metabolomes 
of MDA-MB-231 (blue stripes) and MDA-MB-231/R (orange) cells are shown during time-course evolution. Values are expressed as mean 
of normalized area of integrated peak ± SEM. Abbreviations as defined in Fig. 2 and Table 1. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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lactate levels, although increasing with time in each cell 
line), and lower glutaminolytic activity (lower glutamate 
and high glutamine levels). In S cells, both processes 
are more active, at all times, an expected hallmark of 
cancer metabolism [53]. However, interestingly, both 
pathways seem subdued in resistant cells. This seems to 
contradict the increases in glycolytic and glutaminolytic 
activities reported in relation to Pt(II)-resistance in colon 
and ovarian cancer cells [12, 15–17]. We therefore sug-
gest that reduced glycolytic and glutaminolytic activities 
may be a specific characteristic of TNBC cDDP-sensitive 

cells. Both observations are consistent with the noted sig-
nificant decrease in ERK activity. The role of ERK (and 
JNK) pathways in the metabolic reprogramming of highly 
proliferating cells (such as cancer cells) has previously 
been discussed in detail [54]. These authors advance that 
increased ERK activity accompanies a high prolifera-
tive activity in cancer cells leading to a negative regula-
tion of the enzyme pyruvate kinase isoform M2 (PKM2, 
responsible for PEP to pyruvate conversion), through 
phosphorylation. This low PKM2 activity induces an 
accumulation of upstream glycolytic intermediates, 

Fig. 7 Putative metabolic pathways explaining the differences between polar metabolomes of MDA-MB-231/R and MDA-MB-231 cell lines. 
Metabolites in bold represent those identified by NMR. Changes in metabolite levels are illustrated as color bars according to the effect size 
variations for the R vs. S cells pairwise comparison (blue and red represent decreases and increases, respectively). Anaplerotic amino acids 
classified as ketogenic or glucogenic are indicated with a(within rectangles with cut vertexes) or b(within rectangles with straight vertexes), 
respectively. Possible relationships with the ERK(/MAPK) signaling pathway are indicated in grey ellipses. Metabolic pathways are distinguished 
by different colors, namely creatine metabolism in cyan, amino acids metabolism in green, glycerophospholipids (GPL) metabolism in orange, 
energy metabolism in blue, antioxidant metabolism in purple, nucleotide sugars metabolism & pentose-glcA interconversions in yellow, 
and pyrimidine & purines metabolism in red. F6P fructose 6-phosphate, G1P glucose 1-phosphate, G6P glucose 6-phosphate, GA guanidine acetate, 
GlcA1P glucuronate 1-phosphate, GlcA glucuronate, GlcN-6P glucosamine 6-phosphate, PPP pentose phosphate pathway, PRPP phosphoribosyl 
pyrophosphate, Urd uridine, UTP uridine
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which are precursors of several biomolecules (e.g. amino 
acids, nucleotides and fatty acids). Interestingly and 
paradoxically, a low PKM2 activity is also related with 
an increased pyruvate conversion into lactate, through 
the action of lactate dehydrogenase A, at the expense of 
NADH which is oxidized to  NAD+. This behavior seems 
to be descriptive of the cDDP-sensitive cells presently 
studied, whereas the R cells exhibit all opposite features: 
decreased ERK activity, decreased lactate formation and 
 NAD+ levels (compared to S cells). A similar reason-
ing applies to the relationship between the ERK signal-
ing pathway and glutaminolysis [54], as a decreased ERK 
activity in R cells should promote decreased expression 
of the c-Myc transcription factor, known to lead to lower 
glutaminolysis activity. Articulation with NF-κB expres-
sion (slightly higher in R cells), known to also affect glu-
taminolysis (as well as glycolysis and OXPHOS [55]), 
may help to keep glutamine pools high. Glutamine may 
not only serve glutaminolysis for anaplerosis (which is 
presently seen to be slowed down in R cells), but is also 
related to cancer cell stemness [56], a feature which has 
been generally related to therapy resistance, tumor dor-
mancy and metastatic behavior [57]. As glutamine depri-
vation has been observed to relate to decreased stemness 
properties [56], we hypothesize that the richer glutamine 
pool found here in TNBC cDDP-resistant cells suggests a 
higher stemness capacity and, hence, a higher cell adapt-
ability (and survival) once under cDDP exposure.

As mentioned before, low glutaminolysis and, thus, 
low levels of glutamate in R cells should contribute to 
lower TCA activity, as conversion of glutamate into 
α-ketoglutarate should decrease. However, it is interest-
ing to note that a decrease in other anaplerotic amino 
acids, particularly at later culture times, (proline from 
24  h; alanine, leucine, phenylalanine, tyrosine and par-
ticularly lysine, at 48  h) may suggest their preferential 
use as precursors into TCA intermediates and pyruvate 
precursor, respectively (Fig. 7), compared to methionine 
and branched-chain amino acids (BCAAs) isoleucine 
and valine, which exhibit higher levels in R cells. BCAA 
metabolism has been related to cancer resistance in gen-
eral [58], but it is interesting to note the different leucine 
behavior in R cells: decreased, as opposed to increased 
levels of isoleucine and valine. Indeed, leucine metabo-
lism (in particular through the activity of branched-
chain amino acid aminotransferase 1, BCAT1) has been 
recently suggested to lead to activated mTOR-mediated 
autophagy which, in turn, increases cDDP-resistance 
[59]. We therefore propose that lower levels of leucine 
may be related to such mechanism.

Furthermore, the levels of TCA intermediates detected 
by NMR were strongly dependent on culture time, which 
suggests a possible modulation of TCA activity overtime. 

The low  NAD+ levels (at all time points, and not replen-
ished by lactate production) could either arise from its 
use in an activated TCA cycle, and/or reflect the general 
significantly lower availability of nucleotides in R cells, 
as will be discussed below. Previous reports [54] sup-
port the hypothesis that ERK activation promotes aero-
bic glycolysis and ATP synthesis, subsequently used for 
phosphorylation. Hence, in R cells, where ERK is less 
active, ATP synthesis is expected not to be significantly 
stimulated. Indeed, ATP levels are lower than in S cells 
at 0 h, although tending towards equivalent levels at later 
times (note the lower ADP/ATP ratios at 24 h due to ATP 
increase). We suggest that a later enhanced ATP synthe-
sis in R cells may be a reflection not of ERK activity but, 
rather, of an adaptive later TCA activation, although the 
precise dynamics of this pathway overtime requires fur-
ther investigation, at this stage. These relatively higher 
ATP levels may also explain the relatively elevated PCr 
levels (supported by increased Cr and sarcosine, Fig.  7) 
noted in R cells. Cr to PCr interconversion is an impor-
tant energy buffer mechanism, which produces high 
energy PCr particularly in cells with high requirements of 
energy such as cancer cells [60]. Furthermore, the PCr/Cr 
ratio has been related to metastasis and proliferation and 
we advance that a higher PCr/Cr ratios may be related to 
higher cDDP-resistance.

In addition, increased levels of taurine (the oxidized 
form of hypotaurine) and GSH are clear discriminators of 
R cells, indicating an interesting interplay of compounds 
related to antioxidant protection mechanisms, including 
methionine (related to taurine through cysteine, and to 
GSH through the transsulfuration pathway [61] (Fig. 7). 
Although reactive oxygen species (ROS) were not quanti-
fied in this work, the NF-κB signaling pathway is believed 
to be  closely related to oxidative stress [62]. Hence, we 
propose that the maintenance of high, nearly-constant, 
GSH levels in R cells, compared to S cells, along with 
high increasing taurine levels (whereas taurine remains 
lower and constant in S cells), may indicate that the anti-
oxidative mechanisms in R cells rely preferably on the 
hypotaurine/taurine pair, rather than on GSH/GSSG. 
Furthermore, taurine increase has also been reported 
in ovarian cDDP-resistant cells [12, 13], possibly due to 
the overexpression of the taurine transporter (TauT) that 
leads to intracellular taurine accumulation, which in turn 
is suggested to result in the inhibition of cDDP uptake 
[13, 63].

The decrease in ERK activity noted in this work may 
also be related to the marked overall low levels of nucle-
otides and several of their derivatives, mainly involv-
ing adenine, uracil and inosine (including UDP-Glc/
GlcA and uridine diphosphate N-acetyl-glucosamine 
UDP-GlcNAc), which make up a nitrogen-base-depleted 
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metabolic profile in R cells, which is more stable over-
time than in S cells (Fig.  7). Indeed, a decreased ERK 
activity and its correlation with increased PKM2 activity 
may explain the decreased biosynthesis of nucleotides, as 
described above [54]. However, lower levels of nucleo-
tides may also be related with their use as building blocks 
as dNTPs to support nucleotide excision repair (NER). 
This has been reported as a major resistance mechanism 
against cDDP in several types of cancer [64, 65] and is 
believed to justify cell death when repairs are not possible 
[66]. Additionally, poly(ADP-ribose) polymerase (PARP) 
enzymes, especially PARP1, may determine DNA damage 
response and maintenance of genome stability through 
their involvement in NER [as well as in other mecha-
nisms such as base excision repair (BER) and homologous 
recombination (HR)] [67]. Therefore, we hypothesize that 
PARP enzymes may have an active role in a more efficient 
DNA repair in R cells. Upon exposure, these enzymes 
may interfere with the formation of cDDP-adducts with 
DNA’s purine bases (adenine and guanine). We hypoth-
esize that the setup of the R cell line, through exposure 
to low concentrations of cDDP, may have activated these 
enzymes. As PARP proteins require  NAD+ to act [67, 68], 
it is possible that the low  NAD+ levels in R cells may also 
reflect this mechanism.

Finally, R cells are also depleted in choline and GPC, the 
former increasing overtime, while GPC remains stable. 
This reflects disturbances in membrane metabolism but 
the exact variation pattern contrasts with results charac-
terizing cDDP-resistance in ovarian cancer cells, which 
were characterized by increased levels of GPC (although 
confirming decreased levels of choline as described here) 
[13]. This relationship between choline compounds and 
the exact nuances of membrane remodeling mecha-
nisms characterizing cDDP-resistance in TNBC remains 
unclear, at this stage. We furthermore suggest that the 
changes observed may reflect distinct lipid metabolic fea-
tures (eventually detectable by lipid metabolomics) char-
acteristic of this type of resistance in TNBC.

Conclusion
This work compared the metabolic profile of the MDA-
MB-231 parental cDDP-sensitive cell line (time course up 
to 48  h) with that of a derived cDDP-resistant line, the 
latter characterized by a more than onefold larger  IC50 
(for cDDP at 48 h), higher number of PGCCs, a slighter 
higher activation of the NF-κB pathway along with about 
50% decrease in the ERK pathway activation. These fea-
tures were accompanied by a very distinct metabolic sig-
nature of resistant cells (polar extracts), which included 
lower glycolytic and glutaminolytic activities, contrary 
to observed in other cDDP-resistant cancer cell lines. 
We propose that such inversion may be a characteristic 

specific of TNBC (at least as viewed through the MDA-
MB-231 cell line), possibly linked to richer glutamine 
pools supporting increased stemness capacity and, 
hence, higher survival when under cDDP exposure. The 
TCA cycle dynamics in resistant cells exhibits some time 
modulation and an apparent activation at 48  h based 
on anaplerotic aromatic amino leucine, and particularly 
lysine. Leucine metabolism differs from those of iso-
leucine and valine (which accumulate in resistant cells), 
suggesting a relation of leucine with its know role in 
mTOR-mediated autophagy, with a reflection in increas-
ing cDDP-resistance. We advance possible markers of 
TNBC cDDP-resistance such as higher PCr/Cr ratios and 
a predominance of hypotaurine/taurine–mediated anti-
oxidant protective mechanisms, rather than GSH/GSSG 
mediated  mechanisms. Another clear marker of resist-
ant cells profile is a generalized depletion in nucleotides 
and derivatives, which may derive from ERK-induced 
decreased biosynthesis of nucleotides in tandem with 
their enhanced use in improved DNA repair mecha-
nisms, which thus would decrease cell death. We hypoth-
esize that PARP enzymes may have an active role in this 
process possibly justifying the consistently low  NAD+ 
levels in resistant cells. Other distinguishing features of 
resistant cells include choline compounds and glycerol, 
which may indicate the importance of membrane remod-
eling adaptations in cDDP-resistance.

This work generates several possible hypotheses as to 
the metabolic adaptations accompanying cDDP-resist-
ance and, although requiring biological demonstration, 
they pave the way to the use of metabolites as markers of 
resistance and as guidance to develop therapies to reverse 
resistance.
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