
Xiao et al. Cancer Cell International          (2023) 23:302  
https://doi.org/10.1186/s12935-023-03142-y

RESEARCH

GNF-7, a novel FLT3 inhibitor, overcomes 
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Abstract 

Background Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) 
mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prog-
nosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 
targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding 
leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug 
resistance in FLT3 mutant AML.

Methods Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants 
to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory  effect of 
GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were per-
formed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse 
models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples 
and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7.

Results GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia 
activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream 
signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed 
that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) 
or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the sur-
vival of PDX model and exhibited similar therapy effect compared with gilteritinib.

Conclusions Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead com-
pound applied for treating some of the clinically drug resistant patients.
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Background
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) 
account for approximately 30% of acute myeloid leuke-
mia (AML) patients and can be either FLT3 internal tan-
dem duplication (FLT3-ITD) mutations or FLT3 tyrosine 
kinase domain point mutations (FLT3-TKD) .1 In addition, 
mutation of FLT3-ITD occurs in 25% of diagnosed AML 
patients and which are associated with poor outcomes [1, 
2]. Whereas, FLT3-TKD have not been associated with a 
consistent prognostic impact on AML patients [3]. FLT3-
ITD lead to receptor dimerization and ligand-independent 
constitutive activation of downstream signal transduc-
tion pathways, such as mitogen-activated protein kinase 
(MAPK) signal transducer and activator of transcription 5 
(STAT5), which maintain the leukemia cells proliferation 
[4–6]. With FLT3 inhibitors such as sorafenib, quizartinib 
(AC220), midostaurin, crenolanib and gilteritinib devel-
oped, AML patients gained great benefits from the previ-
ous chemotherapy [7]. However, the duration of clinical 
responses to FLT3 inhibitors is transient because of rapid 
and high rates of drug resistance [8–10].

Pan-resistant FLT3-ITD/F691L mutation is the common 
and stubborn resistant mechanism and showed resistant to 
currently in clinical used FLT3 inhibitors such as sorafenib, 
midostaurin, crenolanib and gilteritinib [10–12]. Thus, it is 
paramount to find effective compounds to overcome the 
drug resistance caused by FLT3-ITD/F691L.

Here, we identified a novel inhibitor, GNF-7, previ-
ously reported as a BCR::ABL1 inhibitor [13], which also 
shows a unique kinase inhibitory effect on FLT3 kinase 
and provides potent inhibition of FLT3 phosphorylation 
and downstream signaling pathways in FLT3-ITD express-
ing cell lines. Interestingly, GNF-7 selectively bind with 
FLT3-ITD protein. In addition, GNF-7 shows strong anti-
leukemia effects against AML cells harboring FLT3-ITD 
and FLT3-ITD/F691L in vitro. Of note, GNF-7 exerts the 
same therapeutic effect as gilteritinib in a FLT3-ITD mouse 
xenograft model and significantly prolongs the survival 
of FLT3-ITD/F691L leukemia mice. In two FLT3-ITD 
patient-derived AML xenotransplantation models, GNF-7 
also demonstrated excellent therapeutic efficacy. Our study 
suggests that GNF-7 may be a promising drug in the treat-
ment of FLT3-ITD AML.

Materials and methods
Cell lines and compounds
MV4-11, MOLM-13, U937 and THP-1 cells were cul-
tured with RPMI-1640 (Gibco) containing 10% FBS 
(Corning). Ba/F3 cells expressing FLT3-ITD, FLT3-ITD/

F691L, FLT3-ITD/D835Y, FLT3-ITD/D835V, FLT3-ITD/
D835F, FLT3-ITD/Y842C, BCR::ABL1/P190 (P190) and 
BCR::ABL1/T315I (T315I) were generated by retro-
viral infection as previously  described11 and cultured 
with RPMI-1640 containing 10% FBS. AC220, imatinib 
and dasatinib were purchased from Selleck (Shanghai, 
China), GNF-7 was purchased from CSNpharm (Shang-
hai, China), gilteritinib was purchase from AbMole 
(Shanghai, China).

Mononuclear cells isolated from bone marrow
Bone marrow samples were collected from three patients 
with diagnosed FLT3-ITD-AML (detailed informa-
tion for these patients are provided in Additional file 1: 
Table  S1). Mononuclear cells (MNCs) were then sepa-
rated from umbilical cord blood or bone marrow sam-
ples as previously reported [14] and supplemented 
with 100 U/mL penicillin and 100  μg/mL streptomycin 
(Sigma Aldrich). This study was approved by the Insti-
tutional Review Board of the Guangzhou Women and 
Children’s Medical Center affiliated to Guangzhou Medi-
cal University and Guangzhou First People’s Hospital. 
Informed consent for the in vitro drug testing studies was 
obtained in accordance with the declaration of Guang-
zhou Women and Children’s Medical Center affiliated 
to Guangzhou Medical University and Guangzhou First 
People’s Hospital.

Cell growth inhibition assay
Normalized cell proliferation detected in the study were 
carried out using the CellTiter-Glo® Luminescent Cell 
Viability Assay as described previously [14]. Leukemia 
cell lines and primary cells were seeded into 96-well cell 
culture plates at a density of  104 and 2 ×  104 cells per well, 
and then added with indicated drugs at various concen-
trations. After 48 h incubation, cells were lysed by CellTi-
ter Glo reagent (Promega, #G7572) and the luminescence 
signals were detected through a multimode microplate 
reader (VICTOR Nivo).

Cell apoptosis assay
After treated with different concentrations of GNF-7, 
gilteritinib or AC220 for 48  h, leukemia cells were har-
vested and incubated with Annexin V-FITC and PI (Key-
GEN BioTECH, China). The portion of Annexin  V+ cells 
were detected by flow cytometry (BD Bioscience, San 
Jose, CA, USA).
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Western blotting
Western blotting was performed as previously 
described [15]. Briefly, cell samples were harvested and 
lysed by 1 × SDS lysis buffer. Equal amount of protein 
samples was loaded on polyacrylamide gel and then 
transferred to nitrocellulose membrane. The mem-
brane was then blotted with specific primary antibodies 
against p-FLT3 (Tyr591, #3466, CST), p-AKT (Ser473, 
#4060S, CST), ERK (#4695S, CST), p-ERK (T202/Y204, 
#4370S, CST), p-Stat5 (Y694, #AP0887, Abclonal), 
FLT3 (#ab245116, Abcam), and Stat5 (#13179-1-AP, 
Proteintech), AKT (#10176-2-AP, Proteintech), actin-
HRP (#HRP-60008, Proteintech). After overnight incu-
bation at 4℃, HRP-conjugated secondary antibodies 
were applied and luminescence signals on membrane 
were detected with electrochemical luminescence 
(BIO-RAD).

Cellular thermal shift assay (CETSA)
CETSA assay was performed as previously described 
[16]. Ba/F3 FLT3-ITD cells were treated with GNF-7 
(1 μM) or DMSO for one hour, then harvested and lysed 
by liquid nitrogen. The lysates were divided into equal 
volume and heated at different temperatures for three 
minutes, after cooled to room temperature, lysates were 
centrifuged and the supernatants were collected and sub-
jected to SDS-PAGE and western blotting analysis.

The dose effect of GNF-7 on the thermal stability of 
FLT3 was evaluated as follows. Same number of Ba/F3 
FLT3-ITD cells were exposed to various concentrations 
of GNF-7 for one hour and then lysed by liquid nitrogen. 
Subsequently, the lysate solutions were heated at 50  °C 
for three min and then centrifuged, and the superna-
tants were subjected to SDS-PAGE and western blotting 
analysis.

Animal models
0.8 ×  106 Ba/F3 FLT3-ITD cells or 0.5 ×  106 Ba/F3 
FLT3-ITD-F691L cells were injected intravenously into 
BALB/c mice (6–8  weeks old, female, purchased from 
Beijing Vital River Laboratory Animal Technology Co., 
Ltd.), respectively. The mice were randomly divided 
into four groups. Three days after the cell injection, the 
treatment group received GNF-7, gilteritinib, AC220 or 
the same volume of solvent. Oral dosing with 15  mg/
kg GNF-7 was administered to the mice once a day, 
10  mg/kg AC220 and 30  mg/kg gilteritinib were used 
as the control. In order to assess the effect of the ther-
apy, leukemia cells infiltrating peripheral blood or bone 
marrow was collected from each group of mice and 
analyzed by flow cytometry. Moreover, the leukemia 

burden of mice model was also measured by the spleen 
weight. The survival time of the mice was determined.

In the patient-derived xenograft (PDX) model, five 
weeks old female NOG mice (Charles River) were sub-
lethally administrated with busulfan (30 mg/kg) before 
tail vein injection of AML #3 or AML #4 primary cells. 
After engraftment was successfully established, the 
primary blasts (2 ×  106 human AML #3 cells or 5 ×  105 
human AML #4 cells) were collected, and then rein-
jected into busulfan treated NOG mice for the second-
ary transplantation. Soon afterwards, the transplanted 
mice were randomly divided into three groups. 15 days 
or 44 days after the engraftment, AML #3 or AML #4 
cells transplanted mice was oral administrated with 
vehicle, 30  mg/kg gilteritinib and 15  mg/kg GNF-7, 
respectively. Residual leukemia cells were identified 
with hCD45 antibody (Biolegend) and leukemia stem 
and progenitor cells were identified with hCD45 plus 
with hCD34 antibody (BD Bioscience) through flow 
cytometry.

Animal experiments were conducted in accordance 
with established guidelines and were approved by the 
Institutional Animal Care and Welfare Committee of 
Guangzhou Women and Children’s Medical Center, 
Guangzhou Medical University.

Model of GNF‑7 bound to FLT3 protein
AutoDock Vina 1.1.2 software was used for molecular 
docking work, and the structure of the small molecule 
GNF-7 was energy minimized using AVOGADR 1.2.0 
under the MMFF94 force field before the docking began. 
The FLT3 protein (5X02) was hydrotreated using PyMol 
software. Then ADFRsuite 1.0 was used to convert small 
molecules and receptor proteins into PDBQT format 
necessary for AutoDock Vina 1.1.2 docking. Before dock-
ing, center the box with the ATP site of the FLT3 protein 
was required. The detail of the global search for docking 
was set to 32, and the rest of the parameters remained 
the default settings. Finally, the highest-scoring docked 
conformation output was regarded as binding conforma-
tion and the docking results were visualized using PyMol 
and Ligplot 2.2.4 software.

Statistical analysis
GraphPad Prism 8.0 software was used for statistical 
data analysis. Two-tailed paired Student’s t test was used 
for mean comparison between two groups, whereas the 
Kaplan–Meier survival curve and log-rank test were used 
for survival analysis. P values < 0.05 were considered sta-
tistically significant, and different levels were denoted as 
*, P < 0.05, **, P < 0.01, and ***, P < 0.001, respectively.
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Results
GNF‑7 selectively inhibits the proliferation of FLT3‑ITD AML 
cells
As previously reported, GNF-7 functions as a BCR::ABL1 
inhibitor that can overcome the “gatekeeper” BCR::ABL1/
T315I mutation that resistant to tyrosine kinase inhibi-
tors (TKIs) [13]. Indeed, GNF-7 potently inhibited the 
proliferation of BCR::ABL1/T315I expressing BaF3 cells 
that resistant to the BCR::ABL1 inhibitors imatinib and 
dasatinib (Additional file  1: Fig. S1A–C) [17]. Interest-
ingly, we found that GNF-7 showed potent anti-prolif-
eration on Ba/F3 cells stably express FLT3-ITD, whereas 
TKIs such as imatinib and dasatinib exhibited no signifi-
cant proliferation inhibition (Additional file  1: Fig. S2). 
To assess the anti-proliferative activity of GNF-7 in AML 
cell lines, we focused on the human AML cell lines har-
boring FLT3-ITD mutations or FLT3-WT. Interestingly, 
GNF-7 preferentially inhibited cell proliferation of FLT3-
ITD-dependent leukemia cells (MOLM-13 and MV4-11) 
in a dose-dependent manner, whereas it has no apparent 
cytotoxic effect on leukemia cells with FLT3-WT (THP-1 
and U937) in low dose concentration (Fig. 1A). We then 

collected primary mononuclear cells from two umbili-
cal cord blood samples (Normal #1, Normal #2), primary 
bone marrow mononuclear cells from two AML patients 
diagnosed with none FLT3-ITD mutation AML (AML 
#1, AML #2) and three AML patients harboring FLT3-
ITD mutation (AML #3, AML #4, AML #5) to extensively 
evaluate the anti-FLT3-ITD AML activity of GNF-7. 
GNF-7 exerted very potent inhibitory effect on the prolif-
eration of FLT3-ITD AML leukemia cells (AML #3, AML 
#4, AML #5) compared with normal mononuclear cells 
or none FLT3-ITD mutation AML cells (Fig.  1B). Par-
ticularly, GNF-7 showed more anti-proliferative effect on 
Ba/F3 FLT3-ITD cells compared with Ba/F3 FLT3-ITD 
cells treated with IL-3 (6.56  nM vs 419.3  nM) (Fig.  1E). 
FLT3-ITD or FLT3-TKD mutants undergo constitutive 
autophosphorylation of FLT3, causing aberrant activa-
tion of downstream pathways such as STAT5, PI3K/
AKT and MAPK/ERK [4, 5]. Consistent with the sig-
nificant proliferation inhibition of FLT3-ITD harboring 
cells, the phosphorylation of downstream effectors in the 
FLT3 signaling pathways, such as p-Stat5, p-AKT and 
p-ERK1/2 was also significantly inhibited by GNF-7 in 

Fig. 1 GNF-7 potently inhibited the proliferation of FLT3-ITD AML cells and targeted FLT3-ITD downstream signaling pathways. A AML cell line 
MOLM-13, MV4-11, U937 and THP-1 were treated with DMSO or increasing concentrations of GNF-7 for 48 h and the normalized cell proliferation 
was measured by CellTiter Glo assay. B Mononuclear cells isolated from umbilical cord blood (Normal #1, Normal #2), bone marrow of diagnosed 
with AML (AML #1, AML #2) and AML harboring FLT3-ITD mutation (AML #3, AML #4, AML #5) were treated with different concentrations of GNF-7 
for 48 h, and normalized cell proliferation was detected by CellTiter Glo assay. C Primary bone marrow cells isolated from AML #3 and AML #4 were 
exposed to GNF-7 for 4 h and then detected by western blotting with antibodies against phosphorylated and total of FLT3, Stat5, AKT and ERK, 
respectively. D Phosphorylated and total of FLT3, Stat5, AKT and ERK in MOLM-13 and MV4-11 cells treated with GNF-7 for 4 h were detected 
by western blotting. E Dose response curve of GNF-7 on Ba/F3 FLT3-ITD cells in the presence or absence of IL-3. F Ba/F3 FLT3-ITD cells were treated 
with the different concentration of GNF-7 for 4 h and subjected to western blotting with the indicated antibodies. All experiments were repeated 
three times with the same results. Data are presented as mean ± SD, and P values were calculated using Student t test. *p < 0.05, ** p < 0.01, and *** 
p < 0.001
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AML patients harboring FLT3-ITD mutation, FLT3-ITD-
dependent AML cells, and Ba/F3 FLT3-ITD cells, respec-
tively (Fig. 1C, D, F).

GNF‑7 interact with FLT3 protein
To understand the potential structural effects of FLT3 
on GNF-7 binding, we used a docking model of GNF-7 
bound to FLT3, based on the crystal structure, we found 
that GNF-7 forms hydrogen bonds with SER705 of FLT3 
protein (Fig.  2A). In addition, a 2D interaction diagram 
of the FLT3/GNF-7 complex clearly showed that GNF-7 
forms an interaction network with LYS706, TYR696, 
GLY697, CYS694, ALA642, LEU818, PHE830, VAL624, 
LEU616, CYS695 via hydrophobic interaction (Fig.  2B). 
The cellular thermal shift assay (CETSA) was a novelly 
developed and wildly used method for detecting drug-
binding to target proteins in cells or tissue samples [14, 
18]. CETSA was further used to confirm the interactions 
between GNF-7and FLT3. Compared with DMSO, addi-
tion of GNF-7 increased the thermal stability of FLT3 in 
different temperature exposure (Fig.  2C, D). Moreover, 
the thermal stability of FLT3 protein was increased by 
GNF-7 in a dose-dependent manner (Fig.  2E, F). These 

results demonstrated that GNF-7 directly interacts with 
FLT3.

GNF‑7 exhibits effective anti‑FLT3‑ITD positive AML cells 
activity in mouse model
In order to evaluate GNF-7 efficacy in  vivo, we gener-
ated a mice model of FLT3-ITD positive AML through 
intravenously inject Ba/F3 FLT3-ITD cells. To assess 
the anti-tumor efficacy of GNF-7, FDA approved drug 
for relapsed/refractory AML [19]—gilteritinib and a 
highly potent type II FLT3 inhibitor—AC220 [8] were 
used as a measure of positive drug efficacy. After therapy 
for 8  days, GNF-7 significantly reduced the leukemia 
cells in peripheral blood (51.9% in the vehicle admin-
istration group, 26.4% in the gilteritinib administra-
tion group vs 9.6% in the GNF-7 administration group) 
compared with vehicle administration group (Fig.  3A). 
ACC20 exhibits the most potent effect on reducing the 
infiltration of leukemia cells into peripheral blood (0.8% 
in the AC220 administration group). Three mice were 
randomly selected from each group and the burden of 
leukemia cells in bone marrow or spleen were analyzed 
after 9 days treatment. Compared with vehicle adminis-
tration group, GNF-7 potently reduced the proportion 

Fig. 2 GNF-7 interacts with FLT3 protein. A Docking model of FLT3 bound to GNF-7: the yellow dotted line represents the hydrogen bond 
interaction, the green line represents the amino acid that forms hydrogen bonds with GNF-7, the cartoon represents the FLT3 protein, 
and the purple stick represents the GNF-7 molecule. B 2D interaction diagram of the FLT3/GNF-7 complex: GNF-7 is bound to the FLT3 protein 
in a pocket surrounded by LYS706, TYR696, GLY697, CYS694, ALA642, LEU818, PHE830, VAL624, LEU616, CYS695, and SER705 amino acids, 
GNF-7 forms hydrogen bonds with SER705 and forms hydrophobic interaction with LYS706, TYR696, GLY697, CYS694, ALA642, LEU818, PHE830, 
VAL624, LEU616, CYS695. C, E Thermal stabilization of FLT3 in Ba/F3 FLT3-ITD cells treated with GNF-7 (1 μM) or DMSO in various temperatures 
(C) and treated with various concentrations of GNF-7 (E) was analyzed through CETSA assay. D–F The density of the FLT3 bands were quantified 
by quantity one software. All experiments were repeated three times with the same results. Data are presented as mean ± SD, and P values were 
calculated using Student t test. * p < 0.05, ** p < 0.01, and *** p < 0.001
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of leukemia cells in bone marrow (68.5% in the vehicle 
administration group vs 45.0% in the GNF-7 administra-
tion group) and showed no obvious difference on reduc-
ing the leukemia cells as gilteritinib (Fig.  3B). ACC20 
showed the most potent effect on reducing the infiltra-
tion of leukemia cells into bone marrow (1.3% in the 
AC220 administration group). Furthermore, Gilteritinib 
significantly reduced the spleen weight compared with 
vehicle group, and no significant difference was observed 
in spleen weight changes among AC220, gilteritinib and 
GNF-7 groups (Fig.  3C). It suggests that GNF-7 has no 
less potency than gilteritinib against leukemia cells infil-
tration. We next measured the survival of each group 
mice and the result showed that GNF-7 exhibited similar 
effect with gilteritinib on significantly prolonged the sur-
vival of mice (Fig.  3D). Above result demonstrated that 
although the anti-FLT3-ITD leukemia cells effect in vivo 
was weaker than AC220, GNF-7 showed the equal effect 
as gilteritinib.

GNF‑7 overcomes FLT3‑ITD/F691L drug resistance
FLT3 mutants identified de novo in AML patients causing 
drug resistance. We then sought to determine whether 
GNF-7 showed inhibitory activity in AC220 resistant Ba/
F3 cells that stably expressing FLT3-ITD/D835V, FLT3-
ITD/D835Y, FLT3-ITD/D835F, FLT3-ITD/Y842C and 
FLT3-ITD/F691L [8, 20]. GNF-7 potently inhibited the 
growth of Ba/F3 FLT3-ITD cells and retained strong 
inhibitory activity against the Ba/F3 FLT3-ITD/F691L 
cells (Fig. 4A), which was the main drug resistance mode 
in the therapy of FLT3 inhibitors. Notably, the prolifera-
tion inhibitory potency of GNF-7 on Ba/F3 FLT3-ITD/
F691L cells was 23 folds than that of AC220 (19  nM 
vs 442.8  nM), and was 4 folds than that of gilteritinib 
(19 nM vs 79 nM) (Fig. 4B). In addition, GNF-7 induced a 
remarkable level of apoptosis in Ba/F3 FLT3-ITD/F691L 
cells in a dose dependent manner, whereas, AC220 and 
gilteritinib had no significant effect on cell apoptosis at 
the same concentrations (Additional file 1: Fig. S3).

Fig. 3 GNF-7 showed significant therapy effect on the mice model engrafted with Ba/F3 FLT3-ITD cells. A The mice engrafted with Ba/F3 FLT3-ITD 
cells were treated with vehicle, AC220 (10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg) for 8 days and the percentages of leukemia cells 
infiltrated in peripheral blood were then analyzed by flow cytometry. B The mice engrafted with Ba/F3 FLT3-ITD cells were treated with vehicle, 
AC220 (10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg) for 9 days and the percentages of leukemia cells infiltrated in bone marrow 
were then analyzed by flow cytometry. C The spleen weight in each group were measured. D The survival curve of mice was calculated. Data are 
presented as mean ± SD, and P values were calculated using Student t test. * p < 0.05, ** p < 0.01, and *** p < 0.001
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Next, we established the previously described Ba/
F3 FLT3-ITD/F691L leukemia  model11 to evaluate the 
efficacy of GNF-7 in  vivo. After treated with GNF-7 
for 8  days, leukemia cells infiltration in peripheral 
blood were significantly reduced compared with other 
three groups (Fig.  4C). Interestingly, with nearly 50% 
leukemia cells infiltrated in bone marrow were elimi-
nated after 9 days of GNF-7 treatment, but AC220 and 
gilteritinib did not show significant effect (Fig. 4D). The 
average spleen mass of mice in group vehicle, AC220, 
gilteritinib and GNF-7 was 0.62  g, 0.64  g, 0.53  g and 
0.26  g respectively, suggesting that GNF-7 also largely 
reduced the infiltration of leukemia cells in the spleen 
(Fig.  4E). Consistent with the results of leukemia cells 
infiltrating in various organs, GNF-7 significantly pro-
longed the survival period of mice compared with 
gilteritinib group or AC220 group (Fig.  4F), whereas, 
AC220 and gilteritinib slightly prolonged the survival 
period of mice. These data suggested that GNF-7 can 
overcome FLT3-ITD/F691L drug resistance for the 
treatment of AML in vivo and in vitro.

GNF‑7 significantly prolonged the survival of FLT3‑ITD AML 
PDX model mice
Furthermore, we also collected AML primary cells 
from one FLT3-ITD AML patient (AML #5) and two 
FLT3-ITD AML relapsed patients (Additional file  1: 
Table  S1) to test the anti-leukemia effects of GNF-
7. Gilteritinib was a potent FLT3 inhibitor drug with 
single-agent activity in relapsed or refractory FLT3-
ITD AML and achieved satisfactory prognosis [19]. 
Compared with gilteritinib, the same concentration 
of GNF-7 had a stronger inhibitory effect on leuke-
mia cell proliferation in three FLT3-ITD AML patients 
(Additional file  1: Fig. S4A–C). In order to further 
clarify the therapeutic effect of GNF-7 in  vivo, pri-
mary bone marrow leukemia cells from of AML#3 
and AML#4 were selected to establish PDX models 
to evaluate the efficacy of GNF-7. Both GNF-7 and 
gilteritinib significantly reduced the infiltration of 
AML blast cells that expressed with CD45 [21] in the 
peripheral blood (Fig.  5A, B), with no significant dif-
ference in effect. Leukemic stem cells are considered 

Fig. 4 Activity of GNF-7 against drug resistant Ba/F3 FLT3-ITD/F691L cells. A Relative proliferation of Ba/F3 populations stably expressing FLT3-ITD 
mutant isoforms after 48 h in various concentrations of GNF-7 were measured by CellTiter Glo assay. B  IC50 values of Ba/F3 stably expressing 
FLT3-ITD and FLT3-ITD/F691L cells treated with various concentrations of AC220, gilteritinib and GNF-7 were analyzed by CellTiter Glo assay. C 
After treated with vehicle, AC220 (10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg) for 8 days, the percentages of leukemia cells infiltrated 
in peripheral blood of mice (n = 6) engrafted with Ba/F3 FLT3-ITD/F691L cells were evaluated by flow cytometry. D After treated with vehicle, 
AC220 (10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg) for 9 days, the burden of leukemia cells in bone marrow of mice (n = 3) which 
was randomly selected from each group were detected. E The spleen weights were analyzed. F The Kaplan–Meier survival curves of animal survival 
of mice treated with vehicle, AC220 (10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg). All cell line experiments were repeated three 
times with the same results. P values were calculated by log-rank test and shown. Data are presented as mean ± SD, and P values were calculated 
using Student t test. * p < 0.05, ** p < 0.01, and *** p < 0.001
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the origin of relapse and insensitive to the cytotoxic-
ity of the conventional chemotherapy in AML [22]. 
CD45 is expressed in all nucleated cells, and CD34 is 
expressed in hematopoietic stem and progenitor cells. 
Interestingly, we found that GNF-7 and gilteritinib also 
showed potent cytotoxic effect on leukemic stem and 
progenitor cells (Fig.  5C, D). In addition, GNF-7 had 
the same effect as gilteritinib on reducing leukemia 
cells invasion in the spleen, such as both significantly 
reduced spleen weight and leukemia cell burden (Addi-
tional file 1: Fig. S5A–D). Notably, GNF-7 significantly 
prolonged the survival of mice and showed no signifi-
cant difference compared with gilteritinib (Fig. 5E, F). 
These results suggest that GNF-7 does indeed exhibit 
favorable therapy in FLT3-ITD AML PDX model and 
its effects is similar to those of gilteritinib.

Taken together, we show that GNF-7 is a very potent 
FLT3 inhibitor that exerts strong anti-leukemia effects 
against AML cells harboring FLT3-ITD and FLT3-
ITD/F691L both in  vitro and in  vivo, which is recog-
nized as the difficult mutation to overcome clinically. 
Additionally, our results also show that GNF-7 may be 
an effective therapeutic compound in FLT3-ITD AML 
relapsed patients. Considering the effective treatment, 
GNF-7 may become a promising second-line drug 
suitable for treating some of the most clinically chal-
lenging AML cases.

Discussion
AML is a heterogeneous disease, characterized by a wide 
range of genomic changes and molecular mutations that 
affect clinical prognosis. FLT3-ITD/TKD is a frequent 
gene mutation occurs in AML, which accounts for a large 
proportion of AML patients [1]. FLT3-ITD not only can 
be used as a prognosis indicator in AML, but also recog-
nized as a molecular marker of minimal residual disease 
in detecting the progress of FLT3-ITD-AML [23]. Tar-
geted therapy for FLT3-ITD significantly improved the 
survival of AML patients, thus, FLT3 inhibitors are popu-
larly developed. Unfortunately, drug-resistant mutations 
in the therapy of FLT3 inhibitors frequently occurred and 
make the new FLT3 inhibitors more required.

GNF-7 is a BCR::ABL1 inhibitor that can override 
T315I “gatekeeper” mutation and other BCR::ABL1 
mutants [13]. In addition, we found that GNF-7 could 
also selectively inhibited the proliferation of AML 
cells that expressing FLT3-ITD in  vitro and in  vivo, 
and potently inhibited FLT3-ITD downstream signal-
ing pathways. Structure model and CETSA experiment 
demonstrated that GNF-7 could bind with FLT3, further 
indicated that GNF-7 is a potent FLT3 inhibitor. Kinase 
profiling revealed that GNF-7 not only evidently inhib-
ited LYN, FYN, SRC, YES, BTK and CSK kinase that 
can also inhibited by dasatinib [24], but also inhibited 
ACK1 and mitogen-activated protein kinase (GCK) to 

Fig. 5 GNF-7 exerts potent therapy effect on AML PDX model. A, B Primary patient cells from AML #3 or AML #4 carrying with FLT3-ITD were 
transplanted into busulfan pretreated NOG mice and then randomly divided into three groups. Peripheral blood of 5 mice administrated 
with vehicle, 15 mg/kg GNF-7 and 30 mg/kg Gilteritinib were collected at the indicated time, and the leukemia cells content was detected by flow 
cytometry using human CD45 antibody. C, D The percentages of leukemia stem and progenitor cells in peripheral blood were detected by flow 
cytometry using human CD45 and CD34 antibodies. E, F The Kaplan–Meier survival curves of animal survival of mice treated with vehicle, AC220 
(10 mg/kg), gilteritinib (30 mg/kg) and GNF-7 (15 mg/kg)
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kill NRAS-dependent cells in AML and acute lympho-
blastic leukemia [25]. Moreover, GNF-7 induced diffuse 
large B-cell lymphoma (DLBCL) cell apoptosis through 
suppressing GCK activation [26]. These above researches 
suggest that the characteristics of multitargeted kinase 
confers GNF-7 more promising in the treatment of 
leukemia.

The acquired secondary FLT3-ITD mutants espe-
cially at F691L was acquired in some patients [27] 
and was identified to confer resistance to most FLT3 
inhibitors, such as AC220, sorafenib and gilteritinib 
[10, 28]. Ponatinib was a potent tyrosine kinase inhibi-
tor of BCR::ABL1 and mutated BCR::ABL1, including 
BCR::ABL1/T315I and was also reported to have mild 
inhibitory activity against FLT3-ITD/F691L [29, 30]. In 
this study, we demonstrated potent inhibitory activity 
of GNF-7 against FLT3-ITD/F691L in  vitro. Compared 
with AC220 and gilteritinib, GNF-7 showed more potent 
therapeutic effect on the treatment of FLT3-ITD/F691L 
expressing cells in vivo. Considering that AML cell lines 
may have limitations in reflecting the effect of FLT3 
inhibitors, we established two FLT3-ITD AML relapsed 
patient-derived xenograft model to further evaluate the 
anti-FLT3-ITD AML potency of GNF-7. Compared with 
gilteritinib, GNF-7 exerted similar effect of killing leuke-
mic stem cells and prolonging the survival of PDX model.

Conclusion
Our investigation has revealed that GNF-7 is a novel 
FLT3 inhibitor which shows potent anti-leukemic activity 
in FLT3-ITD AML. Furthermore, we have demonstrated 
that GNF-7 overcomes FLT3-ITD/F691L drug resistance. 
Based on these finding, our study provides supporting 
evidence and a basis for GNF-7 could be the promising 
drug candidate for the treatment of AML cells with vari-
ous FLT3 mutations.
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resistance. Normalized cell proliferation of Ba/F3 P190 and Ba/F3 T315I 
cells treated with various concentrations of imatinib (A), dasatinib (B) and 
GNF-7 (C) for 48 hours was measured by the CellTiter Glo assay. Data are 

presented as mean ± SD, and P values were calculated using Student t 
test. * p < 0.05, ** p < 0.01, and *** p < 0.001. Figure S2. GNF-7 signifi-
cantly inhibited the proliferation of Ba/F3 FLT3-ITD cells. Ba/F3 FLT3-ITD 
cells were treated with various concentrations of imatinib, dasatinib and 
GNF-7 for 48 hours. CellTiter Glo assay was applied to measure the nor-
malized cell proliferation of these cells. Data are presented as mean ± SD, 
and P values were calculated using Student t test. * p < 0.05, ** p < 0.01, 
and *** p < 0.001. Figure S3. GNF-7 significantly induced Ba/F3 FLT3-ITD/
F691L cells apoptosis. After treated with the same concentration of AC220, 
gilteritinib and GNF-7 for 48 hours, the apoptosis rate of Ba/F3 FLT3-ITD/
F691L cells were analyzed by flow cytometry. Data are presented as mean 
± SD, and P values were calculated using Student t test. * p < 0.05, ** p < 
0.01, and *** p < 0.001. Figure S4. GNF-7 have potent therapy effect on 
FLT3-ITD harboring AML. (A-C) Primary bone marrow cells isolated from 3 
diagnosed FLT3-ITD AML patients were treated with gilteritinib and GNF-7 
for 48 hours and the normalized cell proliferation was measured by the 
CellTiter Glo assay. Data are presented as mean ± SD, and P values were 
calculated using Student t test. * p < 0.05, ** p < 0.01, and *** p < 0.001. 
Figure S5. GNF-7 inhibits the infiltration of primary blasts in PDX model. 
After treated with vehicle, GNF-7 and gilteritinib, three NOG mice trans-
planted with primary cells from AML #3 patient were randomly selected 
from each group and then analyzed spleen weight (A) and the content of 
leukemia cells in spleen were detected by flow cytometry using human 
CD45 antibody (B). C Spleen weight of NOG mice transplanted with 
primary cells from AML #4 patient in each group were calculated and 
the content of leukemia cells in spleen were detected by flow cytometry 
using human CD45 antibody, three mice were selected for each group 
(D). Data are presented as mean ± SD, and P values were calculated using 
Student t test. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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