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Abstract 

Protein tripartite motif‑containing 21 (TRIM21/Ro52), an E3 ubiquitin ligase, is an essential regulator of innate immu‑
nity, and its dysregulation is closely associated with the development of autoimmune diseases, predominantly 
systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS). TRIM21 /Ro52 also features anti‑cancer 
and carcinogenic functions according to different malignancies. The interconnected role of TRIM21/Ro52 in regu‑
lating autoimmunity and cell metabolism in autoimmune diseases and malignancies is implicated. In this review, 
we summarize current findings on how TRIM21/Ro52 affects inflammation and tumorigenesis, and investigate 
the relationship between TRIM21/Ro52 expression and the formation of lymphoma and breast cancer in SLE and pSS 
populations.
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Introduction
TRIM21/Ro52, which is encoded by a gene on the short 
arm of chromosome 11, is a member of the TRIM pro-
tein family, the members of which are involved in mul-
tiple cellular functions, including apoptosis signaling, 
the regulation of innate immunity, and the suppression 
or activation of carcinogenesis [1, 2]. The structure of 

TRIM21/Ro52, a cytosolic Fc receptor, consists of an 
N-terminal RING domain with E3 ubiquitin ligase activ-
ity, a B-box domain, a central coiled-coil domain, and a 
PRY/SPRY domain at its C terminus [3, 4]. TRIM21/
Ro52 is crucial in antigen presentation and the regulation 
of innate immunity in response to intracellular pathogens 
as a negative regulator of interferon production via the 
ubiquitination of interferon regulatory factor (IRF)3/5/7, 
which leads to subsequent proteasomal degradation and 
prevents further IFN transcription [5–7].

TRIM21/Ro52 and the antibodies that target it (anti-
TRIM21/Ro52) are involved in many autoimmune dis-
eases, especially rheumatic diseases, such as systemic 
lupus erythematosus (SLE) and primary Sjögren’s syn-
drome (pSS) [8]. The presence of anti-TRIM21/Ro52 is 
one of the key items to validate the diagnosis of pSS [9], 
and it can be detected in 42–50% of SLE patients [10]. In 
addition to the diagnostic role in SLE and pSS, TRIM21/
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Ro52 can have opposing effects in different cancers [11]. 
Higher expression of TRIM21/Ro52 is associated with 
better patient survival in some cancer types, such as dif-
fuse large B-cell lymphoma (DLBCL), breast cancer, and 
renal cell carcinoma [12–14]. In contrast, TRIM21/Ro52 
promotes cancer cell proliferation and migration in gli-
oma and thyroid cancer, and it increases drug resistance 
in colorectal and pancreatic cancers [15–17].

Heterogeneity is a characteristic shared by SLE, pSS, 
and cancers at the phenotypic and genotypic levels. 
Meanwhile, growing evidence indicates that reprogram-
ming cellular metabolism and immune dysfunction both 
contribute to autoimmune diseases and tumor develop-
ment [18, 19]. Recent studies have suggested a higher risk 
of not only hematologic cancers but also solid tumors 
such as lung cancer and thyroid cancer in individuals 
with either SLE or pSS. On the other hand, the risk of 
certain types of malignancies, breast cancer, for exam-
ple, is decreased compared with healthy controls in other 
data [20, 21].

The pathophysiologic mechanisms by which SLE and 
pSS patients have a greater risk of certain cancers have 
yet to be well understood, and the comprehension of the 
regulatory role of TRIM21/Ro52 in these diseases and 
malignancies remains partial. Herein, in this review, we 

summarize current evidence of TRIM21/Ro52 relevant 
connections to immune regulation and cellular metabo-
lism in SLE, pSS, and cancers, then discuss how TRIM21/
Ro52 may function in the tumorigenesis, especially lym-
phoma and breast cancer in SLE and pSS patients (Fig. 1).

The role of TRIM21/Ro52 in SLE and pSS
TRIM21/Ro52 expression in individuals and animal models 
with SLE or pSS
SLE and pSS are both systemic rheumatic diseases char-
acterized by abnormal B-cell activation and autoantibody 
production. The mRNA level and surface expression 
of TRIM21/Ro52 protein, which was initially noted in 
apoptotic cells [22], is higher in freshly isolated periph-
eral blood mononuclear cells of pSS patients as com-
pared with those of healthy donors [23]. Transcription 
of TRIM21/Ro52 is upregulated by interferon regulatory 
factor (IRF)1 and 2 while suppressed by IRF4 and IRF8, 
which is consistent with the significantly higher level of 
IRF1 and IRF2 and overexpression of TRIM21/Ro52 
seen in patients with Sjögren’s syndrome [24]. In addi-
tion, overexpression of TRIM21/Ro52 inhibits cell pro-
liferation and enhances apoptosis in CD40-mediated cell 
death, which also results in a more significant amount 

Fig. 1 Graphic summary of the interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren’s syndrome, cancers, 
and metabolism
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of autoantigen that may trigger a greater autoimmune 
response [23].

However, deficiency in TRIM21/Ro52 expression is 
another SLE and pSS development mechanism. Ro52-
null  (Ro52–/–) mice, which are generated from one of the 
lupus mouse models and detected by green fluorescent 
protein(GFP) expression, develop progressive dermati-
tis from the site of their ear tag injury and later are posi-
tive for proteinuria detection and deposition of immune 
complexes as based on renal pathology [25]. The immune 
response of  Ro52–/– mice to a contact-sensitizing agent is 
also significantly higher than that of  Ro52+/+ mice, which 
includes a larger amount of T-cell activation and proin-
flammatory cytokine production. This TRIM21/Ro52 
deficiency increases proinflammatory cytokine produc-
tion, and the inflammatory infiltration depends on the 
IL-23–Th17 pathway [26].

The regulatory role of TRIM21/Ro52 in SLE and pSS
TRIM21/Ro52 plays a regulatory role in B-cell prolifera-
tion and differentiation. Ro52−/− mice show increased 
B-cell activation and markedly higher antibody produc-
tion than wild-type [27]. Previous studies have reported 
that TRIM21/Ro52 directly regulates several IRFs that 
are involved in B-cell development, and the presence 
of TRIM21/Ro52 could suppress the canonical NF‐κB 
pathway via monoubiquitinating the phosphorylated IκB 
kinase subunit beta(IKKβ) and subsequent autophagy 
[28, 29]. Thus, the absence of TRIM21/Ro52 results 
in aberrant NF-κB activation, which is also explicitly 
required for the proliferation of activated B-cell DLBCL, 
the main subtype of DLBCL found in SLE patients [30–
32]. In another study, researchers noted that  Ro52–/– 
mice have enhanced resting B-cell differentiation and 
exhibit a lupus-like disease phenotype with increased 
urinary protein and serum double-stranded DNA anti-
body titers. In the same study, the authors demonstrated 
that SLE patients who are positive for anti-TRIM21/Ro52 
have a significantly higher level of resting B-cell differ-
entiation toward plasmablasts and increased antibody 
production in general as compared with seronegative 
SLE patients and healthy controls, indicating that anti-
TRIM21/Ro52 impairs the TRIM21/Ro52 function of 
B-cell homeostasis [33].

Under normal physiologic circumstances, TRIM21/
Ro52 negatively regulates type I IFN expression via deg-
radation of IRF3/5; however, the IRF degradation pro-
cess is downregulated in anti-TRIM21/Ro52 positive 
SLE patients with both increased TRIM21/Ro52 mRNA 
and IFN levels, whereas there is no correlation in the 
SLE population without these antibodies. This suggests 
that the autoantibody targeting TRIM21/Ro52 impairs 
TRIM21/Ro52-dependent IRF degradation, resulting 

in dysregulated IFN production and subsequent high 
TRIM21/Ro52 expression [34]. A study also showed that 
the presence and elevated serum level of anti-TRIM21/
Ro52 in SLE and pSS patients are positively correlated 
with the abnormally increased titer of immunoregula-
tory cytokine, including IL-2, IL-4, IL-21, IL-22, and 
CXCL10 [35]. The incidence rate and the trigger associ-
ated with the production of nuclear-penetrating autoan-
tibodies have not been sufficiently studied yet, whereas 
the mechanisms by which autoantibodies penetrate 
cells have been widely investigated and include both Fc 
receptor–dependent endocytosis and Fc receptor–inde-
pendent pathways involving myosin and the nucleoside 
transporter, respectively [36].

Anti‑TRIM21/Ro52 and the link to clinical presentations
Clinically, anti-TRIM21/Ro52 antibodies serve as a 
potential diagnostic and prognostic biomarker. In pSS 
patients, higher serum level of anti-TRIM21/Ro52 anti-
bodies are associated with increased disease severity, 
including a greater rate of anemia and muscular involve-
ment, despite no clear association between the presence 
of anti-TRIM21/Ro52 antibodies and xerostomia, one 
of the most notable clinical presentation found on pSS 
patients [37]. However, it is demonstrated in another 
study that higher anti-TRIM21/Ro52 antibody titers are 
actually correlated with severe involvement in parotid 
scintigraphy, parotid enlargement, and positive salivary 
gland biopsy, which are all important for pSS diagnos-
tics, indicating a strong association of histopathological 
findings with anti-TRIM21/Ro52 antibodies [38]. Fur-
thermore, in patients with suspected autoimmune dis-
eases, higher isolated positive serum anti-TRIM21/Ro52 
antibodies are associated with a higher diagnostic rate of 
immunologic disorders and malignancies as compared 
with the anti-Ro52 and anti-Ro60 double-positive popu-
lation [39].

Association of TRIM21/Ro52 and cancers
TRIM21/Ro52 inhibits tumorigenesis in multiple cancers
TRIM21/Ro52 has a dual role in cancers, as it can pro-
mote or suppress tumor growth depending on cancer cell 
types. The downregulation of TRIM21/Ro52 is associated 
with a poor prognosis in patients with certain kinds of 
cancer, including DLBCL, breast cancer, gastric cancer, 
renal cell carcinoma, ovarian cancer, and colitis-associ-
ated cancer [12–14, 40–43] (Table 1).

In breast cancer, overexpression of TRIM21/Ro52 
promotes ubiquitination and degradation of Snail, 
resulting in the downregulation of E-cadherin tran-
scription throughout the epithelial–mesenchy-
mal transition process, thereby inhibiting migration 
and invasion capabilities in breast cancer cells [44]. 
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TRIM21/Ro52 also negatively regulates the SET 
domain containing 7, histone lysine methyltransferase 
(SETD7, also known as SET7/9), which is involved in 
breast cancer cell proliferation, migration, and invasion, 
such that higher expression of TRIM21/Ro52 is associ-
ated with better outcomes in these patients [45]. In 
addition, degradation of spalt-like transcription factor 
4 (SALL4), a transcription factor that promotes breast 
cancer cell proliferation and migration, is regulated by 
TRIM21/Ro52, and thus higher levels of TRIM21/Ro52 
can reduce SALL4 levels [46]. The proteasomal degra-
dation of transforming growth factor beta receptor 2 
(TβRII) protein is also mediated by TRIM21/Ro52. By 
disrupting the TGF-β signaling pathway, TRIM21/Ro52 
can suppress triple-negative breast cancer cell metas-
tasis [47]. In addition, lower TRIM21/Ro52 expression 
in mutant p53 breast cancer patients is associated with 
a poorer clinical outcome as TRIM21/Ro52 deficiency 
leads to the accumulation of mutant p53 and the subse-
quent breast cancer progression [48].

In gastric cancer, higher TRIM21/Ro52 expres-
sion not only is correlated with a lower recurrence 
and a better 5-year survival rate but also enhances 
the chemosensitivity of the tumor cells to apatinib, an 
FDA-proved treatment for chemotherapy-refractory 
advanced gastric cancer [41, 49]. Similarly, colitis-
associated and ovarian cancer studies indicate that 
TRIM21/Ro52 can suppress intestinal epithelial car-
cinogenesis and ovarian tumorigenesis, respectively 
[42, 43]. In addition, in renal cell carcinoma, over-
expression of TRIM21/Ro52 destabilizes hypoxia-
inducible factor 1 subunit alpha (HIF-1α), leading to 
the suppression of aerobic glycolysis and subsequent 
inhibition of both in vitro and in vivo tumor cell prolif-
eration and migration [14]. A recent study, in contrast, 
found that TRIM21/Ro52 inhibits the expression of the 
lipogenic enzyme via the degradation of sterol regula-
tory element binding transcription factor 1 (SREBF1), 
attenuating lipogenesis and tumor growth in renal cell 
carcinoma [50]. These results also suggest the essential 

role of TRIM21/Ro52 in cancer metabolism, which will 
be further discussed in section  "The role of TRIM21/
Ro52 in cancer cell metabolism".

TRIM21/Ro52 acts as an oncogene in glioma, thyroid, 
and pancreatic cancer
In contrast to the findings described above, in the case 
of certain cancers—such as glioma, thyroid cancer, and 
pancreatic cancers—overexpression of TRIM21/Ro52 
is associated with unfavorable clinical outcomes. In the 
context of glioma, TRIM21/Ro52 overexpression pro-
motes cell cycling, proliferation, and migration of glioma 
cells by suppressing the p53–p21 pathway [15]. TRIM21/
Ro52 plays a similar role in thyroid cancer, such that the 
expression of TRIM21/Ro52 is upregulated in thyroid 
cancer tissue, and higher TRIM21/Ro52 levels are asso-
ciated with a higher risk of recurrence and lymph node 
metastasis, though the mechanism involved has not 
yet been investigated [16]. It was also observed in colo-
rectal and pancreatic tumor cells that TRIM21/Ro52 
overexpression in response to cisplatin, a widely used 
chemotherapeutic agent, would downregulate the level of 
pro-apoptotic WT1 regulator (PAWR), which is a tumor 
suppressor mediating apoptosis regulation in various 
cancer cells, and thus increases the resistance of colorec-
tal and pancreatic tumor cells to cisplatin treatment. It is 
also demonstrated that high TRIM21/Ro52 expression in 
pancreatic tumor patients indicates worse survival out-
come [17].

Cancer type with controversial TRIM21/Ro52 function
The function of TRIM21/Ro52 in colorectal cancer (CRC) 
and hepatocellular carcinoma (HCC) remains contradic-
tory. TRIM21/Ro52 is found to interact with DLGAP1 
antisense RNA 2 (DLGAP1-AS2), a long noncoding 
RNA, and promote the CRC cells’ growth and metasta-
sis [51]. In contrast, it is shown in CRC that TRIM21/
Ro52 mediates the ubiquitination of MICAL-like 2 pro-
tein (MICALL2), which is proven to promote CRC cell 
proliferation and migration, and thereby the presence of 

Table 1 The role of TRIM21/Ro52 in different cancers and its effect on clinical outcomes

TRIM21/Ro52 role in different cancers

Cancer types Correlation between TRIM21/Ro52 upregulation and clinical outcomes

Glioma [15],
Thyroid cancer [16],
Pancreatic cancer [17]

Upregulation of TRIM21/Ro52 would enhanced cancer cell proliferation and drug resistance, resulting in poor overall 
survival

DLBCL [12],
Renal cell carcinoma [14, 50],
Gastric cancer [41],
ovarian cancer [42],
breast cancer [44–46]

Upregulation of TRIM21/Ro52 can suppress tumor proliferation and migration, and increase drug sensitivity, leading 
to better overall survival
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TRIM21/Ro52 decrease the activity of MICALL2 in CRC 
tumorigenesis [52]. Another study also demonstrates that 
TRIM21/Ro52 ubiquitinates IGF2 mRNA binding pro-
tein 3 (IGF2BP3), which plays an essential role in CRC 
development, and that the use of the natural drug Ber-
berine  improves CRC by promoting the expression of 
TRIM21/Ro52 [53].

The study by Ding et al. showed that the downregula-
tion of TRIM21/Ro52 contributes to hepatocarcino-
genesis and is associated with a poor prognosis [40]. In 
contrast, Qi et  al. found the opposite: the expression of 
TRIM21/Ro52 is higher in HCC tissues than in normal 
control tissues, and it is significantly correlated with 
tumor progression in HCC patients [54]. Furthermore, 
one target of the E3 ubiquitin ligase activity of TRIM21/
Ro52 is p62, and the function of the downstream p62–
Keap1–Nrf2 antioxidant pathway in HCC is also contro-
versial; again, the expression of TRIM21/Ro52 has been 
shown to both involve in promoting and suppressing 
HCC progression [55, 56]. Further studies are needed to 
identify the functional role of TRIM21/Ro52 in HCC.

In addition, it is worth noting that TRIM21/Ro52 is an 
intracellular Fc receptor with extremely high affinity for 
IgG antibodies, which may lead to the co-precipitation 
of not just proteins directly interacting with TRIM21 but 
also the antibodies themselves, leading to a false posi-
tive result in co-immunoprecipitation (Co-IP) experi-
ments for identifying potential interaction proteins of 
TRIM21 [57]. Future studies investigating on the proteins 
interplay involving TRIM21/Ro52 may require rigorous 
experimental design and validation steps using alterna-
tive methods such as bioluminescence resonance energy 
transfer (BRET) or a mutated PRY/SPRY domain of 
TRIM21/Ro52 with reduced affinity for IgG to rule out 
non-specific binding [58].

The role of anti‑TRIM21/Ro52 antibodies in cancers
There have been conflicting results regarding the func-
tion of anti-TRIM21/Ro52 antibodies in different cancers 
[59, 60]. Anti-TRIM21/Ro52 positive is associated with 
poor survival in patients with esophageal squamous cell 
carcinoma [60]. In another study, although there was a 
significantly high prevalence of anti-TRIM21/Ro52 in 
ovarian cancer patients, the presence of this antibody was 
correlated with higher overall survival compared with the 
antibody-negative ovarian cancer population [61]. As 
increased TRIM21/Ro52 expression was associated with 
better outcomes in ovarian cancer in recent research, 
whether the antibody impairs TRIM21/Ro52 protein 
function or the presence of anti-TRIM21/Ro52 antibod-
ies reflects the overexpression phenomenon of TRIM21/
Ro52 in cancer requires further investigation [42].

Cancer profile and its pathophysiological 
mechanisms in SLE and pSS
Cancer epidemiology study and mechanisms of tumor 
development in SLE and pSS individuals
The overall cancer risk in SLE and pSS patients is slightly 
higher than that of their matched general population. 
Among all cancer types, hematologic cancers, especially 
non-Hodgkin lymphoma, are associated with the most 
significant increase in risk [62, 63]. SLE and pSS patients 
have a fourfold and an up to 44-fold higher risk of devel-
oping B-cell lymphoma, respectively [64, 65]. Concerning 
solid neoplasms, SLE patients have a higher incidence 
rate of lung cancer, cervical cancer, and cervical dys-
plasia. In contrast, the risk of mouth and throat cancer, 
thyroid cancer, and lung cancer is notably increased in 
patients with pSS [66, 67]. In contrast, the risk of hor-
monal-related cancers, which include breast, prostate, 
endometrial, and ovarian cancers, is lower in SLE and 
pSS patients than in their healthy counterparts [67, 68] 
(Table  2). This characteristic may be attributed to the 
shorter period of hormonal exposure in these patients 
due to premature ovarian insufficiency [69]; undiscov-
ered genetic variants; and the use of nonsteroidal anti-
inflammatory drugs (NSAIDs), which have a protective 
effect against breast cancer [70], in SLE and pSS patients 
[71]. However, there is still a lack of solid evidence, and 
the breast cancer risk in SLE and pSS patients shows 
striking geographical differences [72, 73].

Pathophysiological mechanisms underlying the 
increased risk of non-hormonal-related malignancies, 
particularly hematologic cancers, in SLE or pSS patients 
may involve the use of certain immunosuppressive drugs, 
chronic inflammatory status, susceptibility of genes, 
cell-penetrating autoantibodies, and other conven-
tional shared risk factors such as smoking and Epstein-
Barr virus infection [74–76]. It has been confirmed that 
a dose-dependent use of cyclophosphamide increased 
the risk of hematologic malignancies in SLE patients. 
In contrast, hydroxychloroquine protects patients with 
SLE, and systemic glucocorticoid, cyclophosphamide, 
methotrexate, or azathioprine was not correlated with 
an increased cancer risk [77–79]. In pSS patients, there 
is limited study on the question of cancer risk and the use 
of immunosuppressive agents, but it has been reported 
that hydroxychloroquine presents a neutral effect on can-
cer development in the pSS population [80]. In addition, 
immunosuppressive treatments may indirectly promote 
oncogenic virus infections [81].

The pathogenesis of SLE involves the overexpression of 
a myriad of cytokines and the subsequent dysregulation 
of B-cell proliferation and differentiation, which overlaps 
with the formation of DLBCL, the most common type of 
lymphoma found in SLE patients [31, 82]. The production 
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of free radicals due to neutrophil activation and the pro-
motion of proinflammatory cytokines in SLE and pSS 
patients also lead to direct DNA damage, which may 
contribute to certain malignancies [83, 84]. On the other 
hand, it has been established that in pSS patients not only 
T and B lymphocytes, but the salivary epithelial cells 
aberrantly produce B cell-activating factor (BAFF) which 
leads to B cell hyperactivity and clonal expansion of B 
cells [85, 86]. Overactivation of B cells results in a wide 
spectrum of autoantibodies, such as rheumatoid factor, 
an antibody against the Fc portion of IgG, or autoanti-
bodies against other autoantigens including TRIM21/
Ro52 and SSA/Ro60, and the accumulation of these 
immune complexes may in return give rise to chronic 
antigenic stimulation and activation of NF‐κB pathway 
[87, 88]. As previously mentioned, TRIM21/Ro52, which 
is aberrantly expressed in SLE and pSS patients, regu-
lates B cell homeostasis though NF‐κB pathway and thus 
drives the formation of lymphoma, especially mucosa-
associated lymphoid tissue (MALT) lymphomas and 
DLBCL [89, 90].

The genomes of patients with SLE and pSS are more 
likely to have polymorphisms at specific loci that 
encode DNA repair factors and cytokine regulators, and 
these polymorphisms not only contribute to the devel-
opment of autoimmune diseases but also may increase 
the risk of cancer [91, 92]. The gene that encodes 
A20, or TNF alpha-induced protein 3 (TNFAIP3), an 
immunoregulatory factor involved in the downregula-
tion of the NF-κB pathway and the carcinogenesis of 
lymphoma and solid tumors, often includes a single-
nucleotide polymorphism and one gene mutation in 
SLE patients that are absent in healthy individuals [93]. 
Furthermore, autoantibodies that penetrate cells in 

individuals with autoimmune diseases, may interfere 
with the tumorigenesis [94, 95]. It has been reported 
that 3E10, a cell-penetrating lupus anti-DNA antibody, 
is toxic to BRCA2-deficient cancer cells [94]. On the 
contrary, antiphospholipid antibodies, which bind to 
mitochondria through internalization and trigger cell 
death, are found in 30–40% of SLE patients and associ-
ated with an increased risk of hematologic cancers [95, 
96].

In addition to the fact that SLE patients are associ-
ated with a greater risk of metabolic syndrome, which 
is a combination of well-acknowledged risk factors 
for cancer, including hypertension, diabetes, and obe-
sity, changes in immunometabolism in these patients 
could act as another predisposing factor for devel-
oping cancer [97, 98]. Expression of glucose trans-
porter 1 (GLUT1), a critical regulatory component in 
glucose metabolism, in immune cells is higher in SLE 
and pSS patients than in healthy controls [97, 99, 100]. 
The upregulation of GLUT1 is correlated with autoim-
mune disease severity, and various cancer studies have 
found it in common [101, 102]. Pyruvate kinase M2 
(PKM2), an isoform of the pivotal regulatory enzyme, 
pyruvate kinase, in cell metabolism, is significantly ele-
vated in the monocytes, dendritic cells, and B cells of 
SLE patients relative to that in the general population 
[103]. Activation of PKM2 is not only involved in toll-
like receptors mediated inflammation and autoimmun-
ity but also contributes to cancer formation [103, 104]. 
The growing amount of study regarding metabolic syn-
drome in individuals with SLE and pSS has shed light 
on the pathogenesis of the diseases themselves and 
provided new avenues for exploring the relationship 
between cancers and autoimmune diseases.

Table 2 Cancer risk profiles in SLE and pSS patients

Systemic lupus erythematosus Primary Sjogren’s syndrome

Increased risk All hematologic cancers
(Including lymphoma, leukemia, multiple myeloma),
Lung cancer,
Liver and hepatobiliary cancer,
Vaginal and vulvar cancer,
Cervical dysplasia and precancerous lesions,
Thyroid cancer,
Head and neck cancer,
Renal cancer,
Nonmelanoma skin cancer

All hematologic cancers
(Including lymphoma, leuke‑
mia, multiple myeloma),
lung cancer,
Thyroid cancer
Lip and oropharyngeal cancer,
Liver cancer,
Nonmelanoma skin cancer

Inconsistent findings Bladder cancer,
Cervical cancer,
Breast cancer,
Ovarian cancer

Breast cancer,
Bladder cancer,
Ovarian cancer,

Decreased risk Prostate cancer,
Endometrial cancer,
Melanoma
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The expression of TRIM21/Ro52 and its association 
with lymphoma and breast cancer development in SLE 
and pSS patients
In SLE and pSS patients, the risk of developing lymphoma 
is significantly elevated. Ro52–/– mice, which serve as a 
model for SLE, have demonstrated both lupus-like symp-
toms and aberrant B-cell differentiation and proliferation 
[33]. TRIM21/Ro52 deficiency may be relevant to the 
increased risk of lymphoma because of NF‐κB pathway 
activation, and maintaining TRIM21 expression is also 
associated with a preferable clinical outcome in patients 
with lymphoma [12, 29]. It is, however, paradoxical that 

the expression of TRIM21 mRNA and protein in SLE and 
pSS populations is found to be higher than that in healthy 
controls, and this increased level of TRIM21 could result 
in increased cell death and enhanced autogenic antigen 
exposure with subsequent antigen stimulation of autoim-
mune B cells, thus serving as a connection with the devel-
opment of lymphoma [105] (Fig. 2). These results suggest 
that lymphomagenesis in individuals with SLE and pSS is 
a multistep and multifactorial process and that maintain-
ing the balanced expression of TRIM21 is essential for 
both the development of autoimmune diseases and the 
formation of lymphoma.

Fig. 2 A summarized mechanism(s) that SLE or pSS may lead to an increased risk of lymphoma and a decreased risk of breast cancer. 
Down‑regulation of TRIM21/Ro52 expression is associated with poor overall survival in both lymphoma and breast cancer. IKKβ: kappa‐B kinase 
subunit beta; SALL‑4: spalt like transcription factor 4; SET7/9: SET domain containing 7, histone lysine methyltransferase; TβRII: growth factor beta 
receptor 2
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The relationship between SLE and breast cancer rep-
resents an interesting contrast based on regional dif-
ferences. Research from some Asian countries, such as 
Taiwan and Korea, demonstrates an increased risk of 
breast cancer in SLE patients [72, 106]. In contrast, other 
multi-center cohort studies, primarily conducted in the 
US and European countries, show decreased breast can-
cer risk among the SLE population [71]. Since it is dem-
onstrated that there is higher TRIM21 expression among 
individuals with SLE or pSS and that several studies con-
firmed that overexpression of TRIM21 is associated with 
the inhibition of breast cancer development and a bet-
ter prognosis for those individuals who develop breast 
cancer, it is worth further investigation of the TRIM21 
expression level in SLE and pSS patients in these Asian 
countries.

The role of TRIM21/Ro52 in cancer cell metabolism
Cancer cells often exhibit a higher rate of glycolysis than 
normal cells to meet the energetic needs associated with 
rapid growth. This metabolic change is known as the 
Warburg effect [107]. In human glioblastoma, block-
ing of TRIM21/Ro52 activity due to protein kinase B 
(AKT) activation impairs the proteasomal degradation 
of phosphofructokinase-1 (PFK1), the rate-limiting gly-
colysis enzyme, resulting in the promotion of glycolysis 
and brain tumor proliferation [108]. Regardless of the 
changes in the cellular microenvironment, there is a ten-
dency for TRIM21/Ro52 inactivation to result in higher 
PFK1 expression and higher glycolysis rates in human 
non-small-cell-lung-cancer cells [109].

TRIM21/Ro52 is not only essential for the regulation 
of glucose metabolism but also has a pivotal role in lipo-
genesis. Fatty acid synthase (FASN), a complex of critical 
enzymatic proteins in the fatty acid synthesis pathway, 
is commonly upregulated in tumor cells to support the 
need for lipids for active proliferation, and increased 
FASN expression is correlated with drug resistance, 
tumor metastasis, and reduced survival among indi-
viduals with cancer. TRIM21/Ro52 is responsible for the 
polyubiquitination and proteasome degradation of FASN 
[110]. A study by Gu et al., which examined the underly-
ing mechanism of how FASN promotes lipogenesis and 
HCC progression, found that the acetylation of glyc-
eronephosphate O-acyltransferase (GNPAT), a critical 
enzyme that regulates plasmalogens, stabilizes FASN via 
suppressing both TRIM21/Ro52-mediated GNPAT and 
FASN degradation [111].

The upregulation of the pentose phosphate pathway is 
another metabolic change that frequently occurs in can-
cer cells in response to the high level of reactive oxygen 
species [112]. TRIM21/Ro52 is responsible for the deg-
radation of glucose-6-phosphate dehydrogenase (G6PD), 

the rate-limiting enzyme in the pentose phosphate path-
way, and its feedback regulation on phosphatidylinositol 
3-kinase (PI3K)/AKT pathway makes TRIM21/Ro52 a 
potential therapeutic target in PI3K/AKT activation can-
cer [113].

Conclusion
TRIM21/Ro52 is a commonly seen autoantigen in many 
systemic autoimmune diseases, especially SLE and pSS 
patients. Though the mechanisms of autoimmune dis-
ease development and cancer formation remain elusive, 
two significant characteristics shared by both diseases are 
chronic inflammatory status and metabolic dysfunction. 
An emerging role of TRIM21/Ro52 in the regulation of 
inflammation and the reprogramming of cellular metab-
olism has been indicated in previous studies.

The underlying mechanism of how TRIM21/Ro52 may 
lead to cancer development or provide a protective effect 
against cancer in SLE and pSS patients requires further 
studies. Identifying the interconnected role of TRIM21/
Ro52 between SLE, pSS, and tumorigenesis would be 
beneficial, as this could help develop an appropriate can-
cer monitoring method for patients with autoimmune 
diseases and may shed light on the disease development 
of SLE and pSS themselves.
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