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in systemic lupus erythematosus, primary
Sjogren’s syndrome, cancers, and cancer
metabolism
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Abstract

Protein tripartite motif-containing 21 (TRIM21/R052), an E3 ubiquitin ligase, is an essential regulator of innate immu-
nity, and its dysregulation is closely associated with the development of autoimmune diseases, predominantly
systemic lupus erythematosus (SLE) and primary Sjégren’s syndrome (pSS). TRIM21 /Ro52 also features anti-cancer
and carcinogenic functions according to different malignancies. The interconnected role of TRIM21/Ro52 in regu-

populations.

immunology, Cancer metabolism

lating autoimmunity and cell metabolism in autoimmune diseases and malignancies is implicated. In this review,
we summarize current findings on how TRIM21/Ro52 affects inflammation and tumorigenesis, and investigate
the relationship between TRIM21/Ro52 expression and the formation of lymphoma and breast cancer in SLE and pSS
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Introduction

TRIM21/Ro52, which is encoded by a gene on the short
arm of chromosome 11, is a member of the TRIM pro-
tein family, the members of which are involved in mul-
tiple cellular functions, including apoptosis signaling,
the regulation of innate immunity, and the suppression
or activation of carcinogenesis [1, 2]. The structure of
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TRIM21/Ro52, a cytosolic Fc receptor, consists of an
N-terminal RING domain with E3 ubiquitin ligase activ-
ity, a B-box domain, a central coiled-coil domain, and a
PRY/SPRY domain at its C terminus [3, 4]. TRIM21/
Ro52 is crucial in antigen presentation and the regulation
of innate immunity in response to intracellular pathogens
as a negative regulator of interferon production via the
ubiquitination of interferon regulatory factor (IRF)3/5/7,
which leads to subsequent proteasomal degradation and
prevents further IFN transcription [5-7].

TRIM21/Ro52 and the antibodies that target it (anti-
TRIM21/Ro52) are involved in many autoimmune dis-
eases, especially rheumatic diseases, such as systemic
lupus erythematosus (SLE) and primary Sjogren’s syn-
drome (pSS) [8]. The presence of anti-TRIM21/Ro52 is
one of the key items to validate the diagnosis of pSS [9],
and it can be detected in 42—-50% of SLE patients [10]. In
addition to the diagnostic role in SLE and pSS, TRIM21/
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Ro52 can have opposing effects in different cancers [11].
Higher expression of TRIM21/Ro52 is associated with
better patient survival in some cancer types, such as dif-
fuse large B-cell lymphoma (DLBCL), breast cancer, and
renal cell carcinoma [12—14]. In contrast, TRIM21/Ro52
promotes cancer cell proliferation and migration in gli-
oma and thyroid cancer, and it increases drug resistance
in colorectal and pancreatic cancers [15-17].

Heterogeneity is a characteristic shared by SLE, pSS,
and cancers at the phenotypic and genotypic levels.
Meanwhile, growing evidence indicates that reprogram-
ming cellular metabolism and immune dysfunction both
contribute to autoimmune diseases and tumor develop-
ment [18, 19]. Recent studies have suggested a higher risk
of not only hematologic cancers but also solid tumors
such as lung cancer and thyroid cancer in individuals
with either SLE or pSS. On the other hand, the risk of
certain types of malignancies, breast cancer, for exam-
ple, is decreased compared with healthy controls in other
data [20, 21].

The pathophysiologic mechanisms by which SLE and
pSS patients have a greater risk of certain cancers have
yet to be well understood, and the comprehension of the
regulatory role of TRIM21/Ro52 in these diseases and
malignancies remains partial. Herein, in this review, we
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summarize current evidence of TRIM21/Ro52 relevant
connections to immune regulation and cellular metabo-
lism in SLE, pSS, and cancers, then discuss how TRIM21/
Ro52 may function in the tumorigenesis, especially lym-
phoma and breast cancer in SLE and pSS patients (Fig. 1).

The role of TRIM21/R052 in SLE and pSS
TRIM21/Ro52 expression in individuals and animal models
with SLE or pSS

SLE and pSS are both systemic rheumatic diseases char-
acterized by abnormal B-cell activation and autoantibody
production. The mRNA level and surface expression
of TRIM21/Ro52 protein, which was initially noted in
apoptotic cells [22], is higher in freshly isolated periph-
eral blood mononuclear cells of pSS patients as com-
pared with those of healthy donors [23]. Transcription
of TRIM21/Ro52 is upregulated by interferon regulatory
factor (IRF)1 and 2 while suppressed by IRF4 and IRFS,
which is consistent with the significantly higher level of
IRF1 and IRF2 and overexpression of TRIM21/Ro52
seen in patients with Sjogren’s syndrome [24]. In addi-
tion, overexpression of TRIM21/Ro52 inhibits cell pro-
liferation and enhances apoptosis in CD40-mediated cell
death, which also results in a more significant amount
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Fig. 1 Graphic summary of the interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjégren’s syndrome, cancers,

and metabolism
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of autoantigen that may trigger a greater autoimmune
response [23].

However, deficiency in TRIM21/Ro52 expression is
another SLE and pSS development mechanism. Ro52-
null (Ro5277) mice, which are generated from one of the
lupus mouse models and detected by green fluorescent
protein(GFP) expression, develop progressive dermati-
tis from the site of their ear tag injury and later are posi-
tive for proteinuria detection and deposition of immune
complexes as based on renal pathology [25]. The immune
response of Ro52~/~ mice to a contact-sensitizing agent is
also significantly higher than that of Ro52*/* mice, which
includes a larger amount of T-cell activation and proin-
flammatory cytokine production. This TRIM21/Ro52
deficiency increases proinflammatory cytokine produc-
tion, and the inflammatory infiltration depends on the
IL-23-Th17 pathway [26].

The regulatory role of TRIM21/Ro52 in SLE and pSS
TRIM21/Ro52 plays a regulatory role in B-cell prolifera-
tion and differentiation. Ro52—/— mice show increased
B-cell activation and markedly higher antibody produc-
tion than wild-type [27]. Previous studies have reported
that TRIM21/Ro52 directly regulates several IRFs that
are involved in B-cell development, and the presence
of TRIM21/Ro52 could suppress the canonical NF-xB
pathway via monoubiquitinating the phosphorylated IkB
kinase subunit beta(IKKpB) and subsequent autophagy
[28, 29]. Thus, the absence of TRIM21/Ro52 results
in aberrant NF-kB activation, which is also explicitly
required for the proliferation of activated B-cell DLBCL,
the main subtype of DLBCL found in SLE patients [30—
32]. In another study, researchers noted that Ro527/~
mice have enhanced resting B-cell differentiation and
exhibit a lupus-like disease phenotype with increased
urinary protein and serum double-stranded DNA anti-
body titers. In the same study, the authors demonstrated
that SLE patients who are positive for anti-TRIM21/Ro52
have a significantly higher level of resting B-cell differ-
entiation toward plasmablasts and increased antibody
production in general as compared with seronegative
SLE patients and healthy controls, indicating that anti-
TRIM21/Ro52 impairs the TRIM21/Ro52 function of
B-cell homeostasis [33].

Under normal physiologic circumstances, TRIM21/
Ro52 negatively regulates type I IFN expression via deg-
radation of IRF3/5; however, the IRF degradation pro-
cess is downregulated in anti-TRIM21/Ro52 positive
SLE patients with both increased TRIM21/Ro52 mRNA
and IFN levels, whereas there is no correlation in the
SLE population without these antibodies. This suggests
that the autoantibody targeting TRIM21/Ro52 impairs
TRIM21/Ro52-dependent IRF degradation, resulting
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in dysregulated IFN production and subsequent high
TRIM21/Ro52 expression [34]. A study also showed that
the presence and elevated serum level of anti-TRIM21/
Ro52 in SLE and pSS patients are positively correlated
with the abnormally increased titer of immunoregula-
tory cytokine, including IL-2, IL-4, IL-21, IL-22, and
CXCL10 [35]. The incidence rate and the trigger associ-
ated with the production of nuclear-penetrating autoan-
tibodies have not been sufficiently studied yet, whereas
the mechanisms by which autoantibodies penetrate
cells have been widely investigated and include both Fc
receptor—dependent endocytosis and Fc receptor—inde-
pendent pathways involving myosin and the nucleoside
transporter, respectively [36].

Anti-TRIM21/Ro52 and the link to clinical presentations
Clinically, anti-TRIM21/Ro52 antibodies serve as a
potential diagnostic and prognostic biomarker. In pSS
patients, higher serum level of anti-TRIM21/Ro52 anti-
bodies are associated with increased disease severity,
including a greater rate of anemia and muscular involve-
ment, despite no clear association between the presence
of anti-TRIM21/Ro52 antibodies and xerostomia, one
of the most notable clinical presentation found on pSS
patients [37]. However, it is demonstrated in another
study that higher anti-TRIM21/Ro52 antibody titers are
actually correlated with severe involvement in parotid
scintigraphy, parotid enlargement, and positive salivary
gland biopsy, which are all important for pSS diagnos-
tics, indicating a strong association of histopathological
findings with anti-TRIM21/Ro52 antibodies [38]. Fur-
thermore, in patients with suspected autoimmune dis-
eases, higher isolated positive serum anti-TRIM21/Ro52
antibodies are associated with a higher diagnostic rate of
immunologic disorders and malignancies as compared
with the anti-Ro52 and anti-Ro60 double-positive popu-
lation [39].

Association of TRIM21/Ro52 and cancers
TRIM21/Ro52 inhibits tumorigenesis in multiple cancers
TRIM21/Ro52 has a dual role in cancers, as it can pro-
mote or suppress tumor growth depending on cancer cell
types. The downregulation of TRIM21/Ro52 is associated
with a poor prognosis in patients with certain kinds of
cancer, including DLBCL, breast cancer, gastric cancer,
renal cell carcinoma, ovarian cancer, and colitis-associ-
ated cancer [12—14, 40-43] (Table 1).

In breast cancer, overexpression of TRIM21/Ro52
promotes ubiquitination and degradation of Snalil,
resulting in the downregulation of E-cadherin tran-
scription  throughout the epithelial-mesenchy-
mal transition process, thereby inhibiting migration
and invasion capabilities in breast cancer cells [44].
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Table 1 The role of TRIM21/Ro52 in different cancers and its effect on clinical outcomes

TRIM21/Ro52 role in different cancers

Cancer types

Correlation between TRIM21/Ro52 upregulation and clinical outcomes

Glioma [15],
Thyroid cancer [16],
Pancreatic cancer [17]

DLBCL [12],

Renal cell carcinoma [14, 50],
Gastric cancer [41],

ovarian cancer [42],

breast cancer [44-46]

survival

to better overall survival

Upregulation of TRIM21/Ro52 would enhanced cancer cell proliferation and drug resistance, resulting in poor overall

Upregulation of TRIM21/Ro52 can suppress tumor proliferation and migration, and increase drug sensitivity, leading

TRIM21/Ro52 also negatively regulates the SET
domain containing 7, histone lysine methyltransferase
(SETD?7, also known as SET7/9), which is involved in
breast cancer cell proliferation, migration, and invasion,
such that higher expression of TRIM21/Ro052 is associ-
ated with better outcomes in these patients [45]. In
addition, degradation of spalt-like transcription factor
4 (SALL4), a transcription factor that promotes breast
cancer cell proliferation and migration, is regulated by
TRIM21/Ro52, and thus higher levels of TRIM21/Ro52
can reduce SALL4 levels [46]. The proteasomal degra-
dation of transforming growth factor beta receptor 2
(TBRII) protein is also mediated by TRIM21/Ro52. By
disrupting the TGF-p signaling pathway, TRIM21/Ro52
can suppress triple-negative breast cancer cell metas-
tasis [47]. In addition, lower TRIM21/Ro52 expression
in mutant p53 breast cancer patients is associated with
a poorer clinical outcome as TRIM21/Ro52 deficiency
leads to the accumulation of mutant p53 and the subse-
quent breast cancer progression [48].

In gastric cancer, higher TRIM21/Ro52 expres-
sion not only is correlated with a lower recurrence
and a better 5-year survival rate but also enhances
the chemosensitivity of the tumor cells to apatinib, an
FDA-proved treatment for chemotherapy-refractory
advanced gastric cancer [41, 49]. Similarly, colitis-
associated and ovarian cancer studies indicate that
TRIM21/Ro52 can suppress intestinal epithelial car-
cinogenesis and ovarian tumorigenesis, respectively
[42, 43]. In addition, in renal cell carcinoma, over-
expression of TRIM21/Ro52 destabilizes hypoxia-
inducible factor 1 subunit alpha (HIF-1la), leading to
the suppression of aerobic glycolysis and subsequent
inhibition of both in vitro and in vivo tumor cell prolif-
eration and migration [14]. A recent study, in contrast,
found that TRIM21/Ro52 inhibits the expression of the
lipogenic enzyme via the degradation of sterol regula-
tory element binding transcription factor 1 (SREBF1),
attenuating lipogenesis and tumor growth in renal cell
carcinoma [50]. These results also suggest the essential

role of TRIM21/Ro52 in cancer metabolism, which will
be further discussed in section "The role of TRIM21/
Ro52 in cancer cell metabolism".

TRIM21/Ro52 acts as an oncogene in glioma, thyroid,

and pancreatic cancer

In contrast to the findings described above, in the case
of certain cancers—such as glioma, thyroid cancer, and
pancreatic cancers—overexpression of TRIM21/Ro52
is associated with unfavorable clinical outcomes. In the
context of glioma, TRIM21/Ro52 overexpression pro-
motes cell cycling, proliferation, and migration of glioma
cells by suppressing the p53—-p21 pathway [15]. TRIM21/
Ro52 plays a similar role in thyroid cancer, such that the
expression of TRIM21/Ro52 is upregulated in thyroid
cancer tissue, and higher TRIM21/Ro52 levels are asso-
ciated with a higher risk of recurrence and lymph node
metastasis, though the mechanism involved has not
yet been investigated [16]. It was also observed in colo-
rectal and pancreatic tumor cells that TRIM21/Ro52
overexpression in response to cisplatin, a widely used
chemotherapeutic agent, would downregulate the level of
pro-apoptotic WT1 regulator (PAWR), which is a tumor
suppressor mediating apoptosis regulation in various
cancer cells, and thus increases the resistance of colorec-
tal and pancreatic tumor cells to cisplatin treatment. It is
also demonstrated that high TRIM21/Ro52 expression in
pancreatic tumor patients indicates worse survival out-
come [17].

Cancer type with controversial TRIM21/Ro52 function

The function of TRIM21/Ro52 in colorectal cancer (CRC)
and hepatocellular carcinoma (HCC) remains contradic-
tory. TRIM21/Ro52 is found to interact with DLGAP1
antisense RNA 2 (DLGAP1-AS2), a long noncoding
RNA, and promote the CRC cells’ growth and metasta-
sis [51]. In contrast, it is shown in CRC that TRIM21/
Ro52 mediates the ubiquitination of MICAL-like 2 pro-
tein (MICALL2), which is proven to promote CRC cell
proliferation and migration, and thereby the presence of
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TRIM21/Ro52 decrease the activity of MICALL?2 in CRC
tumorigenesis [52]. Another study also demonstrates that
TRIM21/Ro52 ubiquitinates IGF2 mRNA binding pro-
tein 3 (IGF2BP3), which plays an essential role in CRC
development, and that the use of the natural drug Ber-
berine improves CRC by promoting the expression of
TRIM21/Ro52 [53].

The study by Ding et al. showed that the downregula-
tion of TRIM21/Ro52 contributes to hepatocarcino-
genesis and is associated with a poor prognosis [40]. In
contrast, Qi et al. found the opposite: the expression of
TRIM21/Ro52 is higher in HCC tissues than in normal
control tissues, and it is significantly correlated with
tumor progression in HCC patients [54]. Furthermore,
one target of the E3 ubiquitin ligase activity of TRIM21/
Ro52 is p62, and the function of the downstream p62—
Keapl-Nrf2 antioxidant pathway in HCC is also contro-
versial; again, the expression of TRIM21/Ro52 has been
shown to both involve in promoting and suppressing
HCC progression [55, 56]. Further studies are needed to
identify the functional role of TRIM21/Ro052 in HCC.

In addition, it is worth noting that TRIM21/Ro52 is an
intracellular Fc receptor with extremely high affinity for
IgG antibodies, which may lead to the co-precipitation
of not just proteins directly interacting with TRIM21 but
also the antibodies themselves, leading to a false posi-
tive result in co-immunoprecipitation (Co-IP) experi-
ments for identifying potential interaction proteins of
TRIM21 [57]. Future studies investigating on the proteins
interplay involving TRIM21/Ro52 may require rigorous
experimental design and validation steps using alterna-
tive methods such as bioluminescence resonance energy
transfer (BRET) or a mutated PRY/SPRY domain of
TRIM21/Ro52 with reduced affinity for IgG to rule out
non-specific binding [58].

The role of anti-TRIM21/Ro52 antibodies in cancers

There have been conflicting results regarding the func-
tion of anti-TRIM21/Ro52 antibodies in different cancers
[59, 60]. Anti-TRIM21/Ro52 positive is associated with
poor survival in patients with esophageal squamous cell
carcinoma [60]. In another study, although there was a
significantly high prevalence of anti-TRIM21/Ro52 in
ovarian cancer patients, the presence of this antibody was
correlated with higher overall survival compared with the
antibody-negative ovarian cancer population [61]. As
increased TRIM21/Ro52 expression was associated with
better outcomes in ovarian cancer in recent research,
whether the antibody impairs TRIM21/Ro52 protein
function or the presence of anti-TRIM21/Ro52 antibod-
ies reflects the overexpression phenomenon of TRIM21/
Ro52 in cancer requires further investigation [42].
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Cancer profile and its pathophysiological
mechanisms in SLE and pSS
Cancer epidemiology study and mechanisms of tumor
development in SLE and pSS individuals
The overall cancer risk in SLE and pSS patients is slightly
higher than that of their matched general population.
Among all cancer types, hematologic cancers, especially
non-Hodgkin lymphoma, are associated with the most
significant increase in risk [62, 63]. SLE and pSS patients
have a fourfold and an up to 44-fold higher risk of devel-
oping B-cell lymphoma, respectively [64, 65]. Concerning
solid neoplasms, SLE patients have a higher incidence
rate of lung cancer, cervical cancer, and cervical dys-
plasia. In contrast, the risk of mouth and throat cancer,
thyroid cancer, and lung cancer is notably increased in
patients with pSS [66, 67]. In contrast, the risk of hor-
monal-related cancers, which include breast, prostate,
endometrial, and ovarian cancers, is lower in SLE and
pSS patients than in their healthy counterparts [67, 68]
(Table 2). This characteristic may be attributed to the
shorter period of hormonal exposure in these patients
due to premature ovarian insufficiency [69]; undiscov-
ered genetic variants; and the use of nonsteroidal anti-
inflammatory drugs (NSAIDs), which have a protective
effect against breast cancer [70], in SLE and pSS patients
[71]. However, there is still a lack of solid evidence, and
the breast cancer risk in SLE and pSS patients shows
striking geographical differences [72, 73].

Pathophysiological ~mechanisms underlying the
increased risk of non-hormonal-related malignancies,
particularly hematologic cancers, in SLE or pSS patients
may involve the use of certain immunosuppressive drugs,
chronic inflammatory status, susceptibility of genes,
cell-penetrating autoantibodies, and other conven-
tional shared risk factors such as smoking and Epstein-
Barr virus infection [74-76]. It has been confirmed that
a dose-dependent use of cyclophosphamide increased
the risk of hematologic malignancies in SLE patients.
In contrast, hydroxychloroquine protects patients with
SLE, and systemic glucocorticoid, cyclophosphamide,
methotrexate, or azathioprine was not correlated with
an increased cancer risk [77-79]. In pSS patients, there
is limited study on the question of cancer risk and the use
of immunosuppressive agents, but it has been reported
that hydroxychloroquine presents a neutral effect on can-
cer development in the pSS population [80]. In addition,
immunosuppressive treatments may indirectly promote
oncogenic virus infections [81].

The pathogenesis of SLE involves the overexpression of
a myriad of cytokines and the subsequent dysregulation
of B-cell proliferation and differentiation, which overlaps
with the formation of DLBCL, the most common type of
lymphoma found in SLE patients [31, 82]. The production
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Table 2 Cancer risk profiles in SLE and pSS patients
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Systemic lupus erythematosus

Primary Sjogren’s syndrome

Increased risk

Lung cancer,

Liver and hepatobiliary cancer,
Vaginal and vulvar cancer,
Cervical dysplasia and precancerous lesions,

Thyroid cancer,

Head and neck cancer,

Renal cancer,

All hematologic cancers
(Including lymphoma, leukemia, multiple myeloma),

All hematologic cancers
(Including lymphoma, leuke-
mia, multiple myeloma),

lung cancer,

Thyroid cancer

Lip and oropharyngeal cancer,
Liver cancer,

Nonmelanoma skin cancer

Nonmelanoma skin cancer

Bladder cancer,
Cervical cancer,
Breast cancer,

Ovarian cancer

Inconsistent findings

Decreased risk Prostate cancer,
Endometrial cancer,

Melanoma

Breast cancer,
Bladder cancer,
Ovarian cancer,

of free radicals due to neutrophil activation and the pro-
motion of proinflammatory cytokines in SLE and pSS
patients also lead to direct DNA damage, which may
contribute to certain malignancies [83, 84]. On the other
hand, it has been established that in pSS patients not only
T and B lymphocytes, but the salivary epithelial cells
aberrantly produce B cell-activating factor (BAFF) which
leads to B cell hyperactivity and clonal expansion of B
cells [85, 86]. Overactivation of B cells results in a wide
spectrum of autoantibodies, such as rheumatoid factor,
an antibody against the Fc portion of IgG, or autoanti-
bodies against other autoantigens including TRIM21/
Ro52 and SSA/Ro60, and the accumulation of these
immune complexes may in return give rise to chronic
antigenic stimulation and activation of NF-kB pathway
[87, 88]. As previously mentioned, TRIM21/Ro052, which
is aberrantly expressed in SLE and pSS patients, regu-
lates B cell homeostasis though NF-kB pathway and thus
drives the formation of lymphoma, especially mucosa-
associated lymphoid tissue (MALT) lymphomas and
DLBCL [89, 90].

The genomes of patients with SLE and pSS are more
likely to have polymorphisms at specific loci that
encode DNA repair factors and cytokine regulators, and
these polymorphisms not only contribute to the devel-
opment of autoimmune diseases but also may increase
the risk of cancer [91, 92]. The gene that encodes
A20, or TNF alpha-induced protein 3 (TNFAIP3), an
immunoregulatory factor involved in the downregula-
tion of the NF-kB pathway and the carcinogenesis of
lymphoma and solid tumors, often includes a single-
nucleotide polymorphism and one gene mutation in
SLE patients that are absent in healthy individuals [93].
Furthermore, autoantibodies that penetrate cells in

individuals with autoimmune diseases, may interfere
with the tumorigenesis [94, 95]. It has been reported
that 3E10, a cell-penetrating lupus anti-DNA antibody,
is toxic to BRCA2-deficient cancer cells [94]. On the
contrary, antiphospholipid antibodies, which bind to
mitochondria through internalization and trigger cell
death, are found in 30-40% of SLE patients and associ-
ated with an increased risk of hematologic cancers [95,
96].

In addition to the fact that SLE patients are associ-
ated with a greater risk of metabolic syndrome, which
is a combination of well-acknowledged risk factors
for cancer, including hypertension, diabetes, and obe-
sity, changes in immunometabolism in these patients
could act as another predisposing factor for devel-
oping cancer [97, 98]. Expression of glucose trans-
porter 1 (GLUT1), a critical regulatory component in
glucose metabolism, in immune cells is higher in SLE
and pSS patients than in healthy controls [97, 99, 100].
The upregulation of GLUT1 is correlated with autoim-
mune disease severity, and various cancer studies have
found it in common [101, 102]. Pyruvate kinase M2
(PKM2), an isoform of the pivotal regulatory enzyme,
pyruvate kinase, in cell metabolism, is significantly ele-
vated in the monocytes, dendritic cells, and B cells of
SLE patients relative to that in the general population
[103]. Activation of PKM2 is not only involved in toll-
like receptors mediated inflammation and autoimmun-
ity but also contributes to cancer formation [103, 104].
The growing amount of study regarding metabolic syn-
drome in individuals with SLE and pSS has shed light
on the pathogenesis of the diseases themselves and
provided new avenues for exploring the relationship
between cancers and autoimmune diseases.
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The expression of TRIM21/Ro52 and its association

with lymphoma and breast cancer development in SLE

and pSS patients

In SLE and pSS patients, the risk of developing lymphoma
is significantly elevated. Ro52—/— mice, which serve as a
model for SLE, have demonstrated both lupus-like symp-
toms and aberrant B-cell differentiation and proliferation
[33]. TRIM21/Ro52 deficiency may be relevant to the
increased risk of lymphoma because of NF-kB pathway
activation, and maintaining TRIM21 expression is also
associated with a preferable clinical outcome in patients
with lymphoma [12, 29]. It is, however, paradoxical that
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the expression of TRIM21 mRNA and protein in SLE and
pSS populations is found to be higher than that in healthy
controls, and this increased level of TRIM21 could result
in increased cell death and enhanced autogenic antigen
exposure with subsequent antigen stimulation of autoim-
mune B cells, thus serving as a connection with the devel-
opment of lymphoma [105] (Fig. 2). These results suggest
that lymphomagenesis in individuals with SLE and pSS is
a multistep and multifactorial process and that maintain-
ing the balanced expression of TRIM21 is essential for
both the development of autoimmune diseases and the
formation of lymphoma.
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Fig. 2 A summarized mechanism(s) that SLE or pSS may lead to an increased risk of lymphoma and a decreased risk of breast cancer.
Down-regulation of TRIM21/Ro52 expression is associated with poor overall survival in both lymphoma and breast cancer. IKK@: kappa-B kinase
subunit beta; SALL-4: spalt like transcription factor 4; SET7/9: SET domain containing 7, histone lysine methyltransferase; TBRII: growth factor beta

receptor 2



Hsu and Yu Cancer Cell International (2023) 23:289

The relationship between SLE and breast cancer rep-
resents an interesting contrast based on regional dif-
ferences. Research from some Asian countries, such as
Taiwan and Korea, demonstrates an increased risk of
breast cancer in SLE patients [72, 106]. In contrast, other
multi-center cohort studies, primarily conducted in the
US and European countries, show decreased breast can-
cer risk among the SLE population [71]. Since it is dem-
onstrated that there is higher TRIM21 expression among
individuals with SLE or pSS and that several studies con-
firmed that overexpression of TRIM21 is associated with
the inhibition of breast cancer development and a bet-
ter prognosis for those individuals who develop breast
cancer, it is worth further investigation of the TRIM21
expression level in SLE and pSS patients in these Asian
countries.

The role of TRIM21/R0o52 in cancer cell metabolism
Cancer cells often exhibit a higher rate of glycolysis than
normal cells to meet the energetic needs associated with
rapid growth. This metabolic change is known as the
Warburg effect [107]. In human glioblastoma, block-
ing of TRIM21/Ro52 activity due to protein kinase B
(AKT) activation impairs the proteasomal degradation
of phosphofructokinase-1 (PFK1), the rate-limiting gly-
colysis enzyme, resulting in the promotion of glycolysis
and brain tumor proliferation [108]. Regardless of the
changes in the cellular microenvironment, there is a ten-
dency for TRIM21/Ro52 inactivation to result in higher
PFK1 expression and higher glycolysis rates in human
non-small-cell-lung-cancer cells [109].

TRIM21/Ro52 is not only essential for the regulation
of glucose metabolism but also has a pivotal role in lipo-
genesis. Fatty acid synthase (FASN), a complex of critical
enzymatic proteins in the fatty acid synthesis pathway,
is commonly upregulated in tumor cells to support the
need for lipids for active proliferation, and increased
FASN expression is correlated with drug resistance,
tumor metastasis, and reduced survival among indi-
viduals with cancer. TRIM21/Ro52 is responsible for the
polyubiquitination and proteasome degradation of FASN
[110]. A study by Gu et al., which examined the underly-
ing mechanism of how FASN promotes lipogenesis and
HCC progression, found that the acetylation of glyc-
eronephosphate O-acyltransferase (GNPAT), a critical
enzyme that regulates plasmalogens, stabilizes FASN via
suppressing both TRIM21/Ro52-mediated GNPAT and
FASN degradation [111].

The upregulation of the pentose phosphate pathway is
another metabolic change that frequently occurs in can-
cer cells in response to the high level of reactive oxygen
species [112]. TRIM21/Ro52 is responsible for the deg-
radation of glucose-6-phosphate dehydrogenase (G6PD),
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the rate-limiting enzyme in the pentose phosphate path-
way, and its feedback regulation on phosphatidylinositol
3-kinase (PI3K)/AKT pathway makes TRIM21/Ro52 a
potential therapeutic target in PI3K/AKT activation can-
cer [113].

Conclusion

TRIM21/Ro52 is a commonly seen autoantigen in many
systemic autoimmune diseases, especially SLE and pSS
patients. Though the mechanisms of autoimmune dis-
ease development and cancer formation remain elusive,
two significant characteristics shared by both diseases are
chronic inflammatory status and metabolic dysfunction.
An emerging role of TRIM21/Ro52 in the regulation of
inflammation and the reprogramming of cellular metab-
olism has been indicated in previous studies.

The underlying mechanism of how TRIM21/Ro52 may
lead to cancer development or provide a protective effect
against cancer in SLE and pSS patients requires further
studies. Identifying the interconnected role of TRIM21/
Ro52 between SLE, pSS, and tumorigenesis would be
beneficial, as this could help develop an appropriate can-
cer monitoring method for patients with autoimmune
diseases and may shed light on the disease development
of SLE and pSS themselves.
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