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Abstract
Background  Gliomas, a prevalent form of primary brain tumors, are linked with a high mortality rate and unfavorable 
prognoses. Disulfidptosis, an innovative form of programmed cell death, has received scant attention concerning 
disulfidptosis-related lncRNAs (DRLs). The objective of this investigation was to ascertain a prognostic signature 
utilizing DRLs to forecast the prognosis and treatment targets of glioma patients.

Methods  RNA-seq data were procured from The Cancer Genome Atlas database. Disulfidptosis-related genes were 
compiled from prior research. An analysis of multivariate Cox regression and the least absolute selection operator 
was used to construct a risk model using six DRLs. The risk signature’s performance was evaluated via Kaplan-Meier 
survival curves and receiver operating characteristic curves. Additionally, functional analysis was carried out using 
GO, KEGG, and single-sample GSEA to investigate the biological functions and immune infiltration. The research also 
evaluated tumor mutational burden, therapeutic drug sensitivity, and consensus cluster analysis. Reverse transcription 
quantitative PCR was conducted to validate the expression level of DRLs.

Results  A prognostic signature comprising six DRLs was developed to predict the prognosis of glioma patients. 
High-risk patients had significantly shorter overall survival than low-risk patients. The robustness of the risk model 
was validated by receiver operating characteristic curves and subgroup survival analysis. Risk model was used 
independently as a prognostic indicator for the glioma patients. Notably, the low-risk patients displayed a substantial 
decrease in the immune checkpoints, the proportion of immune cells, ESTIMATE and immune score. IC50 values from 
the different risk groups allowed us to discern three drugs for the treatment of glioma patients. Lastly, the potential 
clinical significance of six DRLs was determined.

Conclusions  A novel six DRLs signature was developed to predict prognosis and may provide valuable insights for 
patients with glioma seeking novel immunotherapy and targeted therapy.
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Background
Glioma, a prevalent type of primary malignant tumor 
in the central nervous system, constitutes around 80% 
of all malignant brain tumors and is the foremost cause 
of death among brain tumor patients [1]. While surgical 
resection remains the conventional treatment for glioma, 
it is a challenging task to eradicate it completely due to 
genetic and epigenetic variations, resulting in its highly 
invasive and infiltrative nature [2]. Hence, postoperative 
chemotherapy and radiotherapy have been utilized as 
adjuvants. Unfortunately, only 0.05–4.7% of glioblastoma 
patients survive for five years [2, 3]. While recent years 
have seen a deepening of our comprehension regard-
ing the underlying mechanisms and associated signaling 
pathways, as well as the genetic risk factors contributing 
to glioma, the precise pathogenesis of the majority of dif-
fuse gliomas remains enigmatic [4, 5]. This underscores 
the urgent requirement for the development of a reliable 
and valid risk model capable of precise diagnosis, tailored 
treatment, and accurate prognosis estimation for glioma 
patients.

Disulfidptosis, a newly identified form of cell death, was 
first reported by BY Gan’s laboratory in 2023 [6]. Unlike 
other established modes of cell death, such as necropto-
sis [7], pyroptosis [8], and cuproptosis [9], disulfidptosis 
is triggered by the aberrant accumulation of disulfides, 
resulting in disulfide stress and ultimately cell death [6]. 
Disulfide stress is a condition where reactive oxygen spe-
cies or other oxidizing agents disturb the normal redox 
equilibrium of cells by inducing the formation of disul-
fide bonds between cysteine residues of proteins [10]. 
Additionally, Liu et al. provided evidence suggesting that 
actin cytoskeletal vulnerability to disulfide stress pro-
duces disulfidptosis and proposed a therapeutic approach 
targeting disulfidptosis for the treatment of cancer [6]. 
Therefore, regulating cancer cells’ susceptibility to disul-
fidptosis could be a promising research avenue in cancer 
treatment. However, it remains unclear whether disul-
fidptosis plays a crucial role in glioma, and its relation-
ship with patient survival has not been explored.

Long non-coding RNAs (lncRNAs) have been ascribed 
with regulatory functions on genome activity, pro-
tein modification, and posttranscriptional regulation 
[11–13]. LncRNAs are increasingly being implicated 
in the progression and development of gliomas [14]. 
Moreover, the identification of lncRNA signatures has 
emerged as a promising tool for prognostic assessment 
in glioma patients, offering a new clinical framework 
for precise and personalized treatment of glioma [15]. 
For instance, Chen et al. have successfully established a 

cuproptosis-related lncRNAs signature to predict prog-
nosis in glioma [9]. Nevertheless, the mechanisms that 
underlie disulfidptosis-related long noncoding RNAs 
(DRLs) in glioma patients are still unknown.

In this study, we intend to establish a DRLs signature in 
glioma patients, predict overall survival (OS), and inves-
tigate the immune landscape and potential drugs through 
bioinformatic analyses. Subsequently, we employed a 
multi-faceted evaluative framework that included the 
concordance index, calibration curves, and receiver 
operating characteristic (ROC) curves, calculating their 
respective areas under the curve (AUC) to rigorously 
assess the model’s discriminative capacity and predictive 
accuracy. Overall, our study will offer fresh perspectives 
of DRLs in glioma, which may provide novel insights 
into the diagnosis, treatment, and prognosis of glioma 
patients in the future.

Methods
Collecting related data and detecting prognostic DRLs
The study cohort consisted of transcriptomic data 
acquired from glioma patients, encompassing both low-
grade glioma and glioblastoma, obtained from TCGA 
(https://portal.gdc.cancer.gov/). The dataset was last 
accessed on April 12, 2023. Ten disulfidoptosis-related 
genes (DRGs) were identified based on prior publications 
(Table S1) [6, 16], and a network was constructed using 
Cytoscape software to visualize the interactions between 
these DRGs and lncRNAs [17]. To determine the corre-
lation between the expression levels of the 10 DRGs and 
lncRNAs, we performed a Pearson correlation analysis 
(|Pearson correlation coefficient| > 0.4 and p < 0.001). A 
multivariate Cox regression analysis and least absolute 
selection operator were then used to identify prognostic 
lncRNAs associated with overall survival (OS) in glioma 
patients [18].

Development and validation of a prognostic DRLs 
signature
We randomly divided the 701 glioma samples into a 
training and a testing set using R package “caret” [19]. 
The DRLs signature was generated using the training set, 
while the testing set was employed to validate the sig-
natures. To calculate the risk score for each sample, the 
values of [Exp (lncRNA) x coef (lncRNA)] were added 
together, where Exp (lncRNA) represented the expres-
sion level of every selected lncRNA and coef (lncRNA) 
represented its corresponding regression coefficient [20]. 
Based on the risk scores (with the median risk score used 
as a cutoff), all the glioma samples were separated into 
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the low- and high-risk groups. Glioma prognoses were 
evaluated by using K-M curves based on age, gender, 
grade, and risk scores [21].

Nomogram design and evaluation
We devised a nomogram to prognosticate patient’s sur-
vival outcome in terms of OS for 1, 3, and 5-year peri-
ods in the TCGA databases (including the train and test 
cohorts). We accomplished this using the “survival” and 
“regplot” R packages [22]. Additionally, to determine the 
accuracy of prediction at specific time points, we con-
ducted time-dependent ROC curves and calculated their 
corresponding AUC from OS, utilizing the survival ROC 
package [23]. Predictive accuracy of the nomogram mod-
els was assessed using a calibration curve [24].

PCA, GO and KEGG analyses
We then conducted a three-dimensional PCA (principal 
component analysis) to illustrate the spatial arrangement 
of different risk groups according to the gene matrix 
derived from all genes, DRGs, DRLs, and risk model [25]. 
Afterward, we detected genes with differential expression 
(DEGs) (|log2fold-change (FC)| >1 and adjusted p < 0.05). 
Furthermore, the DEGs were analyzed for GO and KEGG 
pathways [26].

Immune landscape assessment
The immune landscape was evaluated by comparing 
immune checkpoint expression among different groups, 
and our results were presented as box plots. To determine 
the immune infiltration status, we calculated the immune 
infiltration profiles and used various algorithms, includ-
ing XCELL, TIMER, QULANTISEQ, MCPCOUNTER, 
EPIC, CIBERSORT-ABS, and CIBERSORT, to identify 
differences in the immune response [27]. Single-sample 
GSEA was used to distinguish immune cells that infil-
trated tumors for two risk groups [28]. Our results were 
further analyzed with ESTIMATE for each sample to 
obtain stromal scores, ESTIMATE scores, and immune 
scores [29].

Analysis of tumor mutational burden (TMB) and IC50 of 
therapeutic drugs
Using the “maftools” package [30], we conducted an 
analysis of the TMB and identified significant differences 
between the high- and low-risk groups. In addition, we 
used the half-maximal inhibitory concentration (IC50) 
to predict the sensitivity of gliomas to some immune-
related drugs using R packages that included “pRRo-
phetic,” “limma,” “ggpubr,” and “ggplot2” with p < 0.0001 
[31]. Spearman’s correlation analysis was also performed 
to evaluate the correlation between each drug and the 
risk score.

Analysis of consensus clusters
We employed consensus clustering analysis to detect 
potential molecular subgroups that could respond to 
immunotherapy, based on the expression of prognostic 
DRLs [32]. The molecular subtypes were identified using 
the cumulative distribution function approach based on 
these prognostic DRLs. Next, we examined whether the 
two clusters had different survival probabilities and pro-
portions of immune cell infiltration.

Assessing the expression levels of 6 DRLs and evaluating 
their potential clinical significance in gliomas
We sought to determine the expression levels of 6 DRLs 
used to establish a prognostic signature in glioma. Fur-
thermore, K-M survival analysis and log-rank compari-
son of groups were performed to assess their prognostic 
significance [33]. As well, we performed ROC curve anal-
ysis using the AUC value to determine the accuracy of 6 
DRLs for glioma.

Tissue samples collection and RT-qPCR
We collected glioma tissue samples and normal brain 
tissues from 12 patients undergoing surgical resection 
between June 2022 and March 2023 at the First Affili-
ated Hospital of Zhengzhou University, Henan, China. 
The samples were immediately frozen in liquid nitrogen 
after tissue resection and mRNA expression level was 
measured using quantitative reverse transcription poly-
merase chain reaction (RT-qPCR). The total RNA of the 
above tissue samples was extracted utilizing the TRIzol 
reagent (Invitrogen), adhering to the manufacturer’s pro-
tocol and our prior study [34]. Subsequently, the data 
were normalized to glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) mRNA expression and quantified 
employing the 2−ΔΔCT method. Table S2 lists the exact 
sequences of the PCR primers.

Statistical analysis
Statistical analyses were performed with R (version 
4.1.3) and GraphPad Prism (8.0.2). The Chi-square test 
is a statistical method used to compare the distribution 
of categorical variables between two or more groups. In 
this case, the test was used to compare the distribution 
of categorical variables between the high- and low-risk 
groups in the study. To examine the relationship between 
immune infiltration levels and risk scores, pearson cor-
relations were used, with a p value of 0.05 considered sta-
tistically significant.

Results
Identifying prognostic DRLs in glioma patients
In this study, we followed a flow diagram as depicted in 
Fig. 1 to identify prognostic DRLs in glioma patients. Our 
initial screening focused on 16,876 lncRNAs obtained 
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from the TCGA glioma database. Subsequently, we iden-
tified 671 DRLs that displayed a significant correlation 
with 10 DRGs. Further, we applied Lasso and multivari-
ate Cox regression analyses to identify differentially-reg-
ulated genes that exhibited prognostic relevance.

Building and validating prognostic DRL signatures
102 DRLs were significantly correlated with overall sur-
vival in the univariate analysis. Out of these, 43 DRLs 
were considered as unfavorable prognostic factors for 
glioma patients (the absolute of hazard ratio HR > 1) (Fig. 
S1A). A detailed illustration of the relationship between 

DRGs and DRLs was presented in the Sankey diagram 
and network (Fig. S1B and Fig. 2A). To avoid overfitting, 
LASSO regression analysis was performed on the DRLs, 
and as a result, six DRLs (LINC00641, AL139232.1, 
AL390755.1, LEF1-AS1, LYRM4-AS1, and AL691432.4) 
were screened through multivariate Cox regression 
analysis to build the OS prognostic signature (Fig.  2B-
C). There was a correlation between these six DRLs and 
DRGs on the heatmap (Fig. 2D).

Fig. 1  Flow chart of the study design
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Distinguishing survival outcomes between high and low-
risk groups
Calculation of risk scores is based on the following for-
mula: Risk scores = - (0.339676419092046 × LINC00641 
expression) - (0.74150602802086 × AL139232.1 expres-
sion) + (0.167235204017436 × AL390755.1 expres-
sion) + (0.347174567353386 × LEF1-AS1 expression) 
+ (0.709687113729932 × LYRM4-AS1 expression) - 
(0.343853790300805 × AL691432.4 expression). The 
Kaplan-Meier curves illustrated those patients belong-
ing to the low-risk group exhibited significantly longer 

overall survival in comparison to those in the high-risk 
group (Fig.  3A-B). A higher risk score also led to a 
higher mortality rate (Fig.  3C-F). Moreover, a heatmap 
analysis revealed higher expression levels of three DRLs 
(AL390755.1, LEF1-AS1, and LYRM4-AS1) in the high-
risk group, while the expression levels of three other 
DRLs (LINC00641, AL139232.1, AL691432.4) were 
reversed between different risk groups (Fig. 3G-H).

Fig. 2  Construction of DRLs prognostic signature. (A). The network between disulfidoptosis-related genes (DRGs) and disulfidoptosis-related lincRNAs 
(DRLs). (B). Cross-validation plot for the penalty term. (C). Diagram for LASSO expression coefficients. (D). Heatmap showing the relationship between 
DRGs and 6 DRLs. Red indicates positive correlation, while blue indicates negative correlation
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Assessing the association between DRLs model and clinical 
characteristics
Using gender, age, grade, and isocitrate dehydrogenase 
(IDH) status as subgroups, we examined the association 

between OS and risk scores. The results revealed that 
individuals with a high-risk profile exhibited unfavorable 
outcomes in specific subpopulations, including gender, 
age, grade, and IDH status (Fig. 4A-H). Furthermore, we 

Fig. 3  The validation of the prognostic signature of DRLs. (A-B). Kaplan-Meier curves for overall survival (OS) in the training set (A) and testing set (B). 
(C-D). Distribution of the DRL-model-based risk score for the training set (C) and testing set (D). (E-F). Patterns of survival time and survival status ranked 
by risk score in the training set (E) and testing set (F). (G-H). Heatmap displaying the expression levels of six lncRNAs for glioma patients in the training 
set (G) and testing set (H)
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evaluated progression-free survival (PFS) for high-risk 
and low-risk individuals in the TCGA cohort. The results 
suggested that patients classified into the low-risk group 
exhibited a more favorable prognosis as opposed to those 
categorized into the high-risk group (Fig. 4I).

Development and assessment of the predictive model
The potential clinical importance of the DRLs model, 
along with age, gender, grade, and risk scores, in rela-
tion to OS was evaluated (Fig. S2A-B). The findings 
suggested that the risk model was capable of accurately 
predicting OS in glioma patients. Moreover, multivari-
ate Cox regression supports the above results (Fig. S2B). 

Subsequently, ROC curve analysis revealed that the risk 
score (0.847) had higher AUC than age (0.809), gen-
der (0.495), and grade (0.696) (Fig.  5A). Besides, fore-
casting the 1-, 3-, and 5-year survival of patients was 
accurate to 0.847, 0.914, and 0.833 (Fig.  5B). Compared 
with other clinical characteristics (such as age, sex, and 
grade), a high risk score provided a better assessment of 
risk (Fig.  5C). Also, the nomogram predicted OS rates 
of 0.991, 0.953, and 0.902 at 1, 3, and 5 years (Fig. 5D). 
Furthermore, a strong correlation was also evidenced 
between the predicted and observed survival rates, as 
indicated by the calibration curves (Fig. 5E).

Fig. 4  Correlation between the prognostic DRLs signature and clinicopathological features. (A-H). Kaplan–Meier curve for overall survival in different 
clinical features such as gender (A, B), age (C, D), tumor grade (E, F) and isocitrate dehydrogenase (IDH) status (G, H). (I). Kaplan–Meier curves for progres-
sion-free survival (PFS) in the high- and low-risk groups
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Investigation of PCA and functional enrichment analyses
Using 3-dimensional PCA, we assessed the discrimina-
tive power of the DRLs risk signature in distinguishing 
between low- and high-risk clusters. We found that all 
genes, DRGs, DRLs, and the 6 DRLs risk signature, with 
a particular emphasis on the latter, exhibited a remark-
able ability to differentiate between the two patient 
groups  (Fig. 6A-D). Additionally, we conducted dif-
ferential gene expression analysis between the two risk 
score groups and employed the resulting genes to con-
duct enrichment analyses. Notably, GO analysis revealed 
significant enrichment in biological processes related 
to extracellular matrix organization, adaptive immune 
response, and leukocyte-mediated immunity  (Fig. 6E). 
Concurrently, the KEGG functional analysis identi-
fied several pathways including ECM-receptor interac-
tion, phagosome, nicotine addiction, leishmaniasis, focal 
adhesion, and Type I diabetes mellitus (Fig. 6F).

Identification of the immune microenvironment’s 
association with the prognostic DRL model
High-risk individuals exhibited a significant increase 
in immune checkpoint expression level, as indicated 
in Fig.  7A. The proportion of immune cells was signifi-
cantly higher among patients with a high-risk signature, 
except for NK cells (Fig.  7B). Further, high-risk groups 
had higher Type I and Type II IFN responses that pro-
mote inflammation (Fig.  7C). Additionally, the two 
groups had distinct immune characteristics, as depicted 
in Fig.  7D-F. Specifically, lower scores were obtained 
for low-risk patients’ ESTIMATE, immune, and stroma 
scores. Furthermore, we employed seven distinct algo-
rithms to assess the correlation coefficient of immune 
cells in the high-risk and low-risk groups, using dot-plots 
to highlight the differences between these two groups. 
The results revealed that several immune cells, including 
B cells, T cell CD4+, T cell CD8+, macrophages, and NK 
cells, exhibited substantial correlations with risk scores. 

Fig. 5  ROC curves and the establishment of a nomogram. (A). The plot showing the AUC values for various risk factors, including risk scores, age, gender, 
and tumor grade. (B). The AUC of the CRL signature for 1-, 3-, and 5-year survival rates in glioma. (C). The plot showing the concordance index of the risk 
factors, which includes risk scores, age, gender, and tumor grade. (D). A nomogram predicting the 1-, 3- and 5-year survival rates for glioma using inde-
pendent prognostic factors (grade, age, and risk score). (E) A calibration curves indicating the concordance between the prediction by the nomogram 
and actual survival rates
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A heatmap was employed to display the variations in 
immune function for different risk cohorts (Fig. S3B).

TMB analysis and evaluation of therapeutic drug sensitivity 
in glioma
We conducted a thorough examination of TMB-spe-
cific genes in both high-risk and low-risk groups. Our 
results suggested that low-risk individuals were more 
likely to have mutations in IDH1 and TP53, while high-
risk individuals had mutations in PTEN, TTN, and 
EGFR (Fig.  8A and B). Patients were categorized into 
high- and low-TMB groups based on their TMB scores. 
Notably, there was a marked increase in OS for individu-
als with low TMB as compared to those with high TMB 
(Fig. 8C). We also evaluated the combined effects of TMB 
and DRL-scores on prognostic stratification, with high-
risk patients having a poor prognosis regardless of their 
TMB status. Notably, the worst survivors were high-risk 
patients with high TMB, while the best survivors were 
low-risk patients with low TMB (Fig. 8D). The high-risk 
group scored higher on TMB than the low-risk group 

(Fig.  8E). Then, we evaluated the correlation between 
predictive characteristics and tumor immune-related 
drugs. The results revealed that bexarotene, embelin, 
and shikonin had lower IC50s in the high-risk group 
(Fig. 8F-H and S3C-E), which can help to detect individu-
alized treatment regimens suitable for glioma patients.

Consensus cluster analysis based on prognostic DRLs
Next, we reclassified the 701 glioma specimens based on 
the DRL signature to investigate the immune landscape of 
different tumor subtypes. Using consensus cluster analy-
sis, we segregated patients into two clusters (Fig. 9A-B). 
The patients in cluster 1 exhibited longer overall sur-
vival than those in cluster 2 (Fig. 9C). Principal compo-
nent analysis effectively distinguished between the risk 
groups and clusters, as shown in Fig. 9D-E. The t-distrib-
uted stochastic neighbor embedding analysis confirmed 
the statistical equivalence between the two groups, as 
shown in Fig.  9F-G. We employed diverse algorithms 
to compute the proportion of immune cells across the 
two clusters and represented the dissimilarities between 

Fig. 6  PCA and functional enrichment analysis. (A-D). The 3D PCA showing the distribution differences between the high- and low-risk groups accord-
ing to the entire gene expression (A), DRGs (B), DRLs (C), and the risk model genes (D). (E). GO functional enrichment analysis with a histogram plot (BP, 
biological process; CC, cellular component; MF, molecular function). (F) KEGG pathway enrichment analysis with a histogram plot
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Fig. 7  immune microenvironment of DRLs prognostic model. (A). The box plot exhibiting the expression level of immune checkpoint genes between 
the high- and low-risk groups. (B). The single-sample gene set enrichment analysis (ssGSEA) displaying the extent of immune cell infiltrations in the high- 
and low-risk groups. (C). The ssGSEA analysis indicating the functions of immune cell subpopulations between the high- and low-risk groups. (D-F). The 
ESTIMATE score, immune score, and stromal score in the high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 8  TMB analyses and drug sensitivity between high- and low-risk groups. (A-B) Waterfall plots displaying the mutation rates of the top 15 mutated 
genes of the low- (A) and high-risk groups (B). (C). The K-M curves of glioma patients in the TMB level-high and -low groups. (D). The K-M curves of the 
four subgroups based on the risk score and TMB levels. (E). The difference in TMB between high- and low-risk groups. (F-H). The box plot exhibiting drug 
sensitivity of bexarotene, embelin and shilkonin between high- and low-risk groups
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the two groups through heat maps, as shown in Fig. 9H. 
Accordingly, we found that cluster 2 had an abundance 
of immune checkpoint genes (Fig. S4A). It was found that 
cluster 2 had significantly higher scores for stroma, esti-
mate, and immune function compared to cluster 1 (Fig. 
S4B-D), suggesting that the cluster 2 was associated with 
a stronger immune response and higher stromal content 
in the tumor microenvironment.

Determining the potential clinical significance of DRLs
To identify a prognostic biomarker associated with 
disulfidptosis related lincRNAs for glioma, we first 
observed the expression levels of six DRLs (LINC00641, 

AL139232.1, AL390755.1, LEF1-AS1, LYRM4-AS1, 
and AL691432.4) in glioma from the TCGA dataset. 
In glioma tissues, we found low levels of expression for 
LINC00641, AL139232.1, and AL691432.4, while high 
levels of expression were observed for AL390755.1, LEF1-
AS1, and LYRM4-AS1 (Fig. S5A-F). Furthermore, by 
using RT-qPCR, we explored the expression of these six 
DRLs in glioma tissues and normal brain tissue, and our 
results matched those reported by the TCGA (Fig. 10A-
F). High expression levels of LINC00641, AL139232.1, 
and AL691432.4 were significantly associated with longer 
overall survival (Fig. S5G, H, L), whereas low expression 
levels of AL390755.1, LEF1-AS1, and LYRM4-AS1 were 

Fig. 9  Consensus clustering analysis of DRLs and immune correlation analysis. (A). The consensus clustering matrix for k = 2. (B). A Sankey diagram show-
ing the interaction between clusters and risk. (C). The Kaplan-Meier curves for overall survival of clusters 1 and 2. (D, E). Dimensional plots of PCA between 
the risk groups and clusters. (F, G). Dimensional plots of t-SNE between the risk groups and clusters. (H). The heatmap displaying the proportion of im-
mune cells in the two clusters obtained by different algorithms
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also significantly associated with longer overall survival 
(Fig. S5I, J, K). Furthermore, we generated AUC values 
for the DRLs and observed that all DRLs had excellent 
discriminatory power for distinguishing patients with 
glioma (Fig. S5M-R).

Discussion
Gliomas are neoplasms originating from the glial cells of 
the brain and represent a frequent subtype of primary 
brain tumors, bearing a high mortality rate and unfavor-
able prognoses [35]. Despite considerable progress in the 
treatment of glioma, its substantial inter- and intra-tumor 
heterogeneity poses significant challenges in identifying 
optimal therapeutic targets and treatment strategies [36]. 
Therefore, identifying innovative biomarkers for prog-
nostication and prediction of therapeutic response holds 
paramount clinical significance for individuals afflicted 
with glioma.

An escalating number of novel modalities of non-apop-
totic regulated deaths are being unearthed, and delving 
into more intricate mechanisms may lead to the revela-
tion of novel therapeutic targets for cancer [37]. Disul-
fidptosis, an innovative type of programmed cell death, 

is presently undergoing intensive scrutiny in the field of 
tumorigenesis and therapies [6]. Various studies indicate 
that biomarkers related to disulfidptosis have substantial 
predictive power for cancer prognosis and treatment effi-
cacy [6, 16]. Given the burgeoning evidence that lncRNA 
exerts a pivotal regulatory role in glioma growth and pro-
gression [38], DRLs should be assessed for their prognos-
tic significance in glioma patients.

In the current investigation, we initially identified 
102 DRLs with prognostic significance from the TCGA 
dataset. Out of these, we selected 6 DRLs (LINC00641, 
AL139232.1, AL390775.1, LEF1-AS1, LYRM4-AS1, and 
AL691432.4) to create the prognostic signature of DRLs. 
In both training and test sets, DRLs were able to forecast 
glioma patient survival outcomes with high accuracy. 
Subsequently, we discovered that OS rates were higher 
in the low-risk group. The time-dependent ROC curve 
analyses and calibration plots for the 1-year, 3-year, and 
5-year survival projections substantiated the risk score’s 
superior predictive efficacy. Notably, the time-dependent 
concordance index analysis yielded values exceeding 
0.70, thereby affirming the risk score’s robust prognostic 
capabilities. Intriguingly, both the AUC and concordance 

Fig. 10  Validation of the expression levels of 6 DRLs in 12 non-tumor brain tissues and 12 glioma tissues. (A-F). The expression level of 6 DRLs (LINC00641, 
AL139232.1, AL390755.1, LEF1-AS1, LYRM4-AS1, and AL691432.4) in 12 non-tumor brain tissues and 12 glioma tissues. **p < 0.01, ***p < 0.001
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index results indicated that gender did not emerge as a 
statistically significant prognostic factor for glioma, per-
forming even less effectively than a random probability 
benchmark of 0.5. Upon rigorous scrutiny, we speculated 
that an imbalanced gender distribution within the pub-
licly accessible datasets and an insufficient overall sample 
size may be the underlying reasons for this. As well as 
comparing the stromal, ESTIMATE scores, and the abun-
dance of immune cells within each risk subgroup, we 
evaluated the immune landscape differences. Ultimately, 
we validated the expression and diagnostic potential of 
the 6 DRLs in glioma by using both the TCGA database 
and our own clinical samples data.

To the best of our knowledge, a prognostic signature 
based on DRLs is not available yet. Here, we developed 
a prognostic signature with DRL consisting of six disul-
fidptosis-related lncRNAs (LINC00641, AL139232.1, 
AL390775.1, LEF1-AS1, LYRM4-AS1, and AL691432.4), 
some of which have been associated with tumor pro-
gression. For instance, LINC00641, located on human 
chromosome 14q11.2, has been demonstrated to have 
unique functional features and clinical significance in 
various cancers, including cervical cancer, renal cell car-
cinoma, and colorectal carcinoma [39–41]. Low levels 
of LINC00641 expression were observed in glioma cell 
lines, consistent with our findings, and it intervened in 
glioma growth by the miR-4262/NRGN pathway [42]. 
As noted previously, LEF1-AS1 expression was linked 
to poor prognosis of gliomas patients [9, 43]. Wang et 
al. showed that the LYRM4-AS1 protein is capable of 
affecting the growth of IL-1β-induced chondrocytes 
[44]. Those results are in line with those of our data min-
ing. However, the roles and functions of AL139232.1, 
AL390775.1, and AL691432.4 have not been previously 
reported. In our study, we investigated disulfidptosis-
related lncRNAs’ prognostic value in gliomas. Further 
laboratory testing validations at the molecular, cellu-
lar, and organismal levels are needed to investigate their 
potential effects on the disulfidptosis process.

Given the limited therapeutic options available to 
glioma patients, it is imperative to identify new targets 
for therapeutic intervention by comprehensively under-
standing the progression of gliomas in the brain tumor 
microenvironment. It is the unique immune mechanism 
of gliomas that determines a tumor’s microenviron-
ment [45]. According to our findings, different risk sub-
groups exhibited DEGs that were related to the multiple 
immune-related biological processes, including leuko-
cyte-mediated immunity, positive regulation of leukocyte 
activation, and B cell-mediated immunity. Furthermore, 
our study also found that high-risk group had elevated 
expression of immune checkpoint-related genes, such as 
CD44 and CD276. There is a poor prognosis with CD44 
overexpression in gliomas, particularly those at WHO 

stage II and III [46]. CD44 has also been identified as a 
novel biomarker for M2 tumor-associated macrophages 
in glioma patients with a poor prognosis [47]. CD276 
(B7-H3), a member of the B7 family of cell surface recep-
tors, has been found to be an adverse prognostic factor 
for the patients with glioma [48]. Additionally, KEGG 
analyses revealed that these DRGs were enriched in sev-
eral pathways including ECM-receptor interaction. It has 
been found that ECM receptors seem to be necessary for 
glioma cell migration, which can drive glioma cell migra-
tion and invasion [49]. Hence, targeting glioma-specific 
disulfidptosis pathways, including some DRLs, in combi-
nation with immunotherapy may offer a promising thera-
peutic approach for glioma patients.

Cumulative evidence suggests that the TMB is predi-
cated on the number of somatic mutations and is asso-
ciated with neoantigens that trigger antitumor immunity 
[50]. Our findings indicate that the low-risk group exhib-
ited a higher mutation frequency than the high-risk 
group among the top 15 genes with the highest muta-
tion rates. IDH1, TP53, ATRX, and CIC exhibited higher 
mutation frequencies in the low-risk group. ATRX dele-
tions/mutations have been found to occur frequently in 
conjunction with IDH1 mutations and TP53 mutations 
[51]. It has been demonstrated that ATRX deletion leads 
to genetically unstable tumors that are more sensitive to 
double-stranded DNA damaging agents, thereby enhanc-
ing overall survival [52]. CIC mutations are rare in astro-
cytomas but have a higher likelihood of occurring in 
oligodendrogliomas and are linked to a lower malignant 
degree, according to radiomics and radiogenomics anal-
ysis conducted by Zhang’s laboratory [53]. These pub-
lished findings are in agreement with our observations of 
higher survival rates in low-TMB groups.

Gathering literature underscores the significance of 
assessing drug sensitivity for therapeutic agents in deter-
mining tumor treatment efficacy [34]. Bexarotene treat-
ment in C6 glioma cells impedes NF-κB activation by 
amplifying PPARγ expression, leading to the regulation 
of apoptosis, DNA damage, and ROS production, among 
other processes, consequently exerting anti-proliferative 
and cytotoxic effects [54]. Embelin has been reported 
to trigger glioma cell apoptosis through the mitochon-
drial pathway and inhibition of NF-κB activity [55, 56]. 
Shikonin, one of the primary efficacious components of 
Lithospermum erythrorhizon, causes apoptosis through 
several pathways [57, 58]. Shikonin also prompts necrosis 
by increasing the expression of RIP1 and RIP3 and pro-
moting the formation of the RIP1/RIP3 necrosome [59]. 
Our research indicates that these three drugs exhibit 
significantly lower IC50 values in patients with high-risk 
glioma. Nonetheless, further studies on the disulfidptosis 
mechanism of these drugs warrant more scrutiny.
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Undoubtedly, this study is not without limitations. 
Firstly, the prognostic signature was constructed based 
on publicly available datasets and, although validated 
using PCR expression assays, additional prospective 
experimental studies are necessary to validate its predic-
tive capability. Furthermore, further studies with larger 
samples and different cohorts are required to enhance 
statistical power.

Conclusions
In summary, our research has implications for predict-
ing glioma patients’ prognosis as well as for clarifying 
the mechanism of lncRNA in disulfidiptosis of glioma. 
Meanwhile, our study may offer some useful insights for 
patients with glioma seeking novel immunotherapy and 
targeted therapy.
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