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Abstract 

Ovarian cancer (OV) is the most lethal gynecological malignancy worldwide, with high recurrence rates. Anoikis, 
a newly-acknowledged form of programmed cell death, plays an essential role in cancer progression, though stud-
ies focused on prognostic patterns of anoikis in OV are still lacking. We filtered 32 potential anoikis-related genes 
(ARGs) among the 6406 differentially expressed genes (DEGs) between the 180 normal controls and 376 TCGA-OV 
samples. Through the LASSO-Cox analysis, a 2-gene prognostic signature, namely AKT2, and DAPK1, was finally 
distinguished. We then demonstrated the promising prognostic value of the signature through the K-M survival 
analysis and time-dependent ROC curves (p-value < 0.05). Moreover, based on the signature and clinical features, we 
constructed and validated a nomogram model for 1-year, 3-year, and 5-year overall survival, with reliable prognostic 
values in both TCGA-OV training cohort (p-value < 0.001) and ICGC-OV validation cohort (p-value = 0.030). We evalu-
ated the tumor immune landscape through the CIBERSORT algorithm, which indicated the upregulation of resting 
Myeloid Dendritic Cells (DCs), memory B cells, and naïve B cells and high expression of key immune checkpoint 
molecules (CD274 and PDCD1LG2) in the high-risk group. Interestingly, the high-risk group exhibited better sensitiv-
ity toward immunotherapy and less sensitivity toward chemotherapies, including Cisplatin and Bleomycin. Especially, 
based on the IHC of tissue microarrays among 125 OV patients at our institution, we reported that aberrant upregula-
tion of DAPK1 was related to poor prognosis. Conclusively, the anoikis-related signature was a promising tool to evalu-
ate prognosis and predict therapy responses, thus assisting decision-making in the realm of OV precision medicine.
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Introduction
Ovarian cancer (OV), one of the most lethal gynecologi-
cal malignancies, largely threatens the safety and health 
of women worldwide [1]. In the United States, there 
were 19,710 new cases and 13,270 deaths related to OV, 
which was estimated for 2023 [2]. Due to the lack of spe-
cific symptoms, approximately 70% of OV patients were 
diagnosed at advanced stages, with invasion of periph-
eral organs and metastasis, which lead to a poor 5-year 
overall survival (OS) rate of only 30% [3]. After the stand-
ard treatment of surgery combined with platinum-based 
chemotherapy, almost 70% of OV patients suffer cancer 
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recurrence [4]. Accordingly, further studies are urgently 
needed to identify reliable prognostic biomarkers for per-
sonalized treatment.

Anoikis, a programmed cell death induced by cell 
detachment from the extracellular matrix (ECM), is one 
of the hallmarks of tumor metastatic skills, which attracts 
great attention from the scientific community [5]. Grow-
ing evidence demonstrated that anoikis could prevent 
adherent-independent cell growth, thus avoiding tumor 
implantation into ectopic sites where the ECM proteins 
are different [6]. Accordingly, failure to execute anoikis 
could enable adherent cells to survive under suspension 
conditions and proliferate at distant organs [7]. Anoikis 
is related to several mechanisms in cancer cells, includ-
ing change in integrins’ repertoire, upregulation of key 
enzymes involved in growth factor receptor signaling, 
and activation of a plethora of inside-out pro-survival 
signals [8]. The tumor microenvironment could also 
regulate the anoikis process of tumor cells by enhancing 
oxidative stress, modulating matrix stiffness, producing 
pro-survival soluble factors, and leading to metabolic 
deregulations, etc. [8, 9]. Several studies reported that 
anoikis played an essential role in tumor invasion and 
metastasis among malignancies including prostate cancer 
[10], lung cancer [11], pancreatic cancer [12], and breast 
cancer etc. [13]. However, few researchers have focused 
on the prognostic value of anoikis signature for OV 
patients and the underlying mechanism is still unclear.

Therefore, in our study, we identified and validated an 
anoikis-related signature (including AKT2 and DAPK1) 
to evaluate prognosis, predict immunotherapy/chemo-
therapy response, and guide clinical treatment for OV 
patients. We further validated the signature among OV 
patients through the IHC of tissue microarrays, PCR, 
and Western Blot analysis. We aimed to construct an 
anoikis-related signature as a candidate tool to evaluate 
prognosis, facilitate clinical management, and constitute 
promising targets for anti-metastatic pharmacological 
therapy for OV patients.

Methods
Publicly available databases and preprocessing
The flowchart of the research was listed in Fig.  1. We 
downloaded both RNA-sequencing (RNA-seq) informa-
tion and corresponding clinical characteristics from the 
Cancer Genome Atlas dataset (TCGA; https://​portal.​
gdc.​com) as a training cohort and from the International 
Cancer Genome Consortium dataset (ICGC; https://​
dcc.​icgc.​org) as a validation cohort. Transcriptome data 
of normal ovarian tissues were also retrieved from the 
GTEx dataset (https://​gtexp​ortal.​org) as controls. To pre-
process the data, we normalized raw count data through 
the “limma” package (R software, Version 4.2.0) and 

converted probes into corresponding gene symbols refer 
to the platform annotation file. Moreover, we identified 
the differentially-expressed genes (DEGs) between OV 
tissues and normal controls through the cut-off criteria of 
|Log2 (fold change)|> 1 the adjusted p-value < 0.05.

Identification of differently expressed anoikis‑related 
genes and somatic mutation analysis
Based on the GeneCards website (https://​www.​genec​
ards.​org), we obtained anoikis-related genes (ARGs, Rel-
evance Score ≥ 2) by searching the term “anoikis”. Then, 
we selected ARGs, which were differentially expressed 
between normal controls and OV tissues according to the 
Venn diagram. To confirm underlying functions related 
to the filtered differentially expressed anoikis-related 
genes (DE-ARGs), we conducted the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses via the "ClusterProfiler" 
package (R software, Version 4.2.0). Stepwise, in order 
to provide hints for protein interactions network of DE-
ARGs, we conducted the protein–protein interaction 
(PPI) analysis through the Metascape (https://​metas​cape.​
org/), a database that could provide screens for a PPI net-
work [14].

To evaluate the relationships between anoikis subtypes 
and clinicopathological features (including age, patholog-
ical grade, and clinical stage), we conducted the Sankey 
diagram via the “ggalluvial” package (R software, Version 
4.2.0). We obtained the data of somatic mutations from 
the Genomic Data Commons and visualize the somatic 
landscape of OV cohort via the Oncoplot using the 
“maftools” package (R software, Version 4.2.0).

Construction and validation of the anoikis‑related 
signature
We conducted the Least Absolute Shrinkage and Selec-
tion Operator (LASSO)—COX algorithm with tenfold 
cross-validation, in order to identify prognostic ARGs 
for the signature construction, via the "glmnet" package 
(R software, Version 4.2.0). To estimate the prognosis 
value of the filtered DE-ARGs, we applied the Log-rank 
test and Kaplan–Meier (K-M) curves analysis. We also 
performed the Receiver Operating Characteristic curve 
(ROC) analysis for 1-year, 3-year, and 5-year OS rates, 
via the "timeROC" package (R software, Version 4.2.0). 
Moreover, according to the anoikis-related signature and 
corresponding clinical features, we conducted both uni-
variate and multivariate Cox Regression algorithms to 
select independent risk factors of OV prognosis. Based 
on the filtered features, we constructed a prognostic 
nomogram for 1-year, 3-year, and 5-year OS rates via the 
“rms” package (R software, Version 4.2.0).

https://portal.gdc.com
https://portal.gdc.com
https://dcc.icgc.org
https://dcc.icgc.org
https://gtexportal.org
https://www.genecards.org
https://www.genecards.org
https://metascape.org/
https://metascape.org/
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Single‑cell analysis
According to the Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/), we downloaded 
the raw data of the single-cell transcriptome profiling 
from Qian and colleagues [16], which contained 5 OV 
patients and 2 controls. We utilized the “Seurat” pack-
age (R software, Version 4.2.0) to filter out cells with 
poor quality. We then conducted standard data pre-
processing, including calculating the percentage of gene 
numbers, evaluating cell counts, and analyzing mito-
chondria sequencing count. Next, we disregarded genes 
with less than 3 detected cells and excluded those cells 
with less than 200 detected genes. The reading depth 
was 10 × genomics, while the proportion of mitochon-
dria was restricted to less than 5%. With logFC = 0.5 and 
p-value = 0.05 as the cutoff criteria, we utilized the t-SNE 

algorithm to perform cluster classification analysis and 
screened marker genes between clusters via the “Seu-
rat” and “SingleR” packages (R software, Version 4.2.0). 
Afterward, we visualized the pseudo-time analysis via the 
“monocle” package (R software, Version 4.2.0). The sin-
gle-cell analysis was conducted through the TIGER web-
site (http://​tiger.​cance​romics.​org/).

Evaluation of immune landscape and drug sensitivity
To obtain a brief view of the tumor immune landscape, 
we verified the abundance percentage of the 22 typical 
immune cells infiltrated in the tumor, based on the CIB-
ERSORT algorithm [12]. Moreover, to predict patient 
response towards immunotherapy, we evaluated gene 
expression distribution for 8 typical immune check-
points, including CTLA4, CD274, LAG3, HAVCR2, 

Fig. 1  The flowchart of the research

https://www.ncbi.nlm.nih.gov/
http://tiger.canceromics.org/
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SIGLEC15, PDCD1, PDCD1LG2, and TIGIT, between 
the two risk groups classified by the anoikis-related sig-
nature through the Pearson’s test. Based on the TIDE 
database (http://​tide.​dfci.​harva​rd.​edu), we evaluated 
the potential response of OV patients toward Immune 
Checkpoint Blockade (ICB) therapies. Additionally, based 
on the PRJEB23709 database [3], a tumor cohort treated 
with anti-CTLA-4 and anti-PD-1 therapies, we evalu-
ated the prediction value of the anoikis-related signature 
among tumor patients treated with immunotherapies.

Moreover, we downloaded drug sensitivity data and 
genomic markers of drug response from the Genom-
ics of Drug Sensitivity in Cancer datasets (GDSC, 
https://​www.​cance​rrxge​ne.​org), which is one of the 
largest pharmacogenomics datasets. Stepwise, we pre-
dicted the half-maximal inhibitory concentration values 
(IC50) of individuals through the Ridge Regression via 
the "pRRophetic" package (R software, Version 4.2.0), in 
order to evaluate OV patient response towards typical 
chemotherapies.

Immunohistochemistry evaluation
Firstly, tissue samples were de-waxed, followed by the 
hydration and wash procedure. After microwave antigen 
retrieval, the sections were then treated with 3% H2O2 
to block endogenous peroxidase activity. For the immu-
nohistochemistry (IHC) analysis, we sequentially incu-
bated the slides overnight with Anti- DAPK1 antibody 
(ABclonal, A5741, 1:50) and Mouse Anti-Rabbit IgG 
secondary antibody (ABclonal, AS061, 1:100). Stepwise, 
we counter-stained the signals by diaminobenzidine and 
hematoxylin. Two experienced pathologists scored the 
signal percentage and intensity of the slides, without 
any information about patients. They graded the stain-
ing intensity with a four-tier scale (0 = absent; 1 = weak; 
2 = moderate; and 3 = strong). They graded the propor-
tion of labeled tumor cells with a four-tier scale: 0 to 5% 
is 0 points, 6% to 25% is 1 point, 26% to 50% is 2 points, 
51% to 75% is 3 points, and > 75% is 4 points. Immunore-
active score (IRS) was then determined based on the pro-
portion of labeled tumor cells and the intensity of nuclear 
staining: IRS-Score = staining intensity * proportion of 
labeled tumor cells. A higher IRS-score (maximum score, 
12) was defined as a higher expression [15].

RT‑PCR analysis
According to the manufacturer’s instructions, we 
extracted the total RNA samples using the Trizol Reagent 
(Sangon, B610409) and reverse transcribed RNA into 
cDNA using the RevertAid 1st Strand cDNA Synthesis 
Kit (ThermoFisher Scientific, K1622). Subsequently, the 
real-time quantitative reverse transcription-polymer-
ase chain reaction (RT-PCR) analysis was conducted 

through the SYBR Green Mix (ThermoFisher Scientific, 
A25742). All the RT-PCR experiments were repeated at 
least three times. The primer sequences were as follows: 
GAPDH, Forward: 5′- CTG​GGC​TAC​ACT​GAG​CAC​C 
-3′ and Reverse: 5′- AAG​TGG​TCG​TTG​AGG​GCA​ATG 
-3′; DAPK1, Forward: 5′- ACG​TGG​ATG​ATT​ACT​ACG​
ACACC -3′ and Reverse: 5′- TGC​TTT​TCT​CAC​GGC​
ATT​TCT -3′; AKT2, Forward: 5′- ACC​ACA​GTC​ATC​
GAG​AGG​ACC -3′ and Reverse: 5′- GGA​GCC​ACA​CTT​
GTA​GTC​CA -3′ [16, 17]. The comparative expression 
was calculated by the 2-ΔΔCt method, while GAPDH 
was set as the internal control primer.

Western blot analysis
Total protein of samples was extracted by the ice-cold 
radioimmunoprecipitation lysis buffer (RIPA, Boster, 
AR0102), which contained protease inhibitor cocktail 
(Merk, P8340,1:100). We quantified the proteins through 
the BCA Protein Assay Kit (WSHT, EZPQ01). Subse-
quently, we separated the protein samples through the 
SDS-PAGE gels (Servicebio, G2045) and transferred 
them into the PVDF membranes (ABclonal, RM00018). 
Then, we blocked the membranes in 5% Bovine serum 
albumin (Boster, AR0004) and incubated them with 
primary antibodies: Anti-GAPDH (ABclonal, AC033, 
1:1000),  Anti-AKT2  antibody (ABclonal, A24009, 
1:1000), and Anti-DAPK1 antibody (ABclonal, A5741, 
1:1000). The membranes were then incubated by sec-
ondary antibodies: Mouse Anti-Rabbit IgG (ABclonal, 
AS061, 1:1000) and Goat Anti-Mouse IgG (Proteintech, 
SA00001, 1:1000), followed by enhanced chemilumines-
cence through the High Sensitivity ECL Kit (Beyotime, 
P0018S) to display bands.

Statistical analysis
We analyzed differences in continuous and categorical 
variables between groups through the T-test and Chi-
square test. Stepwise, we determined prognostic factors 
using both univariate and multivariate Cox’s Hazards 
Regression methods. Survival curves were graphed using 
the Kaplan–Meier methods and compared using the Log-
rank test. We applied the Receiver operating character-
istics (ROC) curves and evaluated the prediction value 
of indexes through the area under the curve (AUC). All 
the bioinformatic statistical analyses were carried out 
through the R software (Version 4.2.0). For all applied 
tests, p-value < 0.05 was defined as statistically significant.

Results
Identification of anoikis‑related differentially expressed 
genes in OV
Firstly, both transcriptome data and corresponding clini-
cal features of OV patients (n = 376) were obtained from 

http://tide.dfci.harvard.edu
https://www.cancerrxgene.org


Page 5 of 19Yang et al. Cancer Cell International           (2024) 24:53 	

the TCGA database. As controls, we downloaded the 
transcriptome data of normal tissues (n = 180) from the 
GTEx database. In Fig.  2A, we graphed the heatmap, 
which could give us a brief view of gene expression pro-
file among normal tissues and OV tissues. Stepwise, in 
Fig. 2B, we graphed the volcano diagram, which showed 
the differentially-expressed genes (DEGs) between OV 
tissues and controls. Based on Fig. 2A and B, we identi-
fied 6406 DEGs, among which 2333 genes were up-reg-
ulated, while 4073 genes were down-regulated in OV 
tissues, compared with normal controls. Based on the 
Genecards dataset, we obtained 95 ARGs (Relevance 
Score ≥ 2). Stepwise, we filtered 32 ARGs, which were dif-
ferentially expressed between normal controls and OV 
tissues according to the Venn diagram (Fig. 2C). Then, we 
carried out GO and KEGG pathway enrichment analysis 
of the 32 potential DE-ARGs via the Metascape website 
(https://​metas​cape.​org) [19]. The top 20 most significant 
pathways were listed, which were mainly enriched in 

pathways in cancer, regulation of anoikis, and focal adhe-
sion, etc. (Fig. 2D). In order to provide hints for protein 
interactions network of 32 filtered DE-ARGs, in Fig. 2E, 
we conducted the protein–protein interaction (PPI) anal-
ysis through Metascape (https://​metas​cape.​org/), a data-
base that could provide screens for a PPI network. The 
analysis revealed that these 32 genes might interact with 
each other, especially the hub genes (in red) including 
EGFR, PIK3CA, and PIK3R1, etc. (Fig. 2E, right).

Establishment and estimation of the prognostic signature 
based on the anoikis‑related genes
Through the LASSO analysis, we selected 3 potential 
prognostic genes (including AKT2, CDCP1, and DAPK1) 
from the 32 DE-ARGs (Fig. 3A, B). As shown in the K-M 
survival curves (Fig. 3C), OV patients with high expres-
sion of AKT2, CDCP1, and DAPK1 suffered worse OS. 
The expression distributions of the 3 prognostic ARGs 
in OV tissues and normal controls were presented in 

Fig. 2  Characterization of differentially expressed anoikis-related genes (ARGs) in ovarian cancer (OV). A The heatmap of gene expression 
among normal tissues and OV tissues. The top 50 up-regulated and top 50 down-regulated genes were identified. B The volcano diagram showed 
the differentially-expressed genes (DEGs) between OV tissues and controls, among which the up-regulated and down-regulated genes were 
highlighted in red and blue, respectively. C The Venn diagram of the 32 selected DE-ARGs. D The top 20 Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) pathway enrichment analysis of 32 DE-ARGs. The size of the circles indicates the gene ratio, while the color 
represents p-value. E The protein–protein interaction (PPI) network diagram of the 32 DE-ARGs

https://metascape.org
https://metascape.org/
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Fig.  3D. To enhance model explicability, we conducted 
both univariate and multivariate Cox Regression anal-
ysis to distinguish prognostic genes for the anoikis-
related signature, namely AKT2, and DAPK1 (Fig.  3E). 
Ultimately, we constructed an anoikis-related 2-gene 
prognostic signature as follows: Risk score = (0.0932) * 

AKT2 + (0.0121) * DAPK1. The Sankey diagram indicated 
the association between the anoikis-related subtypes and 
clinical features, including age, FIGO stage, grade, and 
survival status (Fig. 3F).

Fig. 3  Establishment of ovarian cancer (OV) prognostic signature based on the anoikis-related genes (ARGs). A, B The λ selection diagram of LASSO 
parameter selection with tenfold cross-validation. C The Kaplan–Meier (K-M) survival curves of the optimal prognostic ARGs, including AKT2, CDCP1, 
and DAPK1. D The expression distribution of the 3 potential prognostic ARGs in OV tissues and normal controls. E The forest plot represented 
the prognostic ability of the 3 optimal prognostic ARGs, evaluated through the LASSO-Cox analysis. F, C The Sankey diagram for the anoikis-related 
subtypes and clinical features, including age, FIGO stage, grade, and survival status
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Based on the above formula, we calculated the Risk 
score of every OV patient, in the TCGA-OV train-
ing cohort (n = 374) and ICGC-OV validation cohort 
(n = 111). Next, we divided OV patients into low-risk and 
high-risk groups, referring to the median as the cut-off 
value. In Fig. 3A and B (top and middle), we showed the 
distribution profiles of Risk scores in both training cohort 
and validation cohorts, referring to corresponding sur-
vival time and status. The results also demonstrated that 
AKT2 and DAPK1 were highly expressed in the high-risk 
group (Fig. 4A and B, bottom). Through the K-M curves, 

we found that patients in the high-risk group suffered 
worse OS in both the training cohort (p-value = 0.0226) 
and validation cohort (p-value = 0.0009) (Fig. 4C and D). 
The time-dependent ROC analysis indicated that the 
anoikis-related 2-gene signature had promising prognos-
tic values for 1-year, 3-year, and 5-year OS prediction in 
both cohorts (Fig. 4E and F).

Fig. 4  Validation of the anoikis-related prognostic signature. The distribution and scatter diagrams (top) represented the Risk score of each OV 
patient, referring to corresponding survival time (days), and survival status, in the TCGA-OV training cohort (A) and ICGC-OV validation cohort 
(B). The heatmaps (bottom) showed gene expression of the 2-gene signature (AKT2 and DAPK1) between low-risk and high-risk groups. The 
overall survival (OS) Kaplan–Meier (K-M) curves for patients in the TCGA-OV (C) and ICGC-OV cohort (D), which were classified into the low-risk 
and high-risk groups based on the anoikis-related prognostic signature. The ROC analysis of the anoikis-related prognostic signature 
among the TCGA-OV training cohort (E) and ICGC-OV validation cohort (F)
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Fig. 5  The single-cell analysis and somatic alteration landscape of the anoikis-related signature. A The UMAP diagram showed high-quality 
cells from a 10 × Genomics dataset from Qian and colleagues [18]. Ten typical cell types were defined by specific markers. Each dot represented 
an individual cell colored as annotated. B The pseudo time trajectory analysis of 10 cell types from OV tissues. Each color represented specific 
cell types. The pseudo time trajectory analysis of cells in OV tissues with C AKT2 and D DAPK1 expression. E The genomic aberrations landscape 
of the genes in the two anoikis-related clusters of TCGA-OV patients. The frequency of alterations in the top 20 genes was shown
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Single‑cell analysis and somatic alteration landscape 
of the anoikis‑related signature
Based on the single-cell dataset from Qian and colleagues 
[18], which contained 5 OV patients and 2 controls, we 
evaluated 10 typical cell types defined by specific mark-
ers (Fig.  5A). The pseudo-time trajectory analysis indi-
cated the potential evolutionary relationships between 
different types of cells, during the cell state transition 
(Fig. 5B). The trajectory inference revealed the evolution-
ary pathways of T cells, B cells, and Myeloid cells from 

OV lesions, with (Fig.  5C) AKT2 and (Fig.  5D) DAPK1 
expression, which overlapped along pseudotime. The sin-
gle-cell analysis was conducted through the TIGER web-
site (http://​tiger.​cance​romics.​org/).

To reveal the genomic landscape of this inter-lesion 
diversity according to the anoikis-related signature, we 
evaluated the Somatic cell copy number alternation 
(SCNA) and mutation frequency among the TCGA-OV 
cohort. The genes with the highest mutation frequency 

Fig. 6  Construction and validation of the anoikis-related nomogram for ovarian cancer (OV). The forest plots for univariate (A) and multivariate 
(B) Cox Regression analysis for overall survival (OS), based on the anoikis-related 2-gene signature and clinical features, including age, clinical FIGO 
stage, and pathological grade. C The prognostic nomogram model for 1-year, 3-year, and 5-year OS among OV patients, based on the anoikis-related 
signature and clinical features selected by the univariate and multivariate Cox Regression analysis. D The calibration plots of the anoikis-related 
nomogram for predicting 1-year, 3-year, and 5-year OS (top, middle, and bottom, respectively). The Kaplan–Meier (K-M) curves for patients classified 
by the anoikis-related nomogram score, in the TCGA-OV training cohort (E) and ICGC-OV validation cohort (F)

http://tiger.canceromics.org/


Page 10 of 19Yang et al. Cancer Cell International           (2024) 24:53 

are TP53 (93.1%), TTN (37.5%), and MUC16 (12.5%) 
(Fig. 5E).

Construction and validation of the anoikis‑associated 
nomogram
Based on the anoikis-related 2-gene signature and clini-
cal features, including age, clinical FIGO stage, and path-
ological grade, we conducted both univariate (Fig.  6A) 
and multivariate (Fig.  6B) Cox Regression analyses to 
determine the independent prognostic indicators for OV. 
The results demonstrated that age (p-value = 0.019) and 
FIGO stage (p-value = 0.048) were prognostic factors for 
OS, besides Riskscore (p-value = 0.012). According to the 
selected prognostic indicators, we constructed a quanti-
tative nomogram for 1-year, 3-year, and 5-year OS pre-
diction, with a C-index of 0.6004 (Fig.  6C). In Fig.  6D, 
the calibration plots indicated ideal consistency between 
predicted and observed 1-year, 3-year, and 5-year sur-
vival (top, middle, and bottom, respectively) among OV 
patients. Furthermore, we validated the optimum perfor-
mance of the nomogram in both the TCGA-OV training 
cohort (Fig. 6E, p-value < 0.001) and the ICGC-OV vali-
dation cohort (Fig. 6F, p-value = 0.030), through the K-M 
curve analysis and time-dependent ROC analysis.

The immune microenvironment landscape related 
to the anoikis‑related signature
Growing evidence claimed that through the cross-
talk between immune cells and tumor cells, the tumor 
immune microenvironment could largely contribute 
to the OV progression procedure [19]. Accordingly, 
to determine the association between the anoikis and 
immune infiltration landscape in OV, we conducted the 
CIBERSORT analysis to evaluate the immune microen-
vironment, which was stratified by the anoikis-related 
signature. In Fig.  7A, we summarized the composition 
of the 22 typical immune cells infiltrating tumor tis-
sues, among both the low-risk and high-risk TCGA-OV 
cohorts. According to the CIBERSORT algorithm, 3 out 
of the 22 typical immune cells, including resting Myeloid 
Dendritic Cells (DCs), memory B cells, and naïve B cells 
were significantly upregulated in the high-risk group, 
compared to the low-risk group (Fig. 7B, p-value < 0.01).

Assessment of immunotherapy and chemotherapy 
response related to the anoikis‑related signature
Additionally, we evaluated the association between 
the anoikis-related gene signature and immunother-
apy sensitivity. Typical immune checkpoints, including 
CTLA4, CD274, LAG3, HAVCR2, SIGLEC15, PDCD1, 
PDCD1LG2, and TIGIT were selected to be immune-
checkpoint–relevant transcripts and the expression val-
ues of these eight genes were extracted. Based on the 

anoikis-related riskscore formula defined, we stratified 
TCGA-OV patients into two risk groups. Next, we evalu-
ated the expression of these typical immune checkpoint 
molecules among anoikis-related risk groups. The result 
implied that CD274 and PDCD1LG2 were up-regulated 
among the high-risk group (p-value < 0.05, Fig.  8A). 
Accordingly, patients with higher anoikis-related 
Riskscore were more likely to benefit from immuno-
therapies focus on these 2 immune checkpoints. Through 
the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm, we also predicted OV patient response to 
immune checkpoint blockade (ICB) therapies. The 
results indicated that low-risk OV patients had higher 
TIDE scores, which represented poorer survival after 
ICB therapies (p-value < 0.05, Fig.  8B). Moreover, based 
on the PRJEB23709 dataset [20], we evaluated the predic-
tion value of the anoikis-related signature among tumor 
patients treated with immunotherapy. Figure 8C demon-
strated that responders had higher Riskscore compared 
with non-responders, among patients who received anti-
CTLA-4 + anti-PD-1 and anti-PD-1 therapies. Through 
the K-M survival analysis, we found that the high-risk 
patients were more likely to benefit from immunother-
apy, including both anti-CTLA-4 and anti-PD-1 treat-
ment (p-value < 0.05, Fig. 8D).

Based on the Genomics of Drug Sensitivity in Cancer 
(GDSC) dataset, we compared the estimated half maxi-
mal inhibitory concentration (IC50) values of 8 typical 
OV chemotherapies between two risk groups. The results 
implied that the estimated IC50 values of Cisplatin and 
Bleomycin in the high-risk group were higher, while the 
IC50 values of Paclitaxel, Vinblastine, Docetaxel, Gemcit-
abine, and Sorafenib were significantly higher in the low-
risk group (p-value < 0.05, Fig. 8E).

Pan‑cancer analysis of the anoikis‑associated signature
In order to evaluate the application of the anoikis-asso-
ciated signature in cancers, we conducted a pan-cancer 
analysis of the 34 tumors in the TCGA dataset. Firstly, 
we compared the gene expression of AKT2 (Fig. 9A) and 
DAPK1 (Fig.  9B) in pan-cancer, among which Merkel 
cell carcinoma and Skin cutaneous melanoma (SKCM) 
ranked the highest AKT2 and DAPK1 expression, respec-
tively. In Fig.  9C, we compared the Riskscores of OV 
tissues and normal controls. The results indicated that 
almost all cancers had different Riskscore levels, includ-
ing OV. The prognostic value of the anoikis-associated 
signature was also analyzed in the TCGA pan-cancer 
cohorts through the Cox Regression algorithm (Fig. 9D). 
The Kaplan–Meier (K-M) survival curves validated the 
optimum performance of the signature (p-value < 0.05) in 
Glioma (GBMLGG), Low-grade glioma (LGG), Thyroid 
cancer (THCA), Lung squamous cell carcinoma (LUSC), 
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Skin cutaneous melanoma (SKCM), Ovarian serous 
cystadenocarcinoma (OV), Pan-kidney (KIPAN), and 
Kidney clear renal cell carcinoma (KIRC) in the TCGA 
cohorts, which were stratified by the anoikis-related sig-
nature (Fig. 9E). Furthermore, we explored the relation-
ship between anoikis-related Riskscore and immune cell 
infiltration in pan-cancer (Fig. 9F). The results suggested 

that memory CD4 + T cells and Macrophage M2 cells 
were positively related to the anoikis-related signature in 
pan-cancer, while Treg cells were inversely related.

Fig. 7  The analysis for the tumor immune microenvironment related to the anoikis-related signature. A The Boxplots showed the composition 
of 22 typical immune cells infiltrating the TCGA-OV samples, which were evaluated via the anoikis-related signature. OV patients were classified 
into low-risk and high-risk groups by the anoikis-related signature. B The Violin diagrams indicated the expression of the 22 immune cells infiltration 
between two risk groups. **p-value < 0.01
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Aberrant upregulation of DAPK1 was related to metastasis 
and poor prognosis in OV
We involved 36 OV patients at our institution, who 
were followed-up for 37.88 (31.48–42.72) months. 
The clinical features of the involved OV patients were 
showed in Additional file 1: Table S1. We measured the 
RNA expression of DAPK1 and AKT2 in OV tissues 
through qRT-PCR analysis. The result proved that OV 
patients suffered poor prognosis had higher DAPK1 
and AKT2 expressions (p-value = 0.04, Fig.  10A, B). 
We also conducted the Western Blotting, which fur-
ther revealed that protein expression of DAPK1 
and AKT2 was significantly increased in metastatic 
lesions (Fig.  10C). Stepwise, we applied both univari-
ate (Fig.  10D) and multivariate (Fig.  10E) Cox regres-
sion analyses for prognostic clinical features, which 
indicated that DAPK1 (p-value = 0.002) and AKT2 
(p-value = 0.004) were prognostic factors, in addi-
tion to age (p-value = 0.008) and clinical FIGO stage 
(p-value = 0.043). The Kaplan–Meier (K-M) survival 
curves for the overall survival (OS) revealed that OV 
patients with higher DAPK1 and AKT2 expression 
suffered worse prognosis (p-value < 0.01, Fig.  10F, G). 
These findings were consisted with the results of bioin-
formatics analysis.

However, as for DAPK1, there were no research 
focused on the anoikis pattern in OV metastasis till 
now. Thus, we mainly focused on the relationship 
between DAPK1 expression an OV metastasis in our 
study. The IHC analysis of tissue microarrays showed 
that DAPK1  expression staining was located at both 
cytosol and nucleus of tumor cells (Fig.  11A). Com-
pared with primary OV lesions (IRS score = 7.49 ± 3.38) 
and normal controls (IRS score = 8.00 ± 3.01), meta-
static lesions had significantly higher DAPK1 expres-
sion (IRS score = 9.95 ± 2.03) (Fig.  11B). In Fig.  11C, 
we listed 5 representative pairs of IHC staining images 
for primary and metastatic tumor lesions. Through the 
IHC staining analysis of tissue microarrays based on 
125 OV individuals, we found that DAPK1 expression 
significantly increased among OV patients who suffered 
recurrence or death (Fig.  11D and E, p-value < 0.05). 

In Table  1, we listed the relationship between DAPK1 
expression and clinicopathological characteristics, 
among which only the FIGO stage had significant 
association with DAPK1 expression (p-value = 0.002). 
The median OS of OV patients were 34 months (range 
14–52). In Fig.  10F, among OV patients, the K-M sur-
vival curves revealed that DAPK1 expression was 
related to OS (p-value < 0.0001). In Table  2, we con-
ducted both univariate and multivariate analyses 
to identify independent prognostic factors, includ-
ing the FIGO stage (HR 3.873; 95% CI, 1.465–10.239; 
p-value = 0.006), DAPK1 expression (HR 5.196; 95% CI, 
2.789–9.681; p-value = 0.001). Collectively, DAPK1, one 
of the key ARGs, was significantly related to OV metas-
tasis and poor prognosis.

Discussion
OV was one of the most lethal gynecological malignan-
cies worldwide, mainly due to the high recurrence rate 
and lack of specific symptoms [1, 3]. Therefore, identi-
fying reliable prognostic biomarkers and exploring the 
underlying mechanism is of great urgency for personal-
ized OV treatment. Recently, emerging evidence sup-
ported that anoikis, a programmed cell death induced by 
cell detachment from ECM, played a crucial role in tumor 
metastasis [5]. Therefore, in our research, we comprehen-
sively evaluated and validated an anoikis-related signa-
ture (including AKT2 and DAPK1), which was associated 
with tumor immune microenvironment and sensitivity 
to immunotherapy/ chemotherapy. Moreover, we aimed 
to explore the vital role of ARGs, especially DAPK1, in 
OV metastasis, in order to guide clinical decision-making 
and present a new therapeutic target for OV patients.

Up till now, though several studies have focused on the 
association between anoikis and OV metastasis, none 
anoikis-related signature has been applied to clinical 
practice yet, partly owing to the limitations in specificity 
and sensitivity. Recently, Qian and colleagues created a 
prognostic signature including 5 ARGs (STAT1, SNAI1, 
RB1, SFRP1, and AKT2) [21], all of which had been 
reported to be related to anoikis. However, the signa-
ture had limited prognostic value in validation cohorts, 

Fig. 8  Assessment of immunotherapy and chemotherapy response related to the anoikis-related signature among OV patients. A The boxplots 
of the gene expression distribution for 8 typical immune checkpoints, including CTLA4, CD274, LAG3, HAVCR2, SIGLEC15, PDCD1, PDCD1LG2, 
and TIGIT, between the two risk groups classified by the anoikis-related signature. B The prediction of patient response to immune checkpoint 
blockade (ICB) therapies, according to the Tumor Immune Dysfunction and Exclusion (TIDE) score. C Based on the PRJEB23709 dataset [20], 
we compared the distribution of Riskscores among responders and non-responders to anti-CTLA-4 + anti-PD-1 (top) and anti-PD-1 (bottom) 
immunotherapies. (D) The Kaplan–Meier (K-M) curves for patients classified by the anoikis-related signature, in anti-CTLA-4 + anti-PD-1 (left) 
and anti-PD-1 (right) cohorts. (E) The violin diagrams of estimated half maximal inhibitory concentration (IC50) values among OV patients, 
in terms of 8 typical chemotherapies (including Bleomycin, Docetaxel, Cisplatin, Paclitaxel, Gemcitabine, Sorafenib, Veliparib, and Vinblastine). The 
chemotherapy sensitivity was estimated according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. *P-value < 0.05

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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especially the GSE30161 cohort (HR 1.147; 95%CI 
0.448–2.938; p-value = 0.775). Accordingly, we tried to 
distinguish a promising anoikis-related signature from 95 
potential ARGs downloaded from the Genecards data-
base (Relevance Score ≥ 2). We identified a 2-gene signa-
ture (including AKT2 and DAPK1), which was validated 
in both the TCGA-OV training cohort (p-value < 0.001) 
and the ICGC-OV validation cohort (p-value = 0.030). To 
the best of our knowledge, our research is initial to define 
the anoikis-related signature of AKT2 and DAPK1, which 
had satisfactory prognostic value for OV patients.

AKT2, a homolog of AKT1, could encode a serine/
threonine protein kinase which is largely amplified in 

pancreatic and ovarian cancers [22]. Moro and colleagues 
reported that depletion of mtDNA could prevent anoikis 
and promote migration onto the basement membrane by 
upregulation of p85 and p110 PI3K subunits, which could 
result in AKT2 activation and phosphorylation of down-
stream substrates in prostate cancer [23]. The research 
team of Fujio claimed that AKT2 could function as an 
anti-anoikis gene during the cellular differentiation pro-
cedure, a property that might contribute to oncogenicity 
[24]. In OV, Zheng and colleagues concluded that AKT2 
could contribute to promote OV migration and inva-
sion via the AKT2-PKM2-STAT3/NF-κB axis [25]. As for 
DAPK1, Qiu et  al. demonstrated that DAPK1, a tumor 

Fig. 9  Pan-cancer analysis of the anoikis-related signature. The Radar chart represented the gene expression of AKT2 (A) and DAPK1 (B) 
in pan-cancer. C The violin plots presented the anoikis-related Riskscore level of tumor tissues and normal controls in pan-cancer. D The forest 
plot to distinguish the prognostic value of the anoikis-related prognostic signature in pan-cancer through the Cox Regression algorithm. E The 
Kaplan–Meier (K-M) survival curves for Glioma (GBMLGG), Low-grade glioma (LGG), Thyroid cancer (THCA), Lung squamous cell carcinoma (LUSC), 
Skin cutaneous melanoma (SKCM), Ovarian serous cystadenocarcinoma (OV), Pan-kidney (KIPAN), and Kidney clear renal cell carcinoma (KIRC) 
in the TCGA cohorts, which were stratified by the anoikis-related signature. F The relationship between anoikis-related Riskscore and immune cell 
infiltration in pan-cancer, which was analyzed BY the CIBERSORT algorithm
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suppressor that could activate cell death, was directly 
linked to anoikis activation via rigidity sensing [26]. In 
non-small cell lung cancer, Phosphorylation of DAPK 

at Ser734 by ERK was essential for p53 transcriptional 
activity, which was required for anoikis [27]. However, 
there were relatively few studies focused on the anoikis 

Fig. 10  The anoikis-related genes (DAPK1 and AKT2) could predict prognosis of ovarian cancer (OV) patients. The gene expression of A DAPK1 
and B AKT2 in OV tissues, which was measured by the qRT-PCR analysis. C The Western blotting analysis for DAPK1 and AKT2 expression 
in both primary and metastatic OV lesions from 4 representative patients. The forest plot of D univariate and E multivariate Cox regression 
analysis of OV patient survival, according to clinical features and anoikis-related genes (DAPK1 and AKT2). The Kaplan–Meier (K-M) survival curves 
for the overall survival (OS) of OV patients, which were stratified by the expression of F DAPK1 and G AKT2
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pattern in OV, especially for DAPK1, so future explora-
tion of the underlying mechanisms is critical.

Nowadays, growing evidence supported the cross-
talk between immune cells and tumor cells, along with 
increasing breakthroughs in the realm of immune 
checkpoint inhibitors [19]. In order to investigate the 
association between anoikis and the immune infiltra-
tion landscape in OV, we summarized the composition 
of the 22 typical immune cells infiltrating tumor tis-
sues via the CIBERSORT analysis. The results proved 
that resting Myeloid Dendritic Cells (DCs), memory B 
cells, and naïve B cells were significantly upregulated in 

the high-risk group, which was stratified by the anoikis-
related signature. Consistent with our findings, Lee and 
colleagues claimed that DCs played a crucial role in 
immune responses of OV, in regards to activated memory 
T cells maintenance, T cell recruitment into tumor tis-
sue, and T cell response initiation [28, 29]. As for B cells, 
Gupta et al. reported that the tumor microenvironment 
could induce naïve B cells to differentiate into subsets, 
such as Bregs, plasma cells, and memory B cells, which 
played diverse roles in OV progression [30]. A study by 
Ouyang et al. showed that DCs in the tumor microenvi-
ronment could activate B cell differentiation toward the 

Fig. 11  DAPK1 expression up-regulated in OV metastatic lesions and was related to poor survival. A The representative immunohistochemistry 
(IHC) staining images (original magnification × 200) for DAPK1 expression in normal ovary tissue, primary OV lesions, and metastatic OV lesions 
were listed. B Metastatic OV lesions had higher DAPK1 expression, compared with normal controls and primary OV lesions, which were measured 
by the IRS score. C The IHC staining images (original magnification × 200) for primary and metastatic lesions from representative OV patients. The 
DAPK1 expression was up-regulated in OV patients who suffered (D) recurrence or (E) death, which was analyzed through IHC staining. F Kaplan–
Meier (K-M) curves for the overall survival (OS) among 125 OV patients, which were stratified based on DAPK1 expression
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FcγRII low/IL-10 Breg phenotype, which could inter-
rupt the initiation of cancer-induced immunosuppressive 
events [31]. However, the relationship and underlying 
mechanism of immune landscapes and anoikis still need 
further exploration.

Nowadays, regardless of growing advances in immuno-
therapy and chemotherapy, OV has a high recurrence rate 
of approximately 70% [4, 32]. Emerging evidence demon-
strated that anoikis, a programmed cell death induced by 
cell detachment from ECM, was a new bridge to tumor 
immunity, which could influence therapy response [6]. 
Accordingly, we tried to explore the association between 
the anoikis pattern and sensitivity to immunotherapy and 
chemotherapy. Based on the GDSC dataset, high-risk 
patients were more sensitive to chemotherapy, includ-
ing Paclitaxel, Vinblastine, Docetaxel, Gemcitabine, and 
Sorafenib, while less sensitivity to Cisplatin and Bleomy-
cin. Besides, our results revealed that high-risk patients 
were more likely to benefit from immunotherapies 

referring to CD274 and PDCD1LG2. Through the TIDE 
algorithm, we predicted that low-risk OV patients had 
higher TIDE scores, which represented poorer survival 
after ICB therapies. We further validated the results in 
the PRJEB23709 dataset [18], which demonstrated that 
among patients who received anti-CTLA-4 + anti-PD-1 
and anti-PD-1 therapies, the responders had higher 
Riskscore. The result could hint clinical decision-making, 
though it still needs to be validated in other immunother-
apy datasets.

There were also some limitations in this research. 
Firstly, the underlying mechanism of the identified 
ARGs, especially AKT2 and DAPK1, in tumor immune 
microenvironment and OV progression remained 
largely unknown, which needs further investigation. 
Additionally, despite the TCGA and ICGC cohorts, the 
anoikis-related signature should be validated in more 
populations, in order to assist clinical decisions for OV 
precision medicine in the future.

Table 1  The correlation between DAPK1 expression and clinicopathological features of 125 OV patients

FIGO stage Federation International of Gynecology and Obstetrics stage

Characteristic No. of patients DAPK1 expression p-value

Low
(IRS score < 6)

High
(IRS score ≥ 6)

Age (n, %) 0.855

 < 55 years 56(44.8%) 39(31.2%) 17(13.6%) –

 ≥ 55 years 69(55.2%) 47(37.6%) 22(17.6%) –

FIGO stage (n, %) 0.002

 I–II 45(36.0%) 39(31.2%) 6(4.8%) –

 III–IV 80(64.0%) 47(37.6%) 33(26.4%) –

Pathology stage (n, %) 0.953

 I–II 54(43.2%) 37(29.6%) 17(13.6%) –

 III 71(56.8%) 49(39.2%) 22(17.6%) –

Histology type (n, %) 0.331

 Serous 78(62.4%) 53(42.4%) 25(20.0%) –

 Mucous 11(8.8%) 10(8.0%) 1(0.8%) –

 Endometrioid 14(11.2%) 8(6.4%) 6(4.8%) –

 Other types 22(17.6%) 15(12.0%) 7(5.6%) –

Tumor diameter (n, %) 0.604

 < 10 cm 62(49.6%) 44(35.2%) 18(14.4%) –

 ≥ 10 cm 63(50.4%) 42(33.6%) 21(16.8%) –

Serum CA125 (n, %) 0.051

 < 35 U/ml 20(16.0%) 18(14.4%) 2(1.6%) –

 ≥ 35 U/ml 105(84.0%) 68(54.4%) 37(29.6%) –
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Conclusion
Briefly, we comprehensively evaluated the importance of 
the anoikis pattern in OV and filtered ARGs to build a 
2-gene prognostic signature (AKT2 and DAPK1) through 
bioinformatics algorithms. Moreover, we evaluated the 
tumor immune microenvironment, gene landscape, 
and sensitivity towards immunotherapy/chemotherapy 
between risk groups stratified by the anoikis-related 
signature. Especially, our findings identified the role of 
DAPK1 in OV metastasis, which presented a potential 
therapeutic target, though the underlying mechanism 
needs further investigation.
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