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Introduction
Cervical cancer ranks first in the female reproductive 
tract [1] and consists mainly of squamous and adeno-
carcinoma types of the cervix. Patients diagnosed with 
early or locally advanced cervical cancer have achieved 
some remission and have experienced high survival rates 
with radical resection or concurrent radiotherapy [2, 3], 
which have significantly reduced mortality, especially in 
developing countries and poor regions [4]. Nevertheless, 
the prognosis and treatment outcomes for patients with 
refractory cervical cancer, encompassing those afflicted 
with recurrent, persistent, or metastatic forms, remain 
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Abstract
Patients with recurrent or metastatic cervical cancer are in urgent need of novel prognosis assessment or treatment 
approaches. In this study, a novel prognostic gene signature was discovered by utilizing cuproptosis-related 
angiogenesis (CuRA) gene scores obtained through weighted gene co-expression network analysis (WGCNA) of 
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To enhance its reliability, the 
gene signature was refined by integrating supplementary clinical variables and subjected to cross-validation. 
Meanwhile, the activation of the VEGF pathway was inferred from an analysis of cell-to-cell communication, based 
on the expression of ligands and receptors in cell transcriptomic datasets. High-CuRA patients had less infiltration 
of CD8 + T cells and reduced expression of most of immune checkpoint genes, which indicated greater difficulty 
in immunotherapy. Lower IC50 values of imatinib, pazopanib, and sorafenib in the high-CuRA group revealed the 
potential value of these drugs. Finally, we verified an independent prognostic gene SFT2D1 was highly expressed 
in cervical cancer and positively correlated with the microvascular density. Knockdown of SFT2D1 significantly 
inhibited ability of the proliferation, migration, and invasive in cervical cancer cells. CuRA gene signature provided 
valuable insights into the prediction of prognosis and immune microenvironment of cervical cancer, which could 
help develop new strategies for individualized precision therapy for cervical cancer patients.
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disheartening [5–7]. The implementation of novel scien-
tific methodologies and an enhanced comprehension of 
tumor pathogenesis are poised to augment our under-
standing of cervical cancer mechanisms and ultimately 
ameliorate the prognosis for individuals grappling with 
refractory cervical cancer. It is necessary to explore new 
ways to improve the prognosis of patients with refractory 
cervical cancer.

Tumor angiogenesis, inflammatory infiltration of the 
tumor microenvironment, and programmed cell death 
processes have been identified as contributing factors 
to tumor metastasis [8]. Tumor cells exhibit elevated 
secretion of pro-angiogenic factors, which stimulate the 
development of heterogeneous and immature neovascu-
larization. This heteromorphic neovascularization often 
leads to a hypoxic microenvironment caused by inade-
quate perfusion, thereby favoring the survival and growth 
of more aggressive tumor cells [9]. Simultaneously, the 
presence of pro-angiogenic factors within the tumor 
microenvironment facilitates the process of angiogenesis 
and immunosuppression [10]. Consequently, angiogen-
esis fosters the tumor’s ability to evade the immune sys-
tem and engenders drug resistance. Tumor angiogenesis 
stands as a contributing factor to recurrence, prompting 
the clinical utilization of anti-angiogenic drugs in the 
management of advanced or recurrent cervical cancer, 
resulting in notable enhancements in survival rates [11]. 
However, the limited applicability of targeting mature 
stable vessels [12] and the presence of various treatment-
related side effects have necessitated the exploration of 
novel therapeutic approaches [13]. Notably, the remark-
able effectiveness of immunotherapy in cervical cancer 
has highlighted the significance of targeting angiogen-
esis in the tumor microenvironment for immunothera-
peutic interventions [14, 15]. Consequently, for patients 
with metastatic, persistent, and recurrent cervical cancer 
who exhibit PD-L1 positivity, the combination of pabli-
zumab and chemotherapy, with or without bevacizumab, 
has emerged as the preferred first-line treatment option 
[6]. Investigating modifications in the immune microen-
vironment and immune checkpoint genes within tumors 
experiencing varying angiogenic states can provide valu-
able insights into the development of precise combina-
tions of vascular targeting therapy and immunotherapy.

Recent findings indicate that several well-established 
regulators of programmed cell death play a role in pro-
moting angiogenesis [8, 16–20]. Additionally, cupropto-
sis, a distinct form of programmed cell death, is primarily 
characterized by the excessive accumulation of intracel-
lular copper, leading to cell death [21]. It has been shown 
increased intratumor copper concentrations promote 
tumor growth and invasion as well as treatment resis-
tance [22]. Serum copper concentrations have been 
found to exhibit a correlation with tumor progression 

and morbidity [23]. Additionally, cuproptosis, a recently 
identified mode of cell death, has been reported to play 
a role in tumor growth, angiogenesis, and tumor metas-
tasis [24, 25]. Studies have demonstrated that copper 
facilitates tumor angiogenesis by activating various 
angiogenic factors, such as basic fibroblast growth factor 
(bFGF) and vascular endothelial growth factor (VEGF) 
[26]. Moreover, copper is implicated in signal transduc-
tion processes within endothelial cells, thereby influenc-
ing angiogenesis [23]. In summary, copper assumes an 
indispensable function in the advancement of tumors 
as a trace element crucial for the proliferation of cancer 
cells and the formation of blood vessels within tumors. 
Further exploration of the correlation between angiogen-
esis and cuproptosis is imperative, as it holds potential 
for novel treatment approaches [19, 27]. The association 
between angiogenesis and cuproptosis in cervical cancer 
has yet to be investigated, thus necessitating a meticu-
lous and proactive investigation employing innovative 
methodologies.

The emergence of precision oncology and the integra-
tion of big data have facilitated the utilization of bulk 
RNA sequencing to uncover the mean gene expression 
in tissues, thereby enabling exploration into the realm 
of cognitive differential gene expression [28]. Further-
more, the progression of technological tools has allowed 
for the implementation of single cell sequencing, which 
has proven instrumental in discerning differential gene 
expression among cells and investigating intricate cell 
populations [29–31]. This technique has significantly 
contributed to the fields of tumor diagnosis, targeted 
therapy, and prognosis prediction [32, 33]. The analy-
sis of intercellular communication in cell populations 
aids in the elucidation of communication and signaling 
mechanisms among diverse cells [34]. Additionally, cor-
relation analysis of receptor-ligand pairs enables a deeper 
comprehension of cellular functionality and regulatory 
networks. In this study, we have developed a prognos-
tic model for the CuRA gene using both single-cell RNA 
sequencing and bulk RNA sequencing. This model holds 
promise for the development of innovative prognostic 
prediction models and treatment approaches for individ-
uals with cervical cancer.

Materials and methods
Data acquisition
The cervical cancer patient dataset (the TCGA-CESC 
cohort) was obtained from the Cancer Genome Atlas 
as the training group (TCGA, https://portal.gdc.cancer.
gov/). For external validation, we used 55 cervical cancer 
patients from the GSE52903 dataset in Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
databases. We also included single-cell sequencing datas-
ets GSE168652 in cervical cancer using “Seurat” package 
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[35] for calculating genetic correlations to score cells and 
patients. The scores of CuRA gene-sets were calculated 
by applying the “Percentage FeatureSet” function. The 
GeneCards website (https://www.genecards.org/) was 
used to obtain 1245 angiogenesis-related genes using the 
“angiogenesis” keyword with a correlation > 1. R pack-
age “limma” [36] was used to obtain cuproptosis-related 
angiogenesis (CuRA) genes. Genes with differential 
expression in normal and cervical tissues were obtained 
from the GEPIA website (http://gepia.cancer-pku.cn/).

WGCNA
Single-sample gene set enrichment analysis (ssGSEA), 
which estimated the relative enrichment of a particular 
gene set in each sample by comparing the gene expression 
data of that sample with that set. We performed weighted 
gene co-expression network analysis (WGCNA) using 
the “WGCNA” package [37]. The threshold of clustering 
cut tree was set to 210, and the minimum threshold was 
set to 80. We merged the modules with threshold < 0.5. 
Then, we performed analysis and included all genes in 
modules of CuRA phenotypes with P < 0.05 for subse-
quent analysis.

Construction of the CuRA model
We configured the alpha parameter of the elastic network 
to 0.5 and computed the errors for ridge regression, lasso 
regression and elastic network regression. The model 
regression was constructed using the “glmnet” package 
[38]. The “timeROC” package [39] and “survivalROC” 
package [40] were performed to plot ROC curves for 
survival outcomes at different time points. Nomogram 
based on logistic regression and Cox regression was con-
structed using the “rms” package [41].

Immune infiltration analysis
“IOBR” package [42] was used to immune infiltration 
analysis. Six algorithm CIBERSORT, EPIC, MCP, XCELL, 
TIMER, QUANTISEQ was performed to compare the 
differences between the high and low-CuRA groups. Dif-
ferences in the expression of immune checkpoint genes 
were also compared. The relevant mutation data were 
obtained from Cbioportal (https://www.cbioportal.org/
datasets). The “maftools” package [43] was performed for 
visualization.

Cell communication analysis
We performed cell communication analysis using the R 
package “CellChat” [34]. We filtered out cell communi-
cation with less than 10 cells and obtained the cell com-
munication relationship between each cell. We inferred 
cell-to-cell communication at the pathway level, deduced 
pathway-level interaction networks, and obtained the 

interaction relationship between receptor-ligand pairs 
and cell communication.

GSEA
The GSEA software (version 3.0) was downloaded from 
the GSEA (http://software.broadinstitute.org/gsea/
index.jsp) website, divided the samples into high and 
low expression groups based on the expression levels 
of SFT2D1. A P value of < 0.05 and an FDR value of < 0.25 
were considered statistically significant. The correspond-
ing data was listed in Additional file 1: Table S5.

Drug sensitivity analysis
We searched the GDSC database to predict drug sensi-
tivity by comparing the IC50 of drugs among different 
groups based on the CuRA scores. By analyzing in the 
Drug Signatures Database (DSigDB, http://tanlab.ucden-
ver.edu/DSigDB), we listed corresponding small mol-
ecule drugs of relevant modeling genes (Additional file 1: 
Table S4).

Cell culture
The ECT1/E6E7 cell line (ATCC: CRL-2614™), the 
SiHa cell line (ATCC: HTB-35™), the CaSki cell line 
(ATCC: CRM-CRL-1550™) were obtained from Ameri-
can Type Culture Collection (ATCC). Ect1/E6E7 cells, 
SiHa cells were cultured in DMEM medium (Procell, 
Wuhan,China) containing 10% fetal bovine serum (Pro-
cell, Wuhan, China), 100 U/mL penicillin and 100 µg/mL 
streptomycin, and incubated at 37 °C under conditions 
of 5% CO2. CaSki cells were cultured with the same con-
ditions in 1640 medium (Procell, Wuhan, China). These 
cells were transfected with synthetic small interfering 
RNAs (GenePharma, Shanghai, China) by Lipo8000™ 
Transfection Reagent (Beyotime, Shanghai, China), and 
the siRNA sequences targeting  SFT2D1  gene are pro-
vided in the Additional file 1: Table S6.

Real-time fluorescence quantitative PCR
We extracted total RNA of cells using TRIZOL reagent 
(Vazyme, China), followed by adding chloroform for cen-
trifugation. The supernatant was collected and mixed 
with isopropanol. The RNA pellet was washed with 75% 
ethanol and air-dried. The purity of RNA was measured 
using a spectrophotometer (Thermo Fisher Scientific, 
USA). The cDNA was synthesized using reverse tran-
scription reagent (TransGen, China) for fluorescence 
quantification (RT-qPCR).

Immunohistochemistry
We collected normal cervical tissue and cervical can-
cer tissue at the Hunan Provincial Cancer Hospital for 
immunohistochemical staining, and it has been reviewed 
and approved by the Ethics Committee of Hunan 
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Cancer Hospital. After dewaxing of sections, heat antigen 
retrieval was performed. The primary antibodies SFT2D1 
(Immunoway, USA, 1:100) and CD31 (ZenBio, China, 
1:100) were incubated overnight at 4 °C. The secondary 
antibodies were incubated for 20 min using the PV-9000 
kit (ZSGB-BIO, China). DAB reagent (ZSGB-BIO, China) 
was used for antibody staining, with brown-yellow indi-
cating positive signal areas. Cell nuclei were stained blue 
with hematoxylin (Servicebio, China). Images were cap-
tured using microscope (Zeiss, Germany) and analyzed 
using Image J software (1.53, USA).

Western blotting
We added a mixture of cell lysis buffer (Servicebio, 
China) and protease inhibitor PMSF to the cells. The 
sample was then denatured by adding SDS-loading buffer 
and subjected to electrophoresis. The PVDF membrane 
(Millipore, USA) was wet-transferred at a constant cur-
rent. After blocking with skim milk at room tempera-
ture for 2 h, the primary antibody SFT2D1 (Immunoway, 
USA, 1:1000) was incubated at 4℃ overnight. The sec-
ondary antibody (bioworld, USA, 1:10000) was incubated 
at room temperature for 1 h, followed by detection with a 
developing solution.

CCK-8 assay
After transfection, the appropriate amounts of resus-
pended cervical cancer cells in the logarithmic phase of 
growth were added in 96-well plates with trypsin diges-
tion down and set up 5 sub-wells per group (NC, si-
SFT2D1). When the cells were adhered to the wall, the 
solution in Cell Counting Kit-8 (CCK-8, APE, USA) was 
added after replacing the fresh medium, and the absor-
bance value was measured at 450 nm after incubation 
with the cells for 2 h at 37 ℃ in an MicroplateReader 
Instrument (Biotek, USA). First data were grouped into 
the 0 h group. And the readings of 0 h, 24 h, 48 h, 72 and 
96 h were recorded to calculate the proliferative capacity 
of the cells.

Wound scratch experiment
After transfection, resuspended cells were added in 
6-well plates by trypsin digestion. The cells incubated 
under conditions of constant temperature and constant 
CO2, a straight line was drawn vertically in the center of 
the 6-well plate with the pipette tip, and then the width of 
the straight line was photographed and recorded under 
the microscope. Replace the medium with serum-free 
medium to continue incubation for 24-48 h, and then 
take pictures with the microscope to record the growth 
of cells. Cell migration rate = (0 h scratch width - scratch 
width after incubation)/0 h scratch width × 100%, which 
was analyzed by ImageJ software (1.53, USA) to calculate 
the migration ability of cells.

Transwell migration and invasion assay
The chambers were hydrated with serum-free DMEM 
medium for 30 min. After aspirating the medium a cell 
suspension mixed with appropriate amount of serum-
free medium was added to the upper chamber, and the 
lower chamber was incubated with medium containing 
10% serum for 24 h. After fixation in methanol and stain-
ing with crystal violet, the cells that did not pass through 
the upper chamber were wiped away, and the cells that 
passed through the lower chamber were observed and 
counted under the microscope, and the migration abil-
ity of the cells was judged according to the number of 
cells. The cells were observed and counted in the lower 
chamber under the microscope. The matrix gel was pur-
chased from Corning (USA). The gel was spread on the 
upper chamber surface, and after 2 h, the gel was allowed 
to solidify and then hydrated with medium, and the same 
procedure was followed to determine the invasion ability 
of the cells according to the number of cells.

Statistical analyses
We used R software (version 4.2) and GraphPad prism 
(version 8.3.0) for relative analyses and drawings. 
T-test was performed to analysis differences between 
two groups. ANOVA was used to analysis differences 
between three or more groups. P < 0.05 was considered as 
statistically different.

Results
Flow chart
The flow chart was shown in Fig. 1.

Identification of phenotype -related different CuRA genes 
by WGCNA
19 cuproptosis genes was shown in Additional file 1: 
Table S1. Then we downloaded angiogenesis-associated 
genes with correlation > 1 from the GENECARD website. 
Based on the gene expression of TCGA-CESC patients, 
as a screening condition of |cor|>0.3 and P < 0.05, finally 
533 CuRA genes were included. At the same time, we 
performed univariate cox analysis to obtain 66 prognos-
tic CuRA genes (Additional file 1: Figure S1) from 533 
genes. To explore genes that are differentially expressed 
between the normal cervix and cervical cancer, we 
downloaded 6057 differential genes from the GEPIA 
website(|log2FC|>1). We took the intersection of 6057 
differential genes with the 66 prognostic CuRA genes 
(Fig. 2A) above and finally obtained 20 CuRA genes with 
significant differences (Fig. 2B, Additional file 1: Table 
S2). Based on the scores of 20 CuRA gene-sets, each cell 
was divided into high-CuRA and low-CuRA cells groups 
according to the median value in GSE168652 dataset (Fig. 
2C, D). In the TCGA-CESC cohort, we quantified and 
visualized the level of immune infiltration in different 
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patients by ssGSEA (Fig. 2E). Meanwhile, we performed 
CuRA scores for each patient by the ssGSEA algorithm, 
then plotted circle plots to see the differences in scoring 
for each patient (Fig. 2F). WGCNA was performed to 
obtain phenotype-related modules for CuRA genes (Fig. 
2G). We included all genes (P < 0.05) in non-grey mod-
ules (The grey module contained genes that couldn’t be 
classified as any module): pink, brown, magenta, purple, 
and yellow modules for the follow-up study (Fig. 2H).

Construction of a CuRA prognostic model
We obtained CuRA intersection genes by intersecting the 
different genes of high-CuRA and low-CuRA cells groups 
of GSE168652 with the WGCNA phenotype-related 
modular genes of patients. We configured the alpha 
parameter of the elastic network to 0.5 and computed the 
errors for primary methods. The results revealed that the 
error for ridge regression is 3.055991, for lasso regression 

it is 0.0002452, and for elastic network it is 0.0002547035. 
After comparing the errors of the regression methods, we 
opted for lasso regression to construct the model (Addi-
tional file 1: Figure S2). Then a prognostic model was 
constructed based on 10 CuRA genes by lasso regres-
sion according to optimal lambda value (Additional file 
1: Figure S3A, B). CuRA modeling scores = 0.001007113
*IRF6+ 0.001993273*THBD+ 0.007235823*EFEMP2+ 4.
45E-04*SNX9+ 0.012465781*PCDH18+ 7.23E-05*MFA
P4+ 0.005812479*ADAM9+ 0.004983918*EHBP1+ 0.05
5328306*AVL9+ 0.00770984*SFT2D1. We included the 
GSE52903 as validation set. Then we analyzed the differ-
ences between TCGA patients (Additional file 1: Figure 
S3C) and GSE52903 patients (Additional file 1: Figure 
S3D) according to CuRA modeling scores by PCA. Fur-
ther, we assessed efficacy of the model to predict progno-
sis. Heatmaps and point chart of risk scores were drawn 
showing differences in expression of CuRA model genes 

Fig. 1 Flow chart of the full text. CuRA, cuproptosis-related angiogenesis gene. DEGs, differential genes. WGCNA, weighted correlation network analysis. 
ROC, receiver operating characteristic
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in TCGA patients (Fig. 3A) and GEO patients (Fig. 3D. 
In TCGA dataset (Fig. 3B) and GEO dataset (Fig. 3E), 
patients in the high-CuRA group had significantly lower 
survival than those in the low-CuRA group. In the ROC 
curves, the 1, 2, 3, and 5-year AUC values were 0.653, 
0.759, 0.748, and 0.799 for TCGA patients, respectively 
(Fig. 3C). The AUC values for 2, 3, and 5-year survival for 
GEO patients were 0.653, 0.646, and 0.604, respectively 
(Fig. 3F). Results indicated the model had better predic-
tive effect on prognosis in both TCGA and GEO datasets. 
Meanwhile, we included clinical data of TCGA patients 
and then combined T1-2 patients into early stage and 

T3-4 stage patients into late stage of T-stage for univari-
ate COX analysis, and we found CuRA modeling scores, 
N_stage were risk factors (Additional file 1: Figure S3E). 
Further, we performed a multivariate COX analysis and 
the results showed CuRA modeling scores, N_stage, and 
T_stage were independent risk factors (Additional file 1: 
Figure S3F).

Immune infiltration landscape and mutational landscape
Based on the modeling gene scores, we explored the dif-
ferences in immune infiltration and tumor mutations 
of high-CuRA and low-CuRA groups. We introduced 

Fig. 2 Selection of CuRA phenotype-related genes by WGCNA. (A) Venn diagram of intersection of 6057 differential genes with 66 prognostic genes. (B) 
Histogram of 20 CuRA genes validated at the GEPIA website. (C) Scores of CuRA genes in GSE168652, with the darker the purple, the higher the scores. 
(D) Grouping into high-CuRA and low-CuRA groups, red indicating high-CuRA group, blue indicating low-CuRA group. (E) Quantification of immune 
infiltration levels by ssGSEA. (F) Circle plot of CuRA genes scores of patients. (G) Waterfall plot of WGCNA. (H) Heatmap of phenotype-related modules
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six algorithms to perform a comprehensive analysis of 
immune cell infiltration in two groups (Additional file 
1: Figure S5). The six algorithms showed infiltration of 
the overall immune cells was significantly lower in the 
high-CuRA group than in the low-CuRA group. Among 
them, it showed a significant difference between the two 
groups by xCell algorithm. Next, we compared the 10 
types of major immune cells, and found CD8 + T cells 
were significantly reduced in patients in the high-CuRA 
group (Fig. 4A). Also, we analyzed the expression of com-
mon immune checkpoint genes, and we found the clini-
cally common immune checkpoint genes CD274(PD-L1) 
and  CTLA4  did not differ significantly between two 
groups (Fig. 4B). Therefore, we speculate patients clas-
sified into high-CuRA and low-CuRA groups may not 
differ in treatment benefit by applying  PD-L1  inhibitors 
or  CTLA4  inhibitors. Also, the results showed most of 
the immune checkpoint genes were significantly less 
expressed in the high-CuRA group than in the low-
CuRA group. We also found  IL10RB,  KDR,  TGFB1, 
and  TGFBR1  genes were significantly more expressed 
in the high-CuRA group than in the low-CuRA group. 
Results suggested patients in the high-CuRA group may 
get better therapeutic outcomes by using inhibitors tar-
geting these 4 genes. Next, we analyzed the mutation 
landscape in both groups (Fig. 4C, D), and found the top 

3 genes with the highest mutation frequencies were  PI
K3CA(31%),  TTN(31%),  SYNE1(18%) in 127 patients of 
the high-CuRA group, while in the low-CuRA group, the 
top 3 genes with the highest mutation frequencies were 
TTN(33%), PIK3CA(27%), KMT2C(22%) in 113 patients. 
We found  SYNE1  showed a higher mutation frequency 
(23 cases) in the high-CuRA group and a lower muta-
tion frequency (11 cases) in the low-CuRA group with 
significant difference between the two groups (odds ratio 
(OR) = 0.412) (Additional file 1: Figure S6). Also, other 
genes such as  RELN,  SPATA31D1,  TCOF1  had higher 
mutations in the high-CuRA group.

Analysis of clinical characterization and construction of 
nomogram
We analyzed prognosis with different clinical character-
istics, and constructed a nomogram based on the CuRA 
model. Results showed the N_stage and CuRA model-
ing scores contributed significantly to the model. The 
predicted mortality of the patient was 0.571, 0.98, and 
0.997 at 1, 3, and 5-years, respectively (Fig. 5A), and 
its odds ratio of status was 8.19 (Fig. 5B). ROC curves 
were performed to predict the accuracy of nomogram. 
AUC values at 1, 3, and 5-years were 0.71,  0.78, and 
0.83, respectively, which indicated the nomogram had 
good predictive accuracy (Fig. 5C). Finally, we plotted 

Fig. 3 Construction and verification of a CuRA prognostic model. Heatmap and point chart of TCGA patients (A) and GEO patients (D). Survival curve plot 
of TCGA patients (B) and  GEO patients (E). ROC curve of TCGA patients (C) and GEO patients (F)
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the DCA decision curves, and results showed the model 
had a strong predictive effect on the survival rate at 1, 3, 
and 5-years (Fig. 5D).

Drug sensitivity prediction
To explore the different drugs that may be effective 
against treating the high- and low-CuRA groups, we used 
GDSC database by predicting the IC50 to determine the 
differences in drug sensitivity between the high- and 
low-CuRA groups. Results showed the IC50 of Imatinib, 
Pazopanib, and Sorafenib was significantly lower for the 
high-CuRA group than for the low-CuRA group, suggest-
ing they may have better efficacy when applied with the 
high-CuRA patient group (Fig. 6A–C). Similarly, for the 
low-CuRA group, the application of AMG.706, CEP.701, 
Sunitinib, ABT.888 (Veliparib), AZD.2281 (Olaparib), 
and MS.275 (Entinostat) may lead to better therapeutic 
remission (Fig. 6D–I).

Cell communication analysis
We performed cell communication analysis by single-cell 
sequencing dataset GSE168652 from GEO. We grouped 
the cells into 25 clusters and divided the cell clusters into 

8 types based on annotation, which are: endothelial cells, 
FDX1 + tumor/epithelial cells, fibroblasts, lymphocytes, 
macrophages, smooth muscle cells, tumor/epithelial cells 
(other types), and VEGFA + tumor/epithelial cells (Fig. 
7A). We observed the expression and localization of 10 
modeling genes in GSE168652 (Additional file 1: Figure 
S4). Since FDX1 was a representative gene for cupropto-
sis, we labeled FDX1-positive or VEGFA-positive tumor/
epithelial cells here in the hope of exploring the relation-
ship between cuproptosis and angiogenesis-associated 
tumor/epithelial cells in intercellular communication. 
Multidirectional cell communication was discovered in 
each cell subpopulation (Fig. 7B). Then we identified the 
cell-extrinsic communication patterns. We analyzed the 
signaling pathways of both incoming and outgoing sig-
nals in the samples. Our results revealed the main outgo-
ing signals of FDX1 + tumor/epithelial cells were PDGF, 
WNT, CD46, MHC-1, MIF, and MK pathways, while the 
primary incoming signals were IFN-II and other path-
ways. As for VEGFA + tumor/epithelial cells, the major 
outgoing signals were WNT, EGF, and VEGF, while the 
main incoming signals involved numerous signaling 
pathways, including COLLAGEN (Fig. 7C). Specifically, 

Fig. 4 Immune infiltration and tumor mutation analysis. (A) Differences in infiltration of 10 types of immune cells between two CuRA groups. (B) Dif-
ferences in expression of immune checkpoints gene between the two groups. (C) Tumor mutation characteristics in the high-CuRA group. (D) Tumor 
mutation characteristics in the low-CuRA group
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we focused on the involvement of VEGF pathway in cell 
communication as the key pathway of angiogenesis. We 
observed higher expression of the key gene VEGFA in the 
VEGFA + tumors/epithelial cells, tumor/epithelial cells, 
and FDX1 + tumors/epithelial cells in the VEGF signaling 
pathway (Fig. 7D). In signal transduction, by calculating 
the network centrality indices for each cell population, 
we found VEGFA + tumor/epithelial cells were the domi-
nant signaler in the intercellular communication net-
work, endothelial cells were the main receivers and 
influencer, and FDX1 + tumors/epithelial cells also played 
an important role in influencer (Fig. 7E). In the visual cir-
cular and hierarchical plots of the VEGF signaling path-
way (Additional file 1: Figure S9), our analysis revealed 
VEGFA + tumor/epithelial cells and FDX1 + tumor/epi-
thelial cells had the most significant effect on endothelial 
cells. In addition, we analyzed relevant receptor-ligand 
pairs in FDX1 + or VEGFA + tumors/epithelial cells com-
municating with other cells respectively (Additional file 
1: Figure S10).

Critical functional role of SFT2D1 in cervical cancer
We selected prognosis-related model genes 
among 10 model genes (Additional file 1: Figure 
S7). ADAM9, EHBP1, and SFT2D1 gene were shown sig-
nificantly affecting the survival of patients. Meanwhile, 
we also identified  SFT2D1  as an independent risk fac-
tor by multivariate analysis along with clinical features 
(Additional file 1: Table S3). Then we performed GSEA 
of  SFT2D1, and results showed  SFT2D1  was mainly 
involved in the regulation of autophagy, glycosaminogly-
can degradation, RNA degradation, riboflavin metabo-
lism, mTOR signaling pathway. We then investigate the 
effect of  SFT2D1  on immune microenvironment. The 
total scores, stromal scores and immune scores were 
significantly lower in the high-SFT2D1  group than in 
the low-SFT2D1  group, and the immune related scores 
were negatively correlated with  SFT2D1  expression 
(Additional file 1: Figure S8). Meanwhile, we performed 
immunohistochemical analysis of SFT2D1 and the neo-
vascularization marker CD31 in paraffin sections of cer-
vical cancer patients. The results showed both SFT2D1 
and CD31 were expressed up-regulated in cervical can-
cer tissues (Fig. 8A). Correlation analysis also showed 

Fig. 5 Construction and validation of nomogram. (A) Cox regression to construct nomogram. (B) Logistic regression to construct nomogram. (C) Curves 
of ROC for 1, 3, and 5-years. (D) DCA decision curves for 1, 3, and 5-years
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positive correlation in SFT2D1 and CD31 (Fig. 8B). Then 
we performed RT-qPCR to verify  SFT2D1  was highly 
expressed in cervical cancer cell lines compared to nor-
mal cervical cell lines ECT1/E6E7 (Fig. 8C). Meanwhile, 
western blotting showed that SFT2D1 was upregulated 
in SiHa, CaSki cervical cell lines (Fig. 8D). Since the role 
of SFT2D1  in cervical cancer has not yet been explored, 
we authenticated the effect of SFT2D1 on the function of 
SiHa and CaSki cells by in vitro experiments. RT-qRCR 
showed that four siRNAs significantly suppressed the 
expression of SFT2D1 in transfected SiHa and CaSki cells 
(Fig. 8E, F). We selected the two siRNAs with the high-
est knockdown efficiency among them: si-SFT2D1-2, 

si-SFT2D1-3 for subsequent experiments. CCK-8 analy-
sis showed that knockdown of  SFT2D1  significantly 
inhibited the proliferative ability of SiHa and CaSki cells 
(Fig. 8G, H). Wound scratch assay showed that knock-
down of SFT2D1 significantly inhibited the migration of 
cervical cancer cells (Fig. 8I, J). Transwell assay showed 
that knockdown of  SFT2D1  significantly inhibited the 
migratory and invasive abilities of SiHa and CaSki cells 
(Fig. 8K, L).

Fig. 6 Drug sensitivity analysis of the high and low-CuRA group. (A-I) The IC50 of Imatinib, Pazopanib, and Sorafenib was lower in the high-CuRA group 
than for the low-CuRA group contrary to AMG.706, CEP.701, Sunitinib, ABT.888, AZD.2281, and MS.275. The vertical coordinates displayed as drug names, 
demonstration of drugs with statistical significance
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Discussion
In this study, we developed and validated a prognostic 
model based on CuRA genes in cervical cancer. We also 
analyzed clinical characteristics and the immune micro-
environment between the high and low-CuRA patient 
groups. Based on the modeling scores, we analyzed drug 
sensitivity of the high or low-CuRA patient group to pro-
vide guidance on drug administration. SFT2D1, as a key 
gene involved in the progression of cervical cancer, it was 
associated with the cuproptosis-dependent angiogenesis 
pathway.

Cuproptosis and tumor angiogenesis are closely linked 
in the tumor microenvironment. CuRA genes may help 
explain the potential link between cuproptosis and angio-
genesis, which could improve the prognosis of cervi-
cal cancer patients. We constructed and validated our 
model based on CuRA signatures using patient data from 
TCGA and GEO. Several web tools enable us to extract 

prognostic variable characteristics from multi-omics data 
by selecting clinical variables or subgroup variables (lasso, 
elastic network regularization, and network regularized 
high-dimensional Cox regression) [44]. This implies the 
necessity of choosing the optimal regression method for 
subsequent studies. After comparing the errors of these 
three regression methods, we observed that lasso regres-
sion minimized the error. Consequently, we have opted 
for the lasso regression method to construct the CuRA 
model. The AUC values for 1, 2, 3, and 5-year survival 
in TCGA patients were 0.653, 0.759, 0.748, and 0.799, 
respectively, while the AUC values for 2, 3, and 5-year 
survival in GEO patients were 0.653, 0.646, and 0.604, 
respectively. The shorter survival time of patients in the 
high CuRA group may indicate that tumor cells pro-
mote tumor progression through cuproptosis-associated 
angiogenesis. In the analysis of clinical characteristics, 
CuRA modeling scores, N_stage, and T_stage were inde-
pendent risk factors, suggesting that modeling scores 

Fig. 7 Analysis of cellular communication network. (A) Cell annotation of 8 types of cells. (B) Number of interactions and interaction weights of samples 
in GSE168652. (C) Schematic diagram of the incoming and outgoing signals of samples. (D) Visualization of the expression of key genes in the VEGF signal-
ing pathway in 8 types of cells. (E) Visualization of cells involved as senders, receivers, mediators and influencers in the VEGF pathway
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could independently contribute to cervical cancer pro-
gression as a risk factor. Our CuRA model is represented 
by 10 genes involved in programmed death-related path-
ways, membrane vesicle transport, and tumorigenesis 
and progression. Among them, SFT2 Domain Containing 
1 (SFT2D1) is involved in protein and vesicle-mediated 
translocation and is also associated with poor survival in 
patients with high-risk neuroblastoma [45]. GSEA path-
way analysis results suggest that SFT2D1 plays an impor-
tant role in tumor-related pathways and is associated 
with the invasion and progression of cervical cancer. The 
immune microenvironment was scored for SFT2D1, and 
patients with high SFT2D1 expression had a higher CuRA 
score and a worse prognosis, showing a more aggressive 

immunosuppressive phenotype. We verified SFT2D1 was 
significantly upregulated in cervical cancer cells by west-
ern blotting, RT-qPCR, and immunohistochemistry. 
Therefore, SFT2D1, a CuRA modeling gene, may serve as 
a marker gene and provide a new reference for the treat-
ment of cervical cancer patients.

Antitumor strategies targeting angiogenesis have been 
used in the clinical management of patients with meta-
static or recurrent cervical cancer. However, improve-
ments in overall survival (OS) and progression-free 
survival (PFS) times for patients are still limited. Com-
bining immune checkpoint inhibitors (ICIs) with 
vascular targeting therapy has demonstrated synergis-
tic sensitization in the treatment of various tumors, 

Fig. 8 SFT2D1 was involved in the progression of cervical cancer. (A) SFT2D1 and CD31 were highly expressed in cervical cancer by IHC. (B) Correlation 
analysis between SFT2D1 and CD31. (C) Validation of SFT2D1 expression by RT-qPCR. (D) Validation of SFT2D1 expression by western blotting. Four siRNAs 
suppressed the expression of SFT2D1 in SiHa (E)and CaSki (F) cells by RT-qPCR. CCK-8 assay in in SiHa (G) and CaSki (H) cells. Wound scratch assay in SiHa 
(I) and CaSki (J) cells. Transwell assay in SiHa (K) and CaSki (L) cells
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including hepatocellular carcinoma [46, 47], Non-small 
cell lung cancer [48], gastric cancer [49]. In cervical 
cancer, a phase III randomized controlled trial showed 
increased overall survival in patients with recurrent or 
metastatic cervical cancer after treatment with pabli-
zumab combined with chemotherapy and bevacizumab 
[50]. Therefore, researching the differences in immune 
microenvironment in cervical cancer patients with differ-
ent CuRA scores can help promote the precise combina-
tion of immunotherapy and vascular targeting therapy, 
and enable personalized treatment selection of immune 
checkpoint inhibitors for patients with CuRA-related 
cervical cancer. Results showed that the group of patients 
with high-CuRA scores exhibited immunosuppression, 
while patients with low-CuRA scores may have a more 
significant therapeutic effect with immune agents target-
ing CD8 + T cells compared to patients in the high-CuRA 
scores group. Patients with high-CuRA scores had lower 
expression in most immune checkpoint genes. However, 
a minority of immune checkpoint genes presented high 
expression in the high-CuRA group, which suggests that 
treatment with anti-IL10RB, anti-KDR, anti-TGFB1, and 
anti-TGFBR1 may be considered to improve prognosis of 
patients in the high-CuRA group.

Cuproptosis plays an important role in tumor cell pro-
liferation and angiogenesis. Cell-cell communication 
analysis based on single-cell sequencing helps to reveal 
the tumor immune microenvironment and changes 
in the tumor itself [51]. Previous studies have shown 
that FDX1, as a key gene in cuproptosis, is involved in the 
progression of hepatocellular carcinoma [52] and glioma 
[53] as well as tumor immunity and drug sensitivity [54]. 
To investigate the relationship between angiogenesis and 
cuproptosis in cervical cancer, we identified two types of 
cells, FDX1 + tumor/epithelial cells and VEGFA + tumor/
epithelial cells, and conducted cell-cell communica-
tion analysis. We found that the genes VEGFA and PGF, 
which promote angiogenesis, are highly expressed in 
these two types of cells. Meanwhile, both types of cells 
are sent as signals to endothelial cells, indicating that 
they can affect the process of transendothelial migra-
tion and promote angiogenesis. In addition, both types 
of cells can transmit cell signals to macrophages to affect 
the macrophage migration inhibitory factor (MIF) path-
way. Previous studies have shown that MIF is involved in 
multiple immune processes and mediates immune escape 
leading to tumor metastasis [55–58]. Our results suggest 
that VEGFA + tumor/epithelial cells and FDX1 + tumor/
epithelial cells may play irreplaceable roles in the tumor 
immune microenvironment.

We conducted drug sensitivity analysis for different 
CuRA groups of patients, which may lay the foundation 
for personalized treatment. The GDSC provides informa-
tion on the sensitivity of tumor cell lines to drugs, with 

a smaller IC50 indicating greater sensitivity of the bio-
logical system to the compound. Our analysis showed 
that among small molecule tyrosine kinase inhibitors, 
imatinib, pazopanib, and sorafenib may provide bet-
ter efficacy for patients with high CuRA scores, while 
AMG.706, CEP.701, and sunitinib may provide better 
efficacy for patients with lower CuRA scores. Receptor 
tyrosine kinase inhibitors have significant anti-angiogenic 
effects and have made great progress in the treatment of 
gynecological tumors [59]. For example, pazopanib has 
improved PFS and OS in patients with advanced or recur-
rent cervical cancer, while AMG.706 (motesanib) inhibits 
angiogenesis in recurrent ovarian cancer and CEP.701 
(lestaurtinib) inhibits the growth of cervical cancer cells 
[60–62]. Studies have shown differences in IC50 values 
of drugs such as pazopanib, sorafenib, sunitinib, and 
imatinib among different CuRA subgroups of clear cell 
renal cell carcinoma, bladder cancer, and triple-negative 
breast cancer [63–65]. Our study also suggested that in 
the high CuRA score group, IC50 values of PARP inhibi-
tors ABT.888 (Veliparib), AZD.2281 (Olaparib), and 
MS.275 (Entinostat) were higher, indicating that these 
drugs were effective bythe cuproptosis-dependent angio-
genesis pathway These studies supported our results of 
drug sensitivity analysis and suggested that research on 
anti-cuproptosis-related angiogenesis targeted drugs may 
bring new treatment ideas and expand the application of 
drugs in the current dilemma.

In conclusion, we have conducted a novel cuproptosis-
related angiogenesis (CuRA) gene signature using single-
cell RNA sequencing and bulk RNA sequencing data, 
which provides significant predictive value for patients 
with cervical cancer. Of course, there are limitations to 
our results, and future relevant mechanisms need to be 
further validated in in vivo and in vitro experiments.
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