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Abstract

Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening
methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive
approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA
(ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis
provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response

and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection
technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding
treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.
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Introduction

Gastric cancer (GC) represents the fifth most common
tumor and the fourth leading cause of cancer-related
deaths worldwide [1]. According to World Health Organ-
ization statistics, the global incidence of GC is increasing
continuously, from 1.09 million in 2020 to 1.77 million by
2040 [2]. As early GC is restricted to the mucosa and sub-
mucosa, the 5-year survival rate is over 90%. However,
the prognosis is poor for advanced GC, with an average
survival of only 12 months [3].

The diagnosis of GC is often made at an advanced stage
due to the absence of early distinguishable symptoms and
the need for a practical mass screening approach for the
general population. Although serological tests, including
pepsinogen I, pepsinogen II, pepsinogen ratio, gastrin-17,
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helicobacter pylori antibody, and carbohydrate anti-
gen72-4 (CA72-4) [4], are less invasive, their sensitivity
and specificity are limited. The Japanese GC Association
has concluded that serum biomarkers are not helpful
for early GC diagnosis but can be used to detect recur-
rence and distant metastases and to predict patient sur-
vival and postoperative recurrence [5]. Currently, the
mainstay to confirm GC is endoscopy and tissue biopsy,
both of which are invasive operations and dependent on
the operator’s skill. Thus, they are impractical for a mass
screening program [6, 7]. Therefore, there is an urgent
need for a less invasive, more sensitive, specific, and
highly cost-effective test to improve the clinical utility for
diagnosis, prognostic assessment, monitoring changes,
and guiding treatment options.

During the past decade, liquid biopsy has become a
valuable tool in cancer detection by analyzing tumor-
derived entities circulating in body fluids, determining
the tissue of origin, monitoring prognosis, and assessing
response and resistance to the treatment [8, 9]. These
biomarkers include cell-free DNA (cfDNA), cell-free
RNA, proteins, autoantibodies, circulating tumor cells,
circulating tumor DNA (ctDNA), and cancer-derived
extracellular vesicles [10]. Among them, ctDNA is the
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cornerstone of liquid biopsy in cancer applications due  detection technologies, we summarized the clinical
to its intimate relationship with tumors and has become applications of ctDNA, focusing on its potential in the
a popular research topic in recent years [11, 12]. In this  diagnosis, prognosis, and therapy of GC (Fig. 1).

review, following a brief overview of the biology and
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Fig. 1 Clinical applications of liquid biopsy in gastric cancer. Liquid biopsy, including circulating tumor DNA (ctDNA), circulating tumor RNA
(ctRNA), extracellular vesicle, and circulating tumor cell (CTC), has gained popularity as a valuable tool in clinical applications of gastric cancer
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Circulating tumor DNA

The biological basis of ctDNA

cfDNA, identified by Mandel and Métais in 1948 [13],
refers to extracellular DNA found in blood or body fluids,
which can be either single-stranded or double-stranded
[14]. In healthy individuals, cfDNA is primarily derived
from apoptotic or necrotic cells or secreted from lym-
phocytes and other nucleated cells, which form small
homogeneous DNA fragments less than 180 bp in length
and 3.6-5.0 ng/mL in concentration. cfDNA has an esti-
mated half-life between 16 min and 2.5 h, depending on
factors such as the type and stage of the tumor [15].

In 1977, Leon et al. reported increased cfDNA derived
from tumors [16]. After that, Stroun et al. demonstrated
that ¢fDNA contained tumor-related mutations [17].
Therefore, cfDNA derived from tumors is described as
ctDNA produced by lysed tumor cells or micrometastatic
sites [18]. As a matter of principle, ctDNA contains the
same genetic features as the tumor cells, such as single
nucleotide mutations and methylation changes [19]. This
distinguishes ctDNA from c¢fDNA and guides the devel-
opment of cancer detection technologies. Since then,
many studies have investigated the potential clinical util-
ity of ctDNA analysis for various cancers [11, 12, 20, 21].
Researchers have gradually realized that the development
of ctDNA research holds promise for advances in oncol-
ogy diagnosis and prognosis prediction.

Advantages and disadvantages of ctDNA testing

Tissue biopsy is currently considered the gold standard
for diagnosing and treating cancers. It enables tumor
classification, aggressiveness and progression assessment,
and genetic composition and mutational phenotype anal-
ysis, thereby facilitating personalized treatment strategies
[22]. However, ctDNA detection has several advantages
over tissue biopsy. Firstly, tissue biopsy is invasive, expen-
sive, and risks complications such as bleeding, local infec-
tion, and damage to adjacent tissues [23]. Sometimes,
tissue biopsy is not feasible due to anatomic location or
underlying coagulation dysfunction. There may also be
an increased chance of false negative results due to the
limited retrieval of the tumor tissue [24]. In contrast,
ctDNA testing requires only a minimum of invasiveness
to acquire cancer-related information, regardless of the
location of the tumor. Secondly, tissue biopsy only pro-
vides information at a specific site and time point. At the
same time, blood can be conveniently drawn for ctDNA
testing at any time throughout the disease, thus allow-
ing for real-time monitoring of tumor changes without
the need for multiple invasive tissue biopsies or imaging
surveillance. The short half-life of ctDNA makes it con-
vincing for dynamic monitoring of disease progression
[25]. Finally, analysis of ctDNA provides a comprehensive
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molecular profile of a patient’s malignancy, thereby over-
coming the challenges posed by intra-tumor heterogene-
ity and providing additional supportive information in
the diagnosis and treatment selection [26].

Despite its potential, ctDNA has several drawbacks
that impede its use. Firstly, ctDNA is generally present in
low abundance in early-stage cancer and represents only
a tiny fraction of total cfDNA (ranging from less than
0.1% to more than 10%), which is further diluted by DNA
from non-tumor sources. Currently, detecting tumor-
specific mutations on cfDNA is the only way of identify-
ing the ctDNA [19]. Secondly, the proportion of ctDNA
in total cfDNA depends on tumor load, cancer stage,
cell renewal, and therapy response. It is estimated that
patients with a tumor load of 100 g (about 3 x 10'° tumor
cells) release 3.3% of their tumor DNA into circulation
each day [27]. Hence, ctDNA is frequently undetectable
in patients with a low tumor burden or at early stages.
Thirdly, ctDNA fragments have a half-life of less than
2 h, requiring rapid processing and stringent pre-analyt-
ical procedures such as blood collection, transport, pro-
cessing, and storage temperatures [28]. Fourthly, there
is no consensus on standard experimental procedures
for ctDNA assays, including sampling, storage condi-
tions, cfDNA isolation and concentration, data analysis,
and interpretation [29], leading to a lack of comparabil-
ity between studies [30]. Finally, most current clinical
studies are retrospective and small in sample size, high-
lighting an urgent need for multicenter, long-term pro-
spective clinical trials to validate the feasibility of ctDNA
in cancer detection, monitoring, and treatment [31].

ctDNA detection methods
Changes in ctDNA in plasma can be detected by quanti-
tative and qualitative (Fig. 2). The former refers to total
ctDNA concentration, while the latter refers to DNA
aberrations such as single nucleotide mutations and
methylation changes [32].

The qualitative analysis of ctDNA can be categorized
into two types: targeted and non-targeted [33]. The for-
mer is restricted to the detection of single or several
biomarkers, focusing on known genetic alterations in
primary tumors, such as KRAS (Kirsten rat sarcoma viral
oncogene), BRAF (v-Raf murine sarcoma viral oncogene
homolog B1), and EGFR (epidermal growth factor recep-
tor) [26]. On the other hand, the non-targeted analysis
aims to screen the genome and identifies novel genomic
abnormalities, usually through whole genome sequenc-
ing (WGS) testing. However, sensitive testing of large tar-
get regions is costly, so achieving an appropriate balance
between target region size and test sensitivity is essential.
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Fig. 2 Detection methods of ctDNA in gastric cancer. Quantitative and qualitative changes of ctDNA in plasma provide valuable information
for cancer. Quantitative change refers to the total ctDNA level, while qualitative changes include ctDNA mutations and methylation changes

Initially, detecting specific mutations in ctDNA relied
on standard quantitative reverse transcription polymer-
ase chain reaction (QPCR). However, due to its limited
sensitivity, qPCR was performed mainly in advanced
patients with high ctDNA levels [34]. In cases of lower
tumor load, where the percentage of ctDNA is signifi-
cantly lower than 0.1%, digital PCR (dPCR) and droplet-
based digital PCR (ddPCR) methods overcome these
limitations. For example, Pearson et al developed a
screening tool based on recombinant fibroblast growth
factor receptor 2 (FGFR2) ctDNA using ddPCR [35]. In
addition, further high-resolution PCR-based methods
that have been successfully applied to ctDNA analysis
include the BEAMing (beads, emulsion, amplification,
and magnetics) [36], ARMS-PCR (Amplification Refrac-
tory Mutation System PCR) [37], and COLD-PCR (co-
amplification at lower denaturation temperature- PCR)
at lower denaturation temperatures [38]. PCR-based
technology is faster, less expensive, and highly sensitive,
allowing for the detection of tumor-associated muta-
tions at frequencies as low as 0.01% [26]. However, its
main drawback is that a single test can detect only one
or a few mutations, limiting its ability to study significant
numbers and different kinds of genomic alterations [39].
In 2018, Cohen et al. developed a PCR-based test, Can-
cerSEEK, and investigated its utility for the early detec-
tion of eight common cancers. The results showed that it
could be used to assess cancer-specific characteristics in
the early stages (I-III) of more than 82% of cancers [40].

Compared to PCR-based methods, next-generation
sequencing (NGS)-based technology is character-
ized by high throughput, high sensitivity, and extensive
coverage. It can identify somatic and germline muta-
tions, copy number alterations, and other chromosomal
rearrangements, including translocation, conversion,
and inversion. Unlike targeted analysis, NGS does not
require prior knowledge of the exact genetic changes in

tumors, making it a non-targeted approach. Currently,
targeted deep sequencing methods include TAM-Seq
(tagged-amplicon deep sequencing) [41], Safe-SeqS (Safe-
Sequencing) [42], and CAPP-Seq (Computer Aided Pro-
cess Planning sequencing) [43]. These technologies allow
NGS to provide personalized cancer genetic profiles and
facilitate personalized medicine [19]. Based on this, Kato
et al demonstrated the feasibility of NGS for ctDNA
evaluation in patients with gastroesophageal adenocarci-
noma [44].

Whole exome sequencing (WES) and WGS can detect
tumor mutations in all patients, making them ideal for
genome-wide copy number analysis and detection of
significant structural variants. However, their high cost
renders them unsuitable for sensitively detecting single
nucleotide variants [26]. Despite lower analytical sensi-
tivity for ctDNA analysis throughout the disease course,
WES and WGS can track clonal genomic evolution asso-
ciated with tumor progression [45]. Li et al. developed
fingerprinting profiles based on WES for ctDNA in indi-
vidual patients. This study demonstrated that ctDNA
fingerprinting improves the specificity of several tumor
types for monitoring treatment response and sensitivity
[46].

Although tumor-associated gene mutations have been
the focus of biomarker research for a long time, their
wide diversity has always been a challenge for develop-
ing validated biomarkers. To achieve sufficient sen-
sitivity, a significant proportion of genomes must be
examined [47]. In contrast, epigenetic alterations appear
more stable and homogeneous in cancer, making them
a promising alternative for biomarker development
[48]. DNA methylation is the most widely studied epi-
genetic modification [49, 50]. There are two main types
of methods for detecting ctDNA methylation, namely
bisulfite-based conversion methods and non-bisulfite—
based conversion methods. The latter includes restriction
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enzyme-based methods such as methylation-sensitive
restriction enzymes (MSREs) [51], enrichment/immune-
precipitation-based techniques such as methylated DNA
immunoprecipitation sequencing (MeDIP-seq) [52],
and 5-hydroxymethylation profiling. Many methylation
detection methods based on bisulfite conversion have
been developed, such as whole genome bisulfite sequenc-
ing (WGBS), reduced-representation bisulfite sequenc-
ing (RRBS), methylated CpG tandems amplification and
sequencing (MCTA-seq), and methylation arrays [53].

Clinical applications

Diagnosis and screening

In the last few years, we have witnessed a growing body
of clinical evidence supporting the detection of cfDNA
for screening and monitoring patients with GC (Table 1).
This test would be detected four years earlier than the
current “gold standard” [54]. Plasma cfDNA levels in
cancer patients, including GC patients, are two to three
times higher than in healthy individuals [55]. However,
plasma cfDNA levels may also increase in response to
infection, inflammation, and other stressful conditions
[56]. Therefore, quantifying plasma cfDNA would not be
a sufficient biomarker to detect cancer due to its lack of
specificity.

Information on tumor-associated genetic variants can
be detected in ctDNA, ranging from simple point muta-
tions to complex structural variants and even chromo-
somal copy number variants [57]. Therefore, detecting
tumor-associated mutations in ctDNA can provide
more identification of GC and guide its detection. Bette-
gowda et al. [58] first caught ctDNA containing tumor-
specific single nucleotide variants in the plasma of 15
GC patients. Following this, Fang et al. [59] analyzed
eight genetic alterations and found that Tumor Protein
53 (TP53), AT-Rich Interaction Domain 1A (ARID1A),
and phosphatidylinositol-3-kinase catalytic subunit o
(PIBKCA) were the most frequently mutated in ctDNA of
patients with advanced GC. The detection rate of ctDNA
was found to correlate with the tumor stage. Tumor-spe-
cific TP53 mutations were detected in patients with stage
III-IV GC but not in patients with stage II GC [60]. It has
been demonstrated that the copy number of Human epi-
dermal growth factor receptor-2 (HER2) in the plasma
of GC patients is significantly higher than that of healthy
controls [61]. However, Kinugasa et al. [62] found low
concordance between HER2 levels in tumor tissue and
plasma DNA. This discordance may be caused by intra-
tumor heterogeneity or sampling error due to low ctDNA
levels [26]. To investigate whether ctDNA can cover
tumor heterogeneity, Gao et al. [63] performed paired
sequencing of tumor tissue biopsies and plasma samples
from five patients. The biopsies confirmed the presence
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of tumor heterogeneity, but ctDNA only partially covered
this heterogeneity. These analyses suggest that ctDNA
research may be superior to tissue biopsy when examin-
ing GC with extensive intra-tumor heterogeneity.

In addition to single nucleotide variants, many stud-
ies have evaluated ctDNA methylation as a potential
biomarker for cancer detection. It has been suggested
that epigenetic alterations often precede somatic muta-
tions and are more common than previously thought
[64]. Circulating cfDNA methylation is highly predictive
for GC, compared to methylation biomarkers in tissues
[65]. Hypermethylation of pl6 and E-calmodulin gene
promoter regions has been detected in serum DNA sam-
ples from GC patients but not in healthy volunteers [66].
However, the reported ratio of ctDNA pl6 promoter
methylation in GC varies significantly across different
studies [67], indicating the need for further validation.
Ras association domain family 1, form A (RASSF1A),
and protocadherin 10 (PCDH10) are tumor suppressor
genes. Hypermethylation of RASS1A and PCDH10 was
detectable in plasma samples from GC patients [68]. The
study by Bernal et al. [69] confirmed the high frequency
of methylation of seven genes in GC plasma, including
Adenomatous Polyposis Coli (APC), SH2 domain-con-
taining protein tyrosine phosphatase 1 (SHP1), E-calmo-
dulin, Estrogen receptor (ER), Reprimo, Semaphorin-3B
(SEMA3B) and 3-O-sulfotransferase-2 (30ST2). Addi-
tionally, methylation of tissue factor pathway inhibitor
2 (TFPI2) [70], XIAP associated factor 1 (XAF1) [71],
Reprimo-like (RPRML) [72], multiple tumor suppressor
1 (MTS) and Cadherin 1 (CDH1) promoter region [10]
dedicator of cytokinesis 10 (DOCK10), calcineurin bind-
ing protein 1 (CABIN1) and KQT-like subfamily, member
5 (KCNQS5) [73] can all be used as potential non-invasive
diagnostic indicators in GC. In a meta-analysis of 16
studies, Gao et al. [74] demonstrated a significant asso-
ciation between ctDNA methylation levels and various
parameters with high specificity and relatively moderate
sensitivity, such as TNM (Tumor Node Metastasis) stage,
tumor load, lymph node metastasis, and distant metas-
tasis in GC patients. Runt-related transcription factor 3
(RUNX3) methylation in ctDNA is a valuable biomarker
for detecting early GC [75]. The RUNX3 methylation [76]
and secreted frizzled-related protein 2 (SFRP2) methyla-
tion [77] index coordinates with cancer stage, lymphatic
and vascular invasion and is more sensitive than carbo-
hydrate antigen (CEA) as a biomarker.

It has been demonstrated that ctDNA methylation
can detect GC early and track cancer progression. Lin
et al [78] measured the methylation status of three
selected genes in blood samples from GC and precan-
cerous patients using the methylation-specific PCR
(MSP) assay. They found that the methylation rates of
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Zic family member 1 (ZIC1), homeobox D10 (HOXD10),
and RUNX3 were significantly increased during gastric
carcinogenesis. Combining these three genes showed
a synergistic effect in identifying GC and precancerous
lesions, compared to testing individual biomarkers [10].
The analysis of methylated ctDNA sites combined with
the study of other cancer-related changes in DNA can
also significantly improve cancer diagnosis [79]. There-
fore, combinations of multiple methylation sites or com-
binations of methylation with other mutations provide a
new idea to improve the test’s specificity. Although many
methylation sites associated with GC have already been
identified, it is necessary to explore the differentially
methylated sites between GC and normal groups further
for screening and surveillance purposes (Fig. 3).

Therefore, changes in ctDNA levels can be used to
detect GC, but more is needed as a biomarker for detect-
ing GC due to their lack of specificity. Detection of
tumor-associated mutations (e.g., TP53, HER2, ARID1A,
and PI3BKCA) may identify ctDNA more specifically
and thus guide GC diagnosis. ctDNA methylation can
also diagnose GC and assess tumor load. The specificity
of GC detection is improved by using a combination of
multiple methylation sites or combining ctDNA methyla-
tion sites with other mutations. ctDNA may be superior
to conventional tissue biopsy because it overcomes false-
negative detection due to intra-tumor heterogeneity of
tissue biopsy.

Evaluation of prognosis

Post-treatment surveillance aims to detect asymptomatic
recurrence, early treatment, and improve survival. Cur-
rent post-treatment surveillance and prognosis assess-
ment methods are imaging and endoscopic biopsy, which
have disadvantages such as radiation, invasiveness, and
high-cost [80]. As an alternative, blood biomarkers can
provide valuable prognostic information for GC. For
example, the sensitivity of CEA, carbohydrate antigen
19-9 (CA19-9), and carbohydrate antigen 72-4 (CA72-4)
ranges from 30.8-57.1% [81, 82]. Additionally, plasma-
based ctDNA monitoring is more sensitive than conven-
tional imaging for detecting recurrence, as ctDNA level,
mutation status, and methylation levels can vary dynami-
cally with the treatment [83].

A meta-analysis on the association of ctDNA and the
prognosis of GC showed that detecting ctDNA could be
a promising predictor in GC patients [84]. The changes
in ctDNA levels are reliable in assessing the prognosis of
GC. High ctDNA levels are associated with peritoneal
recurrence and poor prognosis in advanced GC patients
[59]. The ctDNA level decreased significantly 24 h after
surgery [85] but increased again if the patient experi-
enced tumor recurrence or progression [86]. A large
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study of 428 GC patients carried out by Lan et al. [87]
found that persistently high ctDNA levels after resection
were more sensitive than CEA in predicting recurrence.
Postoperative ctDNA was significantly associated with
recurrence up to 12 months after surgery. However, no
correlation was found between preoperative ctDNA lev-
els and recurrence. This suggested the clinical usefulness
of postoperative ctDNA monitoring for cancer recur-
rence [88].

ctDNA levels were also associated with disease-free
survival (DFS) in advanced GC patients 3 months after
receiving systemic chemotherapy. Patients with lower
ctDNA levels had significantly longer DES [89]. Further-
more, changes in ctDNA levels after treatment can pre-
dict treatment response and progression-free survival
(PES), with lower levels of ctDNA being associated with
improved outcomes [90]. ctDNA testing is capable of
detecting "molecular recurrence” earlier than an imaging-
based diagnosis in cases of post-treatment tumor recur-
rence [91], providing a potential therapeutic window to
advance further treatment [92]. However, it has also been
shown that ctDNA monitoring during chemotherapy
and post-operation does not appear to be a valuable tool
for predicting efficacy and recurrence, mainly due to the
poor sensitivity of ctDNA testing [93]. Therefore, devel-
oping new methods to improve the sensitivity of ctDNA
detection may be the direction of further exploration.

Changes in ctDNA profile are closely related to treat-
ment outcome and disease progression recurrence,
thereby serving for prognostic assessment. Early detec-
tion of recurrence during follow-up allows early inter-
vention, leading to a better treatment efficacy [26].
Postoperative tumor-informed ctDNA detection in EGC
is feasible and allows for enhanced patient risk stratifica-
tion and prognostication during curative-intent therapy
[94]. GC patients with high ctDNA mutation abundance
exhibited shorter overall survival (OS) than those with
low mutation abundance [95]. Reduced ctDNA mutation
frequency after treatment was associated with improved
PFS and OS [96]. Patients with peritoneal metastases
have more ctDNA mutated genes than non-peritoneal
metastases. Mutations in cell division cycle 27 (CDC27)
are associated with a higher risk of peritoneal metastases
and a lower survival rate [97]. Patients with Mesenchy-
mal-epithelial transition (MET) amplification in ctDNA
have shorter OS than those without MET amplification,
which indicates that ctDNA can predict disease progres-
sion in patients with advanced GC [98]. In some patients
with Epstein-Barr virus (EBV)-associated GC, circulating
EBV DNA is reduced after surgery and increases before
clinically detectable recurrence. This could help moni-
tor tumor load in patients with EBV-associated GC and
predict recurrence [99]. HER2 alterations in ctDNA were
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Fig. 3 High-frequency genetic markers associated with gastric cancer and their involvement in key cellular pathways

significantly associated with poor OS [44]. Patients who
tested positive for HER2 ctDNA before treatment had
significantly shorter survival than those with negative.
Still, no difference in survival was found when comparing
the survival of patients regardless of tissue HER2 status
[62]. This may be due to tumor heterogeneity, but ctDNA
testing may provide a more accurate assessment. Based
on a special NGS panel, the number of ctDNA mutations
before the start of first-line chemotherapy has prognos-
tic value. Moreover, residual ctDNA after three cycles
of systemic treatment is associated with an inferior sur-
vival [100]. Changes in genomic features of ctDNA could
be biomarkers for predicting the response of platinum-
based first-line chemotherapy in patients with advanced
GC [101]. Although many changes in genomic features
of ctDNA have already been identified, it is necessary to
explore more genomic changes further.

The MSP assay was applied to assess the value of the
early diagnosis of recurrent disease in patients with GC.
Nearly half of the patients showed aberrant methyla-
tion in plasma samples [102]. The transition of negative
XAF1 methylation to positive in postoperative serum was
strongly associated with tumor recurrence [71]. Aberrant
methylation of Munc18-1 interacting protein2 (MINT2)

promoter [103] and BVES (THBS1) [104] in ctDNA was
associated with the peritoneal spread and tumor pro-
gression, which could be considered as potential poor
prognostic factors for GC patients. The cumulative sur-
vival rates of ctDNA RASSF1A methylation and ctDNA
PCDHI10 methylation-positive cases were significantly
lower than those of negative cases [68]. However, some
studies found no correlation between RASSF1A promoter
methylation and clinical outcomes [105], thus necessitat-
ing further research to validate the relevant findings. In
addition to RASSF1A, Sex determining region Y-box 17
(SOX-17) and WNT inhibitory factor 1 (Wif-1) methyla-
tion were also associated with a decrease in PFS and OS
[106]. In stage III and IV GC patients, PES and OS were
shorter in those with hypermethylated SFRP2 [77]. Meth-
ylation of tissue inhibitor of metalloproteinase-1 (TIMP-
3) was associated with poorer DFS [107]. Therefore,
detecting ctDNA methylation may provide a new assess-
ment strategy for GC prognosis.

In summary, changes in ctDNA levels after treatment
can predict the prognosis of GC patients. Patients with
ctDNA mutations in GC have a worse prognosis than
those without or with lower ctDNA mutations. ctDNA
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methylation detection may also provide a new assess-
ment strategy for GC prognosis.

Treatment

Guiding target therapy

Current treatments for GC include surgery, chemo-
therapy, radiotherapy, and targeted therapies against
vascular endothelial growth factor receptor (VEGER,
ramucirumab) and HER2 (trastuzumab) [108].
Genomic analysis of ctDNA can identify therapeutic
targets. Combined with information on tumor load
or aggressiveness in ctDNA, it is possible to predict
the need for preoperative chemotherapy, surgery, and
postoperative chemotherapy. Repeat analysis of ctDNA
during treatment can also track changes in tumor
genomic profiles [26]. Molecular heterogeneity is a sig-
nificant challenge in biomarker-based clinical trials for
cancer patients [109]. Still, ctDNA analysis can help to
avoid false negative results caused by intra-tumor het-
erogeneity, especially in patients with metastatic GC.

In the context of metastatic GC, genomic analysis
of ctDNA may be more suitable than primary tumor
biopsy for identifying targetable aberrations, thus more
accurately guiding the targeted cancer therapy [26].
Identification of genomic alterations, e.g., TP53, LDL
receptor-related protein 1B (LRP1B), HER2, and KRAS
mutations, blood tumor mutation burden, and blood
microsatellite instability status can provide recommen-
dations for the clinical decision of advanced GC [98].
Analysis of HER2 copy number changes in ctDNA ena-
bles real-time assessment of HER2 status, which can be
used to monitor the efficacy of trastuzumab and guide
treatment selection. This approach can overcome the
challenge of heterogeneity and is more effective than
commonly used CEA and CA19-9 [110, 111]. By detect-
ing HER2 status during tumor progression and treat-
ment, clinicians can make proper decisions regarding
molecularly targeted therapy for GC patients [112].

The levels of PIK3CA mutation in ctDNA also cor-
related with drug response and disease progression
better than CEA, emphasizing the utility of ctDNA
in monitoring treatment response and disease pro-
gression [113]. ctDNA sequencing identified fibro-
blast growth factor receptor-2 (FGFR2) amplification,
which is undetected by tissue testing in patients with
advanced GC [114]. Patients with high levels of FGFR
amplification in ctDNA responded to treatment such
as the FGER inhibitor AZD4547 [35].

Exploring resistance mechanisms
ctDNA can monitor treatment response and iden-
tify resistance mutations during chemotherapy. Early
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detection of treatment resistance may allow modification
in therapy to improve patient prognosis or discontinue
treatment to avoid adverse effects [26]. Longitudinal
ctDNA sequencing provides new insights into genetic
alterations of trastuzumab resistance in HER2-positive
GC patients. By tracking changes in HER2 copy num-
ber, the main mechanisms of primary or acquired resist-
ance can be distinguished [115]. ctDNA sequencing is
performed during anti-HER2 therapy and identified 32
extended mutations that may be associated with trastu-
zumab resistance. Further studies targeting these muta-
tions could improve treatment strategies for patients
[116].

Changes in the number of mutations and copy num-
ber levels of the gene were associated with the treatment
effect. A significant difference in the incidence of TP53
mutations was found between the ineffective and effec-
tive groups [95]. Mesenchymal to epithelial transition
factor (MET) amplification occurs in approximately 5%
of GC patients. A strong correlation between high MET
copy number in ctDNA and the response to MET inhibi-
tors, such as Voritinib [117], suggests using ctDNA to
guide treatment decisions and assess prognosis in GC
patients [118].

The analysis of ctDNA by NGS has revealed sev-
eral mutations that lead to therapeutic resistance dur-
ing disease progression. These include recurrence of
MET amplification, multiple secondary MET mutations
(including D1228, Y1230, V1092, G1163, and L1195), and
significant increases in the relative copy number of the
FGFR2 gene. These studies suggest that ctDNA analysis
can provide quantitative information about the develop-
ment of therapeutic resistance and can also be used to
explore the resistance mechanisms [119, 120].

Perspectives

Analysis of ctDNA has the potential to be applied in the
detection, evaluation of prognosis, and therapeutic guid-
ance of cancer (Table 2). A standardized ctDNA assay
has yet to be identified, so cross-sectional comparisons
between studies are currently unavailable. Methodologi-
cal differences among studies, such as variations in blood
collection tubes, storage time and temperature, DNA iso-
lation methods, and the nature of the analysis (automated
or manual), may affect the results of meta-analysis, lead-
ing to false positives or false negatives. For instance, a
study comparing different blood collection tubes to ana-
lyze epigenetic alterations in ctDNA found that some
could only be refrigerated for 24 h, while others could be
stored at room temperature for 48 h [121]. Additionally,
the use of plasma or serum may introduce differences
in results, as serum may have a high DNA vyield due to
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contamination of the sample with DNA from leukocytes
[122]. Therefore, it is crucial to specify an optimal set
of methods for ctDNA collection, storage conditions,
extraction, and analysis to ensure comparability among
studies and greater convenience in the clinical research
[29].

To detect precancerous lesions and early cancers, there
will most likely not be enough ctDNA in the plasma due
to low disease burden. The low concentration of ctDNA
can be compensated by developing novel reagents and
methods for ctDNA isolation and extraction to improve
ctDNA capture efficiency and reduce costs. Combin-
ing analytes can achieve the sensitivity and specificity
required for robust early detection assays. For example,
the specificity of detection is improved by using ctDNA
methylation site combinations or methylation in combi-
nation with other mutations or by using ctDNA in com-
bination with other biomarkers such as CEA, CA19-9,
and CA72-4.

Another major obstacle to using ctDNA testing as a
screening method is our desire to identify multiple can-
cer types without prior knowledge of any particular
cancer mutation. Given the high costs of ctDNA stud-
ies, assessing all coding regions in cancer-associated
genes is unrealistic. While the cost of sequencing will
decrease over time, current methods may reduce the cost
of ctDNA testing by focusing on mutations or methyla-
tion of specific genes. As a result, current ctDNA testing
methods are unlikely to detect uncommon cancers with
unusual cancer characteristics [28].

Analysis of ctDNA has been shown to provide informa-
tion on mutations that are not found in tissue biopsies
due to intra-tumor heterogeneity, which can help strat-
ify patients for testing targeted drugs and may also help
identify new therapeutic targets. Moreover, most current
clinical studies on ctDNA are retrospective, with small
sample sizes. All these must be explored in more multi-
center and long-term prospective clinical trials [26].

Conclusions

GC remains one of the most common malignancies
worldwide with a poor prognosis, primarily due to the
lack of population-appropriate screening, early detection
methods, and suitable treatment options. The application
of ctDNA as a biomarker is an exciting and emerging area
for disease screening and monitoring in GC. Moreover,
combining ctDNA with other biomarkers is expected to
enhance cancer management for GC patients in the near
future.
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