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Abstract 

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) still present a huge threaten to women’s 
health, especially the local advanced patients. Hence, developing more effectiveness prognostic signatures is urgently 
needed. This study constructed and verified a robust RNA-binding proteins (RBPs) related signature through a series 
of bioinformatics methods and explored the biological function of hub RBP in vitro experiments. As a result, the 10 
RBPs signature was successfully established and could act as an independent prognostic biomarker in CESC patients, 
which displayed the highest sensitivity and specificity in prognosis prediction compared with other clinicopathologi-
cal parameters. The risk model also presented good performance in risk stratification among CESC patients. Besides, 
a nomogram was constructed based on pathological stage and the risk signature and exhibited satisfactory accuracy 
in prognosis prediction. Functional enrichment indicated that the risk signature mainly participated in immune-
related pathways and cancer-related pathways, and the infiltration level of immune cells and immune checkpoints 
showed a significantly higher degree in low-risk patients compared with high-risk patients. Notably, the 10 RBPs 
signature act as a novel biomarker in immunotherapy and chemotherapy response. In addition, PRPF40B was selected 
as hub RBP and its transcription and translation levels were obviously increased in CESC tissues, as well as Hela 
and Siha cells. Knockdown of PRPF40B inhibits the proliferation, migration and invasion of Hela and Siha cells in vitro. 
In conclusion, our research provides a noticeable strategy in prognostic prediction among CESC patients, which may 
illuminate the prospect of CESC patients’ clinical outcome.
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Introduction
Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) have been the fourth lead-
ing cause of morbidity and mortality among women 
cancers, with approximately 604,127 (3.1%) newly inci-
dences and 341,831 (3.4%) newly death in 2020 [1]. CESC 
is curable in the early stage, but the locally advanced 
cases with or without distant metastasis usually present 
poor prognosis even though the combination therapeu-
tic including surgical intervention, radiotherapy and 
chemotherapy have been implicated in these patients 
[2]. Recently, emerging prevention strategies have been 
launched into clinical practice, including human papil-
lomavirus (HPV) vaccine and early cervical screening, 
after WHO called for elimination of CESC all over the 
world [3]. With the development of detection technology, 
increasingly advanced CESC has been diagnosed earlier 
and more accurately. Meanwhile, novel measures such 
as the target therapy and immunotherapy also have been 
applied [4, 5]. However, limited by tumor heterogene-
ity and economic factors, the above treatment measures 
are difficult to be effectively implemented, thus, CESC is 
still a major threaten to poor prognosis among females, 
especially in the developing countries [6, 7]. Nowadays, 
next-generation sequencing has been widely employed 
in various aspects of cancer research, and it is becom-
ing an effective method to extensively screen biomarkers 
for prognosis evaluation and therapy target selection [8]. 
Comprehensively analysis of genome transcription and 
multi-omics analysis could select promising biomarkers 
in a less expensive way, which may alleviate the nonneg-
ligible burden generated by HPV vaccination and cyto-
logical examination [9]. Therefore, discovering the novel 
biomarkers for CESC is urgently needed and could pro-
vide valuable information for further research.

RNA binding proteins (RBPs) are proteins that interact 
with many types of RNA. So far, more than 1500 RBPs 
have been found in the human genome [10]. RBPs par-
ticipate in the post transcriptional regulation of RNA, 
determine the function of each RNA transcript in cells, 
and ensure cell homeostasis [11]. They establish highly 
dynamic interactions with other proteins and coding 
RNA and non-coding RNA to form functional units 
called ribonucleoprotein complexes, which have the 
functions of regulating RNA splicing, polyadenylation, 
stability, localization, translation and degradation [12]. In 
gynecological malignant tumors, more and more abnor-
mally expressed RBPs have attracted people’s attention. 
They play an important role in the occurrence and devel-
opment of tumors by influencing the proliferation, apop-
tosis, epithelial mesenchymal transition (EMT), invasion 
and metastasis, drug resistance and other processes of 
cancer cells [13]. In the future, they may be helpful for 

early diagnosis or serve as a target for the treatment of 
tumor recurrence, so as to improve the prognosis of 
patients and prolong their survival time [14]. In addi-
tion, RBPs may be used as diagnostic markers or poten-
tial therapeutic targets, and could participate in the 
proliferation, cell cycle, apoptosis, drug resistance and 
other related biological processes of CESC [15]. There-
fore, a comprehensive analysis of the biological function 
and prognosis of RBPs will help to better understand the 
occurrence and development of CESC, and may reveal 
new targets for therapeutic application and provide fur-
ther ideas and references for subsequent research.

Here, we firstly identified differentially expressed RBPs 
between paracancerous tissues and CESC, then con-
structed a RBPs’ signature based on this basis. A nomo-
gram was also established to comprehensively investigate 
the clinical implication of RBPs’ signature. Furthermore, 
the mutational landscape, responses to immunotherapy 
and chemotherapy of different risk populations were 
explored through various bioinformatics methods and 
webtools. Finally, the biological function of PRPF40B was 
verified in vitro experiments. Our study mainly focused 
on the prognosis and functions of RBPs, hoping the 
results would shed light on the fog of RBPs in CESC, and 
provide useful information for clinicians.

Results
Workflow schedule of this study
The technology schedule of this study was presented in 
Fig.  1. Firstly, we explored the differentially expressed 
RBPs between paracancerous and CESC, and the cor-
responding functional enrichment analysis was also 
conducted. Secondly, the TCGA-CESC cohort was sepa-
rated into a training cohort (208 patients) and a testing 
cohort (88 patients) according to the ratio of 7:3. Uni-
variate Cox regression, lasso Cox regression and step-
wise multivariate Cox regression were employed to 
select candidate hub RBPs and a 10-RBPs signature was 
finally constructed in the training cohort. The risk sig-
nature was evaluated through survival analysis, multi-
variate Cox analysis and tAUC in the training cohort 
and then validated in the testing cohort. Thirdly, the 
training cohort and testing cohort were integrated into a 
pooled cohort and the patients with full scale of informa-
tion were retained for further analysis. The decision tree 
was established to optime the risk stratification of CESC 
patients and the nomogram was constructed to quantify 
the risk value of CESC patients. Then the nomogram was 
assessed through calibration curves, tAUC and DCA. 
Fourth, the study investigated the mutational landscape, 
effect on immunotherapy and chemotherapy response 
of the RBPs’ signature through multiple bioinformatics 
methods and online webtools. In addition, the expression 
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of PRPF40B was detected in CESC cell lines and clinical 
tissues, respectively. Finally, the biological functions of 
PRPF40B were explored by CCK-8, wound healing and 
transwell assay in vitro experiments.

Construction of 10‑RBPs signature in CESC
Firstly, a total of 398 DEGs were identified between 
the paracancerous and tumor samples. The heatmap 
and volcano plot were showed in Fig.  2A, B. Func-
tional enrichment analysis indicated that the DEGs are 
mainly associated with mRNA processing and RNA 
splicing biological process, in addition, KEGG results 
presented these DEGs mainly participate in mRNA sur-
veillance and spliceosome pathway (Fig.  2C, D). Sec-
ondly, we performed a series of bioinformatics methods 
to select candidate genes and establish the risk signa-
ture. TCGA-CESC cohort was randomly separated into 
a training cohort (208 patients) and a testing cohort (88 
patients), the detailed information was listed in Addi-
tional file 1: Table S3. Univariate Cox regression showed 
that 26 RBPs were significantly associated with prognosis 
among CESC (Fig. 2E, Additional file 1: Table S4). Lasso 
regression indicated that the partial likelihood devi-
ance was minimal when log(lambda) equal to − 3.846, 
and 16 genes were obtained for further analysis (Fig. 2F, 

Additional file 1: Figure S1). The 10-RBPs signature was 
finally constructed by multivariate stepwise Cox regres-
sion (Fig. 2G). The detailed information of Cox result was 
presented in Table 1 and the risk score was calculated as 
mentioned above. 

10‑RBPs signature performed satisfactory prognostic 
ability both in training cohort and testing cohort
Next, we evaluated the 10-RBPs signature in the train-
ing cohort firstly. As shown in Fig. 3A, the transcript lev-
els of these 10 RBPs were presented in a heatmap, the five 
protective genes were higher expressed in low-risk group, 
and the remaining five risk genes were higher expressed 
in high-risk group. The risk score was significantly higher 
in dead patients compared with alive patients (P < 0.001). 
Meanwhile, the proportion of dead patients in high-risk 
group was much higher. Survival plot indicated that the 
patients in high-risk group exhibit significantly shorter 
overall survival time (P < 0.001). Multivariate Cox regres-
sion suggested that the 10-RBPs signature served as an 
independent prognostic factor among CESC patients 
(P < 0.001). tAUC plot showed the 10-RBPs signature was 
much more accurate than other clinical parameters includ-
ing age, stage and grade. The bar plot was used to show the 
quantitative results of tAUC. Furthermore, the 10-RBPs 

Fig. 1 Schematic diagram of this research
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Fig. 2 Construction the risk signature in training cohort. A Heatmap was drawn to show the DEGs between normal cervical tissues and CESC 
with the following criterion: |logFC|> 1 and adjust P value < 0.05; B A total of 398 DEGs were presented in volcano plot, up-regulated DEGs were 
displayed as red points and down-regulated DEGs were displayed as green points; C Top 10 enriched biological process of these 398 DEGs; D KEGG 
enrichment results of these 398 DEGs; E 26 DEGs showed statistical significance (P < 0.05) through univariate Cox regression, DEGs with HR < 1 were 
presented as blue bars and DEGs with HR > 1 were presented as red bars, the bars’ length represent the 95% confidence interval; F 16 DEGs were 
selected through lasso Cox regression by tenfold cross validation, red represent the risk DEGs and blue represent the protective DEGs; G 10 DEGs 
were finally gathered through step-wise multivariate Cox regression to construct the risk signature
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signature was validated in testing cohort and similarity 
results were presented in Fig. 3B.

The nomogram could effectively predict the prognosis 
among TCGA‑CESC patients
To explore the clinical application of the 10-RBPs signa-
ture, we combined the training cohort and testing cohort 
and 263 CESC patients with full-scale clinical informa-
tion were extracted. Multivariate Cox regression indicated 
the pathological stage (P = 0.020) and risk score (P < 0.001) 
were both remarkably associated with prognosis among 
TCGA-CESC patients (Fig. 4A). Hence, the stage and risk 
scores were submitted to establish the decision tree. As 
shown in Fig. 4B, three different subgroups were identified 
based on two major components in which the risk score 
showed the most powerful effect. Patients with lower risk 
scores were labeled as “low-risk”, while higher risk scores 
& stage I–III and higher risk & stage IV were labeled as 
“intermediate-risk” and “high-risk”, respectively. Survival 
analysis presented significant differences between the sub-
groups (Fig.  4C). To quantify the individual risk assess-
ment with CESC, a nomogram was developed to achieve 
this goal (Fig. 4D). The red arrow showed an illustration of 
the calculation process. Calibration curves indicated that 
the nomogram performed good performance in predict-
ing prognosis (Fig.  4E). tAUC illustrates the nomogram 
acts with much higher accuracy in prognosis prediction 
than else clinicopathological features (Fig. 4F). DCA curves 
indicated the nomogram brings about more net benefit for 
CESC patients than other clinical parameters in different 
cut-offs of survival time (Fig. 4G).

10‑RBPs signature may participate in various 
cancer‑related pathways and play a vital role in tumor 
progression
To comprehensively explore the biological functions of 
the risk signature, we performed enrichment analysis in 

TCGA-CESC based on Hallmark gene sets. Firstly, the 50 
Hallmark gene sets were quantified by “ssgsea” and the 
results showed most gene sets were significantly higher 
in high-risk group compared with low-risk group, includ-
ing hypoxia, glycolysis and EMT, et  al. (Fig.  5A). GSEA 
results indicated most cancer-related pathways were 
enriched in high-risk group, including angiogenesis, 
EMT, hypoxia, et  al., and the immune-related pathways 
were enriched in low-risk group, including IFN-alpha 
response and IFN-gamma response (Fig.  5B). Survival 
analysis presented that these cancer-related pathways 
were positively associated with poor prognosis, which is 
consistent with the above results (Fig.  5C). In addition, 
the landscape of somatic mutation was also explored 
between different risk groups. The top 20 mutated genes 
in different groups were presented and compared (Addi-
tional file  1: Figure S2A, B). PIK3CA showed the high-
est mutation frequency in high-risk group, while TTN 
showed the highest mutation frequency in low-risk 
group. Fisher’s exact test revealed that PDE3A, STK11, 
APC, BAHCC1, DSCAML1, TCOF1, SPEN and DNAH3 
were higher mutated in the high-risk group compared 
with low-risk group (P < 0.05, Additional file  1: Figure 
S2C). The lollipop plot showed the different mutational 
sites of PDE3A (Additional file  1: Figure S2D). Besides, 
co-occurrence and mutually exclusive mutations were 
also investigated. From the results, we know that most 
co-occurrence patterns happened in high-risk group, 
which indicated a potential common effect induced by 
their mutations (Additional file 1: Figure S2E, F).

10‑RBPs signature showed a significant relationship 
with immune cell infiltration and immunotherapy response
A total of 3608 DEGs were identified between high-risk 
group and low-risk group, the results were presented 
in volcano plot (Fig.  6A). Enrichment analysis indi-
cated the up-regulated genes were mainly participate 

Table 1 Multivariate Cox results of the 10 RBPs in the risk signature

CI confidence interval

Gene Coefficient Hazard ratio Lower 95%CI Upper 95%CI P value

AIMP2 0.431 1.539 1.080 2.193 0.017

ANGEL2 0.490 1.632 1.159 2.300 0.005

DDX26B − 0.683 0.505 0.340 0.750 < 0.001

GAPDH 0.285 1.330 0.998 1.774 0.052

HENMT1 − 0.374 0.688 0.510 0.927 0.014

PRPF40B 0.544 1.723 1.188 2.501 0.004

RBM38 − 0.437 0.646 0.448 0.931 0.019

RNASEH2A − 0.359 0.698 0.503 0.969 0.032

SNRPN − 0.459 0.632 0.475 0.841 0.002

LRRFIP1 0.265 1.304 0.946 1.797 0.105
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Fig. 3 Evaluation the 10-RBPs signature in training cohort (A) and testing cohort (B). The transcript difference of 10 RBPs between high-risk 
group and low-risk group were presented in heatmap; Boxplot to show the difference of risk value between alive patients and dead patients; 
Stacked column chart was employed to present the proportion of alive and dead patients between high-risk group and low-risk group; Survival 
plot was conducted to exhibit the prognostic difference between high-risk group and low-risk group; Forest plot presented the multivariate Cox 
regression of 10-RBPs signature and clinical parameters; Prediction ability of 10-RBPs signature and other clinical factors were displayed in tAUC 
curves; Barplot to show the difference of AUC towards various indicators
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Fig. 4 Assessment the clinical application of the 10-RBPs signature in TCGA-CESC cohort. A Forest plot to show the multivariate Cox regression 
of age, grade, stage and risk signature; B A decision tree was established by combining the risk signature and pathological stage for the purpose 
of optime the risk stratification; C Significant survival difference was observed between the three subgroups; D Details of the nomogram, 
red arrow represent the calculate process of a random selected patient; E Calibration curves of the nomogram; F Comparison of the tAUC 
between nomogram, age, grade and stage; G DCA curves to show the net-benefit of nomogram at 3-year, 5-year and 10-year time point
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in cancer-related pathways, including glycolysis/glu-
coneogenesis, HIF-1 signaling pathway, focal adhesion 
and Hippo signaling pathway, et al. (Fig. 6B). The down-
regulated genes were enriched in immune-related path-
ways, for example, the T cell receptor signaling pathway 

(Fig.  6C). These results indicated the 10-RBPs signature 
may influence the tumor-immune interaction. Hence, we 
quantified and compared the infiltration of 28 immune 
cells between different risk groups. As shown in Fig. 6D, 
most immune cells presented higher infiltration in 

Fig. 5 Functional enrichment analysis between high-risk group and low-risk group. A Hallmark gene sets were quantified by “GSVA” and compared 
between high-risk group and low-risk group; B GSEA to explore the difference of pathway between high-risk group and low-risk group; C 
Cancer-related pathways presented significant survival difference in CESC
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Fig. 6 The effect of 10-RBPs on immunotherapy. A A total of 3608 DEGs were showed in volcano plot (P < 0.05); B KEGG enrichment 
of the up-regulated DEGs; C KEGG enrichment of the down-regulated DEGs; D Comparison of the 28 immune cells between high-risk group 
and low-risk group; E Comparison the transcript difference of 10 immune checkpoints between high-risk group and low-risk group; F Violin plot 
presented the differences of IPS scores between high-risk group and low-risk group; G Exploration of the immunotherapy response of 10-RBPs 
signature in IMvigor210 cohort
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low-risk group. Similarly, the immune checkpoint genes 
were significantly higher expressed in low-risk group 
(Fig.  6E). Furthermore, the IPS, IPS-CTLA4 blocker, 
IPS-PD1/PD-L1/PD-L2 blocker and IPS-CTLA4- PD1/
PD-L1/PD-L2 blocker were remarkably elevated in low-
risk group, indicated the patients in low-risk group may 
present more sensitivity to immunotherapy response 
(Fig.  6F). Finally, the IMvigor210 cohort was used to 
evaluate the prognostic ability of 10-RBPs signature. As 
shown in Fig. 6G, boxplot showed the risk score was sig-
nificantly higher in “SD/PD” group compared with “CR/
PR” group, from which we know the risk score was nega-
tively associated with immunotherapy response. Survival 
plot declared the 10-RBPs signature also act good perfor-
mance in IMvigor210 cohort (P < 0.001). As expected, the 
high-risk group possesses a higher proportion of patients 
who showed “SD/PD” response to immunotherapy.

10‑RBPs signature served as a potential biomarker 
in chemotherapy resistance
GSEA results indicated that two chemotherapy-related 
pathways were enriched in high-risk group, includ-
ing gefitinib resistance pathway and endocrine therapy 
resistance pathway (Fig.  7A). GSCALike web tool pro-
vided the Spearman correlation between gene expres-
sion and IC50 drug data, the positive correlation means 
the gene’s high expression is resistant to the drug, and 
vice versa. The results presented that DDX26B, RBM38 
and ANGEL2 were negatively correlated with IC50 data, 
while PRPF40B was positively correlated with IC50 data, 
providing certain evidence for the effect of 10-RBPs on 
chemotherapy resistance (Fig.  7B). In addition, we per-
formed chemotherapy prediction in TCGA-CESC and 
the results indicated the high-risk patients showed higher 
IC50 in several chemotherapy drugs, including Rosco-
vitine, BMS.536924, PF.02341066, Rapamycin, Suni-
tinib, VX.680, Bortezomib, LFM.A13, Metformin, NVP.
TAE684, MS.275 and Methotrexate (Fig. 7C). Besides, a 
total of 222 TCGA-CESC patients who received adjuvant 
therapy were selected and significant survival difference 
was observed between different risk groups among these 
patients. We further divided these 222 patients into three 
subgroups labeled “CR”, “PR/SD” and “PD”, respectively. 
Results indicated the “PD” subgroup possessed high-
est risk score compared with other subgroups, while the 
“CR” subgroup presented the lowest risk score. Mean-
while, the proportions of “PD” and “CR” patients in high-
risk group and low-risk group were significantly different 
(Fig. 7D).

PRPF40B was up‑regulated in CESC tissues and cell lines
From the above results, we observed PRPF40B may act 
as a prognostic biomarker in CESC. Hence, the study 

verified the expression level of PRPF40B in clinical tis-
sues and CESC cell lines. Firstly, survival analysis indi-
cated that higher expression of PRPF40B showed a 
positive association with worse OS in TCGA database 
(Fig. 8A). Secondly, results of RT-qPCR indicated that the 
relative mRNA expression of PRPF40B was significantly 
higher in CESC tissues compared with paracancerous tis-
sues (P < 0.05, Fig. 8B). The translation level of PRPF40B 
was verified through western blot (P < 0.05, Fig. 8C, D). In 
addition, the protein level of PRPF40B was also increased 
in CESC cell lines Hela and Siha (P < 0.05, Fig. 8E, F).

PRPF40B accelerates the proliferation, migration 
and invasion of CESC in vitro
To further evaluate the biological functions of PRPF40B, 
we conduct experimental validation for this hypothesis. 
Western-blot presented that the PRPF40B was success-
fully knockdown in Hela and Siha cell lines (Fig. 9A, G). 
CCK-8 assay suggested that the proliferation of Hela and 
Siha cells was significantly suppressed in the siPRPF40B 
group (P < 0.05, Fig.  9B, H). The wound healing assay 
indicated that siPRPF40B significantly inhibits the 
growth rate of Hela and Siha cells (Fig. 9C, D, I, J). Con-
sistent with the above results, transwell assay suggested 
the migration and invasion ability of these two cells 
were obviously suppressed after siPRPF40B was treated 
(Fig.  9E, F, K, L). These results declared that PRPF40B 
acts as an oncogene in CESC, which is in accordance 
with the prognostic effect, even though the underlying 
mechanism is unknown.

Discussion
Emerging evidence suggested that RBPs played vital roles 
during tumorigenesis and progression, however, little is 
known about the transcript pattern and effect of RBPs 
in CESC. Hence, we developed a robust 10-RBPs sig-
nature and investigated the potential functions of hub 
genes retrieved from the risk model. The 10-RBPs signa-
ture could serve as a novel biomarker for CESC patients 
toward prognosis, immunotherapy and chemotherapy. 
Besides, the nomogram could transform the categori-
cal variables into quantitative values and provide precise 
risk assessment among CESC patients. Notably, in vitro 
experiments indicated that the PRPF40B acts as a risk 
biomarker in CESC cell lines. All these discoveries dem-
onstrated the 10-RBPs have satisfactory predictive ability 
on the OS of CESC patients.

Our study found 398 RBPs showed differential expres-
sion between paracancerous tissues and CESC tissues, 
functional enrichment suggested these RBPs mainly par-
ticipate in mRNA processing, RNA splicing and regu-
lation of translation. Previous studies have found that 
abnormal regulation of translation, RNA processing and 
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RNA metabolism are the driving force for the occur-
rence and development of human diseases [16, 17], 
which is consistent with our conclusions. Previous 

studies pointed out that the prognosis model of CESC 
patients based on histone family, miRNA and lncRNA 
performed well in predicting the survival rate of CESC 

Fig. 7 The effect of 10-RBPs on chemotherapy. A GSEA showed the high-risk group was positively associated with chemotherapy resistance 
pathways; B Correlation between transcript expression and IC50 data retrieved from GDSCLike database; C Comparison the estimated IC50 data 
between high-risk group and low-risk group in TCGA-CESC; D Evaluate the chemotherapy response of 10-RBPs in CESC
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[18–20], however, models based on the role of RBPs in 
CESC and its prognostic effects have not been explored 
and constructed. Considering the limited ability of a sin-
gle RBP to predict prognosis, this study built a prediction 
model based on 10 RBPs (DDX26B, SNRPN, RBM38, 
HENMT1, RNASEH2A, LRRFIP1, GAPDH, AIMP2, 
ANGEL2 and PRPF40B) through a series of bioinformat-
ics analysis. Our results showed that CESC patients with 
high expression of AIMP2, ANGEL2 and PRPF40B had 
poor OS, while those with high expression of DDX26B, 
SNRPN, HENMTI, RBM38 and RNASEH2A had bet-
ter OS. RBM38 can change the stability and translation 
of targeted mRNA, thus affecting cell proliferation, cell 
cycle arrest, myogenic differentiation and other biologi-
cal processes, and is a potential biomarker and therapeu-
tic target for human tumors [21]. In addition, AIMP2 is a 
non-enzymatic component required by multi-tRNA syn-
thetase complex. Its alternative splicing variant AIMP2-
DX2 can damage the activity of AIMP2 and is related 
to carcinogenesis, and the proportion of AIMP2-DX2/
AIMP2 is closely related to the main cancer signal path-
way and poor prognosis [22]. The human PRPF40B gene 
can regulate hundreds of alternative splicing sites and 

inhibit hypoxia expression signals, which plays an impor-
tant role in the development of human tumors [23]. The 
above evidence showed that the functions of RBPs were 
closely related to human tumors, and can be used to 
build models and support our research results.

RBPs signatures have been developed in several human 
cancers, including hepatocellular carcinoma, endome-
trial cancer, head and neck squamous cell carcinoma, 
lung adenocarcinoma, et  al. [24–27]. This study estab-
lished the 10-RBPs signature in CESC, furthermore, a 
nomogram was constructed based on the risk signature 
and pathological stage. Compared with age, pathologi-
cal stage and grade, the tAUC of the nomogram was sig-
nificantly higher and the mean value reached upon 0.8. 
Besides, the decision tree indicated the 10-RBPs sig-
nature was the dominant influencing factor for CESC’s 
prognosis. GSEA presented most classic cancer-related 
pathways were obviously enriched in high-risk group 
compared with the low-risk group, including angiogen-
esis, EMT, glycolysis, hypoxia, cell cycle, mTORC1 and 
TGF-beta signaling pathway, which proved the 10-RBPs 
signature had the potential to be a reliable biomarker for 
CESC from the side. Enhanced glycolysis was the addi-
tional energy source for tumor proliferation and pro-
gression, for example, IGF2BP2 performed as a RBP and 
could regulate the m6A manner of MYC and thus pro-
moted the aerobic glycolysis, migration and proliferation 
in CESC [28]. mTORC1 could regulate the invasion, pro-
liferation and EMT of CESC cells through PI3K/AKT/
mTORC1 pathway as one of the signaling complexes of 
mTOR [29]. Wang’s study identified 19 invasion-related 
genes and clustered the CESC into two molecular sub-
types, and found TGF-beta signaling pathway was posi-
tively associated with the poor prognostic subtype [30]. 
In addition, our study performed survival analysis of 
these cancer-related pathways in CESC. The results indi-
cated most cancer-related pathways were significantly 
related to worse prognosis, which was consistent with 
the above results and other research, suggesting the tre-
mendous exploration value and potential mechanism of 
10-RBPs signature in CESC.

Remarkably, our signature may serve as a poten-
tial biomarker for immunotherapy and chemotherapy 
response. Functional enrichment analysis indicated 
that a variety of cancer-related pathways and chemo-
therapy-resistance pathways were enriched in high-risk 
group, while immune-related pathways were enriched 
in low-risk group, which is consistent with the previ-
ous results of our study. Previous reports demonstrated 
that immune escape is essential for tumor survival and 
progression, and may induce immunotherapy resist-
ance [31]. Here, we found the relative infiltration 
of immune cells and the transcript level of immune 

Fig. 8 Verify the expression level of PRPF40B in CESC tissues and cell 
lines. A Survival plot of PRPF40B in TCGA database; B the transcript 
level of PRPF40B in CESC tissues and paired normal tissues; C, 
D the translation level of PRPF40B in CESC tissues and paired 
normal tissues, and the quantitative results; E, F the translation 
level of PRPF40B in four cervical cell lines and the quantitative 
results. Values are expressed as the mean ± SD (n = 3); *P < 0.05 
versus vehicle-treated control group; A.U. arbitrary units
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checkpoints were both significantly increased in low-
risk group. Meanwhile, the IPS scores were remarkably 
elevated in low-risk group, suggesting the patients in 
low-risk group might present more sensitivity to immu-
notherapy response.

It is known that post-transcriptional regulation is 
a dynamic and continuous process, but it is not clear 
whether the changes of RBPs are sufficient to reflect the 
functions. Therefore, our work had some limitations. 
Firstly, the prognosis model was only based on TCGA 

Fig. 9 Investigate the biological function of PRPF40B in CESC cell lines. A, G Western-blot displayed the siPRPF40B model in Hela and Siha cell lines; 
Proliferation assay of vector and siPRPF40B in Hela cell (B) and Siha cell (H); Wound-healing assay of vector and siPRPF40B in Hela cell (C, D) and Siha 
cell (I, J); Transwell assay of vector and siPRPF40B in Hela cell (E, F) and Siha cell (K, L). Values are expressed as the mean ± SD (n = 5); *P < 0.05 
versus vehicle-treated control group
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cohort data, and needs to be verified in clinical patient 
cohorts and multi-center prospective study. Secondly, 
further experimental studies in  vitro and in  vivo are 
needed to clarify the molecular mechanism to better 
carry out clinical practice.

In conclusion, this study systematically explored the 
functions and potential prognostic value of RBPs in 
CESC, established a risk signature based on 10 RBPs 
and constructed a nomogram, aiming to provide new 
reference information for the individualized treatment 
and clinical outcome prediction of CESC patients. The 
10-RBPs signature may act as a novel indicator for immu-
notherapy and chemotherapy, which could fill the gaps in 
CESC’s treatment strategy and supply promising research 
topics for future research.

Materials and methods
Data acquisition and procession
The level 3 of TPM normalized RNA sequencing data of 
CESC and paracancerous cervical tissues were obtained 
from The Cancer Genome Atlas (TCGA) and Geno-
type-Tissue Expression (GTEx) database through UCSC 
online webtool (https:// xenab rowser. net/ datap ages/), 
respectively. A total of 10 paracancerous cervical sam-
ples and 296 CESC samples were acquired after removing 
the samples with missing survival times. Besides, 1542 
RBPs were gathered from Gerstberger’s review [10] and 
used for further bioinformatics analysis. In addition, the 
transcriptome profile of 298 metastatic urothelial cancer 
patients treated with anti–PD-L1 agent (atezolizumab) 
and corresponding clinical outcomes was collected from 
“IMvigor210CoreBiologies” package [32, 33], and used to 
verify the immunotherapy response of our signature.

Model construction and validation
Differentially expressed RBPs were identified through 
“limma” package with the threshold as: |log2FC|> 1 & 
adjust P value < 0.05. Then, the TCGA-CESC cohort was 
divided into a training cohort and a testing cohort by 
“caret” package with a relative proportion of 7:3. In the 
training cohort, candidate genes were selected through a 
sequential procedure of univariate Cox regression, Lasso 
regression and multivariate stepwise Cox regression to 
establish the risk signature. The risk score was calculated 
as the sum of the product of gene expression and regres-
sion coefficient. Then, the risk signature was validated in 
the training cohort and testing cohort, respectively.

Functional enrichment analysis
Biological process and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis were 
performed by “clusterProfiler” package [34] with the 
adjust P value < 0.05 as the selection criteria. Gene Set 

Enrichment Analysis (GSEA) was employed to explore 
the diverse potential pathways between different risk 
groups, and the Hallmark gene sets and chemical and 
genetic perturbations gene sets were chosen as the refer-
ence gene sets, respectively [35–37].

Single nucleotide variation analysis
The masked somatic mutation profile of CESC was down-
loaded from TCGA database through “TCGAbiolinks” 
package and the landscape of top 20 mutated genes was 
presented and compared between different risk groups 
by “maftools” package [38]. The mutation sites of specific 
gene were shown by a lollipop plot and somatic interac-
tions between different groups were performed by pair-
wise Fisher’s exact test.

Immunotherapy response analysis
Firstly, the DEGs between the high-risk group and the 
low-risk group were explored by the “limma” package 
with the selection criterion as adjust P < 0.01 and used 
to display KEGG pathways through the “clusterProfiler” 
package. Secondly, the list of gene markers of 28 immune 
cells was obtained from Bindea’s study [39] and employed 
to quantify the relative infiltration of 28 immune cells by 
“GSVA” package through “ssgsea” method. Besides, the 
cellular characteristics of immune infiltration indicate 
that tumor genotype determines the immune phenotype 
and tumor escape mechanism. Charoentong [40] has 
developed a quantitative scoring scheme called Immu-
nophenotypic Score (IPS), which is a better predictor of 
antibody responses to cytotoxic T lymphocyte antigen 
4 (CTLA-4) and anti-programmed cell death protein 1 
(anti-PD-1). We further acquired the IPS of CESC sam-
ples from The Cancer Immunome Atlas (TCIA) (https:// 
tcia. at/ home).

Chemotherapy response analysis
The relationship between IC50 data of multiple mol-
ecules and the gene signature in CESC was conducted 
through GSCALite [41] webtool (http:// bioin fo. life. hust. 
edu. cn/ web/ GSCAL ite/). Meanwhile, we also investi-
gated the IC50 data of variety chemotherapy drugs in dif-
ferent risk groups through “pRRophetic” package, which 
construct the ridge regression model according to GDSC 
(www. cance rxgene. org/) cell line expression profile and 
TCGA gene expression profile to predict drug IC50 [42].

Clinical sample collection
Six paired clinical specimens of CESC and paracancer-
ous cervical tissues were collected from patients who 
were surgically removed in the Obstetrics and Gynecol-
ogy Department of the Southwest Hospital in December 
2022 to explore the different expression of hub RBPs. 

https://xenabrowser.net/datapages/
https://tcia.at/home
https://tcia.at/home
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://www.cancerxgene.org/
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This study has obtained the written informed consent 
of all patients. The collection of clinical specimens for 
research has been approved by the Ethics Committee of 
the Southwest Hospital [KY2022151] in accordance with 
the ethical standards as laid down in the 1964 Helsinki 
Declaration and its later amendments or comparable 
ethical standards. The detailed methods were as follows: 
the collection of specimens during the surgery was taken 
within 30  min and three specimens were collected for 
each patient. The paracancerous tissues were more than 
3 cm far away from the edge of the tumor and each speci-
men was about 0.5  cm × 0.5  cm. The specimens were 
then directly placed in a frozen storage tube, marked and 
soaked in liquid nitrogen, and then stored in a refrigera-
tor at − 80 °C.

Cell culture and cell transfect
Human cervical epithelial cell lines HcerEpic and 
HUCEC, and human CESC cell lines Hela and Siha were 
purchased from the cell bank of the Committee for the 
Preservation of Typical Cultures, Chinese Academy of 
Sciences. Cells were cultured in 37  °C, 5%CO2 incuba-
tor and RPMI-1640 medium containing 10% fetal bovine 
serum was added to re-suspend the cells after the cells 
were recovered. Then trypsin digestion and passage were 
carried out when the cells fused to about 80%. Cells in the 
logarithmic growth phase were selected and re-seeded 
into 6 well plates (3 ×  105/well). When the cell den-
sity reached 50%–70%, the transfection was carried out 
according to the instructions of the Lipofectamine 3000 
transfection kit. The sequences of siRNAs of PRPF40B 
were presented in Additional file 1: Table S1.

Real‑time quantitative polymerase chain reaction 
(RT‑qPCR)
Total RNA from CESC tissues was extracted using TRI-
ZOL reagent and quantified using ultraviolet spectropho-
tometry. The cDNA was synthesized using the TAKARA 
reverse transcription kit. The RT-qPCR was conducted 
through SYBR-Green detection kit. The reaction condi-
tions were as follows: 94 °C for 4 min, then 40 cycles were 
conducted at 94 °C for 30 s, 58 °C for 30 s, and 72 °C for 
30 s. β-Actin was chosen as the internal reference and the 
relative expression was calculated using  2−ΔΔt method. 
The primer sequences were presented in Additional file 1: 
Table S2. Each experiment was conducted triplicate and 
mean ± standard deviation (SD) was employed to repre-
sent the quantitative value.

Western blot
The collected clinical specimens and CESC cell lines were 
subjected to ice bath lysis with human RIPA lysis buffer 
for 30 min, centrifugation at 12,000 r/min for 20 min, and 

the supernatant was collected. The protein samples in the 
supernatant were denatured, separated by 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis, and 
transferred to the polyvinylidene fluoride film. After 
sealing with 5% skim milk powder for 2 h, the PRPF40B 
antibody was added to incubate overnight. Then rinse the 
membrane with TBST for 3–5 times, and incubate it with 
horseradish peroxidase (HRP-) labeled goat anti rab-
bit IgG antibody (1:10,000) for 1 h. β-Actin (1:5000) was 
selected as an internal reference. Then use ECL lumines-
cence kit to detect protein bands on the membrane, and 
plot and analyze the relative expression of each protein 
in ImageJ software v1.53c (NIH, Bethesda, MD, United 
States).

Proliferation assay
The transfected Hela and Siha cells were added to 96 well 
plates (1 ×  104/mL, 200 μL) and cultured at 37 °C for 24, 
36 and 48 h. Then, 10 μL CCK-8 solution is added to each 
hole. After incubation at 37  °C for 2  h, the microplate 
reader was used to detect the absorbance (OD) value 
at 450  nm wavelength. Each experiment was repeated 
at least five times and the OD value was represented as 
mean ± SD.

Wound healing assay
The Hela and Siha cells in each group were inoculated 
into 6 well plates and cultured overnight in a humid 
environment at 37 °C. When cells reached 100% conflu-
ence, use the 10 μL suction nozzle of the pipette slightly 
scratches the monolayer cells linearly, and the cells are 
washed with phosphate buffered saline (PBS) for three 
times. Cells were incubated at 37  °C for 24  h in RPMI-
1640 medium without FBS, and cell migration was 
observed and photographed at 0 h and 24 h with phase 
contrast microscope. Scratch healing rate was calculated 
as: (0  h scratch width—24  h scratch width)/0  h scratch 
width × 100%.

Transwell assay
Transwell cells coated with or without matrix glue mix-
ture were used to evaluate cell invasion and migration. 
The stably transfected cells were seeded (3 ×  104/well) in 
the upper chamber of serum free medium, and the lower 
chamber used the medium containing 10% FBS as the 
chemotactic agent. After incubation for 24 h, the cells at 
the bottom of the chamber were fixed with 4% paraform-
aldehyde for 15 min, stained with 0.1% crystal violet for 
15  min, and photographed under the microscope. Five 
areas were randomly selected from each hole to count 
the invasive or migratory cells.
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Other bioinformatics and statistical analysis
GraphPad Prism 8.0 (GraphPad Software Inc, San Diego, 
CA) and R software (version 4.2.1, http://r- proje ct. org) 
were used to analyze data and plot graphs. Survival dif-
ferences between different risk groups were compared 
through “survival” package and the median risk score was 
used as cut-off value. Time-dependent area under the 
curve (tAUC) was performed through “riskRegression” 
package to distinguish the prognostic efficiency between 
risk signature with other clinical parameters. Recursive 
regression analysis was employed to construct the deci-
sion tree by “rpart” package. The nomogram was estab-
lished to quantify the risk value of patient by combining 
pathological stage and risk signature through “nomo-
gramEx” package. Calibration curves were conducted to 
examine the consistency between predictive prognosis 
and ideal prognosis. Decision curve analysis (DCA) was 
applied to explore the net profit between variety factors 
by “ggDCA” package. Quantitative variables were com-
pared by t test or Wilcoxon test and survival plots were 
compared by Log-rank test. Unless otherwise specified, 
P < 0.05 was considered as statistically significant.

Novelty & impact statements
This research constructed and validated a robust RNA-
binding proteins related signature upon cervical cancer 
patients’ outcome, which also exhibit satisfactory pre-
diction ability in immunotherapy and chemotherapy 
response. In addition, PRPF40B was identified as hub 
gene based on our results through the signature. Down-
regulated PRPF40B could inhibit the proliferation, inva-
sion and migration of cervical cancer cell lines in  vitro 
experiments. Our research provided novel insight in can-
cer biomarker selection.
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