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Abstract 

Background Bladder cancer (BCa) stands out as a prevalent and highly lethal malignancy worldwide. Chemoresist-
ance significantly contributes to cancer recurrence and progression. Traditional Tumor Node Metastasis (TNM) stage 
and molecular subtypes often fail to promptly identify treatment preferences based on sensitivity.

Methods In this study, we developed a prognostic signature for BCa with uni-Cox + LASSO + multi-Cox survival 
analysis in multiple independent cohorts. Six machine learning algorithms were adopted to screen out the hub gene, 
RAC3. IHC staining was used to validate the expression of RAC3 in BCa tumor tissue. RT-qPCR and Western blot were 
performed to detect and quantify the mRNA and protein levels of RAC3. CCK8, colony formation, wound healing, 
and flow cytometry analysis of apoptosis were employed to determine cell proliferation, migration, and apoptosis. 
Molecular docking was used to find small target drugs, PIK-75. 3D cell viability assay was applied to evaluate the ATP 
viability of bladder cancer organoids before and after PIK-75 treated.

Results The established clinical prognostic model, GIRS, comprises 13 genes associated with gemcitabine resist-
ance and immunology. This model has demonstrated robust predictive capabilities for survival outcomes across vari-
ous independent public cohorts. Additionally, the GIRS signature shows significant correlations with responses 
to both immunotherapy and chemotherapy. Leveraging machine learning algorithms, the hub gene, RAC3, was iden-
tified, and potential upstream transcription factors were screened through database analysis. IHC results showed 
that RAC3 was higher expressed in GEM-resistant BCa patients. Employing molecular docking, the small molecule 
drug PIK-75, as binding to RAC3, was identified. Experiments on cell lines, organoids and animals validated the bio-
logical effects of PIK-75 in bladder cancer.

Conclusions The GIRS signature offers a valuable complement to the conventional anatomic TNM staging 
system and molecular subtype stratification in bladder cancer. The hub gene, RAC3, plays a crucial role in BCa 
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and is significantly associated with resistance to gemcitabine. The small molecular drug, PIK-75 having the potential 
as a therapeutic agent in the context of gemcitabine-resistant and immune-related pathways.

Keywords Bladder cancer, Prognostic signature, Machine learning, RAC3, PIK-75

Introduction
Bladder cancer (BCa) stands as the second most fre-
quently diagnosed urinary malignancy, bearing a sub-
stantial burden of morbidity and mortality, resulting 
in an annual toll exceeding 200,000 lives [1]. Currently, 
treatment regimens and management for BCa heavily 
rely on histological type, high or low grade, and TNM 
stage. Nevertheless, the efficacy of these approaches, as 
determined by the current grading and staging criteria, 
leaves much to be desired, with long-term survival rates 
of BCa patients remaining distressingly low [2].

Gemcitabine is applied for both intravesical instilla-
tion for non-muscle invasive bladder cancer (NMIBC) 
and systemic regimens for MIBC owing to its favorable 
tolerance [3, 4]. Regrettably, inherent or acquired resist-
ance to gemcitabine (GEM) and subsequent tumor recur-
rence frequently afflict BCa patients, and the underlying 
mechanisms governing chemoresistance remain elusive. 
Mounting evidence suggests that chemotherapy exerts 
diverse effects on the remodeling of the immune tumor 
microenvironment (TME) [5–7]. Nevertheless, the extent 
to which GEM resistance may be linked to the restruc-
turing of the immune TME in BCa remains nascent. 
Consequently, it is of paramount importance to establish 
an optimal molecular signature characterized by both 
chemo-responsiveness and immune-related attributes for 
accurate risk assessment and the selection of personal-
ized treatment strategies, with the potential to ameliorate 
both prognostic and clinical outcomes for high-risk BCa 
patients.

In this study, we attempted to predict the prognosis and 
therapeutic response of BCa patients by characterizing 
transcriptome features in GEM-resistant BCa cell lines. 
Using the GSE91061 dataset, perturbed RNA expres-
sion associated with GEM resistance was studied, and 
differentially expressed immune-related genes in GEM-
resistant T24 cell lines were incorporated into a new gene 
set for subsequent model establishment. Consequently, a 
13-gene prognostic signature (referred to as GIRS) was 
constructed by performing Cox proportional hazards 
regression analysis and LASSO Cox regression analysis 
utilizing the TCGA-BLCA training cohort, which was 
significantly associated with the transcriptomic, chem-
oresistance, and immune infiltration characteristics of 
BCa. Furthermore, these prognostic values were further 
confirmed in two independent validation cohorts. Sub-
sequently, we conducted various functional validations 

based on this model, including therapeutic effect pre-
diction, immune landscape description, GSVA enrich-
ment analysis, correlation analysis, and subtype analysis. 
Moreover, we identified the hub gene that contributed 
most significantly to our signature by simultaneously 
conducting six machine-learning algorithms and further 
used molecular docking to find potential small molecule 
drugs targeting this gene.

Materials and methods
Data acquisition
All expression profiles and clinical annotations of micro-
array cohorts were acquired from the GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/). The TCGA-BLCA 
cohort, along with corresponding clinical characteristics, 
was retrieved from UCSC Xena (https:// tcga. xenah ubs. 
net) or the Supplementary table from Robertson et  al. 
[8]. The IMvigor410 dataset was downloaded using the R 
package “IMvigor210CoreBiologies” [9]. Somatic muta-
tion and copy number alteration (CNA) information for 
BCa were obtained from the cBioportal database (http:// 
www. cbiop ortal. org).

GSE190636 was adopted to obtain the differential 
expressed genes (DEGs). The TCGA-BCLA, GSE13507, 
and GSE32894, which contain available survival and clin-
icopathologic statistics (age, gender, T staging, grade), 
were applied for the construction and external validation 
of our novel signature. In addition, two immunotherapy 
datasets (GSE91061; IMvigor410) and a chemother-
apy dataset (GSE52219) were employed to investigate 
the predictive power of our signature on therapeutic 
efficiency.

All transcriptome expression profiles were normal-
ized and converted to log2 format. For microarrays, we 
mapped probe IDs to gene symbols using the corre-
sponding platform comment files. In cases where genes 
were overlapped by multiple probes, we selected a sin-
gle probe to represent the gene randomly. For RNA-seq 
data, the Fragments Per Kilobase of transcript per Mil-
lion mapped reads (FPKM) values were transformed to 
Transcripts Per Million (TPM) to ensure a reasonable 
comparison.

Identification of gemcitabine‑based immune‑related 
genes (GIRGs)
In GSE190636, differentially expressed genes 
(DEGs) between GEM-resistant T24 cell lines and 

https://www.ncbi.nlm.nih.gov/geo/
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GEM-sensitive T24 cell lines were identified with a thresh-
old of adj.P.Val < 0.05 and |log2FC|> 1 by using the R pack-
age “limma” [10]. The immune-related gene set (IRGs) 
was predefined and collected from the ImmPort database 
(https:// immpo rt. niaid. nih. gov/). Then, the intersection 
of DEGs and IRGs was considered as gemcitabine-based 
immune-related genes (GIRGs) for subsequent analyses. A 
Venn diagram was adopted to elegantly present the over-
lapping GIRGs.

Establishment and validation of gemcitabine‑based 
immune‑related risk score (GIRS)
To develop the optimal prognosis signature, we imple-
mented univariate Cox proportional hazards regres-
sion analysis (uni-Cox), the least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis, and 
multivariate Cox regression analysis (multi-Cox) with 
“survival” [11] and “glmnet” [12] R package. The regres-
sion coefficients obtained from multi-Cox were used to 
determine the Gemcitabine-based Immune-related Risk 
Score (GIRS) for each patient via the “survival” R pack-
age [11]. Specifically, the GIRS formula was calculated as 
follows:

where Expr (i) represents the expression level of 
the gene in patient i, and Coefficient (i) is the multi-
Cox coefficient corresponding to gene i. To be more 
specific, GIRS was calculated as follows: expres-
sion of OAS1 * (−  0.116582176) + expression of 
AHNAK * 0.209856412 + expression of LTBP1 * 
0.124776682 + expression of RAC3 * 0.218453203 + expres-
sion of GBP2 * −  0.23894607 + expres-
sion of SHC3 * (−  0.240912651) + expression of 
NFATC1 * 0.166421191 + expression of GIPR 
* (−  0.227052796) + expression of PTK2B * 
(− 0.23141687) + expression of PAK6 * 0.645350893 + expres-
sion of RLN2 * (− 0.219819016) + expression of NAMPT * 
0.161238622 + expression of IGF2 * 0.080204401.Patients 
were categorized into high-risk or low-risk group at the 
median GIRS for subsequent analyses. The same formula 
and cut-off value were applied in GSE32894 and GSE13507 
for further validation.

To verify the accuracy of the GIRS, the Kaplan–Meier 
(K–M) survival analysis was conducted using the “sur-
vival” [11] and “survminer” [13] R package. The ROC 
curves (1-,3-,5-year) were generated with the “timeROC” 
R package [14] and C-index was determined by the R 
package “survcomp” [15].

GIRS =

∑
i Coefficient(i)× Expr(i)

Genomic landscape, immune infiltration, and enrichment 
analysis between GIRS subgroups
To explore genomic features of GIRGs in BCa, we uti-
lized the “maftools” R package [16] to summarize muta-
tion annotation information The results were visualized 
into an OncoPrint plot using the “ComplexHeatmap” R 
package [17].

The Immune cell abundance analysis was conducted 
by CIBERSORT [18]. Functional enrichment analy-
sis between GIRS subtypes was evaluated using the 
“GSVA” and “limma” packages based on “hallmark gene 
sets” and the known oncogenic signaling pathways [19]. 
50 hallmark gene sets were extracted from the MsigDB 
database using the R package “msigdb” [20]. 10 carcino-
genic signaling pathways, including HIPPO, NOTCH, 
PI3K, MYC, RTK-RAS, TGF-beta, NRF2, TP53, 
Cell cycle, and WNT were collected from previous 
researches [21] and listed in Additional file 1: Table S3. 
The oncogenic pathways inhibited or activated in GIRS 
subgroups separately were determined with t-values > 1 
and p < 0.05 as the threshold. The “corrplot” R package 
[22] was used to explore the association between GIRS 
and immune cell abundance.

Cluster analysis, drug sensitivity, CMAP analysis
Using the expression profiles of DEGs, we estimated a 
clustering analysis in TCGA-BLCA with 3 algorisms 
(non-negative matrix factorization (NMF), consensus 
clustering (CC), and similarity network fusion plus con-
sensus clustering (SNFCC+)) by “CancerSubtype” R 
package [23, 24].

We adopted the R package “pRRophetic” [25] to 
predict the semi-inhibitory concentration (IC50) of 
chemotherapeutics for BCa patients to compare their 
sensitivity within the GIRS subgroup. Potential small 
molecule drugs were forecasted using the Connectiv-
ity Map database (CMap) (https:// porta ls. broad insti tute. 
org/ cmap/).

Hub gene, transcription factors (TFs) identification
To further pick out the hub gene that contributed most 
significantly to our model, six machine-learning algo-
rithms (XGboost, Catboost, Random Forest, AdaBoost, 
LightGBM, GradienBoosting) were employed to analyze 
the feature importance of the 13 genes in the signature. 
We utilized SHAP values to interpret the contribution of 
each gene to the model. SHAP values are an interpretive 
method used to measure the contribution of each fea-
ture to the model output. For each gene, we computed its 
average SHAP value across all samples to identify genes 
that significantly contribute to the overall model output.

https://immport.niaid.nih.gov/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
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Otherwise, upstream transcription factors (TFs) that 
were most likely to regulate the expression of the hub 
gene were forecasted by Cistrome Data Browser (http:// 
dbtoo lkit. cistr ome. org/).

Molecular docking
The molecular docking simulation procedure was 
employed with the Lamarckian genetic algorithm to 
explore the correlation between RAC3 and small mole-
cules. The protein crystal structures of RAC3 were gained 
from the RCSB Protein Data Bank (https:/ www. rscb. org/ 
pdb) [26]. The three-dimensional structures of all target 
compounds were achieved from the PubChem database 
(https:// pubch em. ncbi. nlm. nih. gov/). The small molecule 
compounds were imported into AutoDock Tools-1.5.6 
software, and atomic charges and types were added. All 
flexible bonds were set to be rotatable, and the structures 
were saved as pdbqt files. Ten processed compounds 
were used as small molecule ligands, and two protein 
targets were used as receptors. The Grid Box’s center 
position and dimensions were set to 40 × 40 × 40 based 
on the interaction between small molecules and targets. 
Molecular docking was performed using AutoDock Vina. 
The visualization of compound-protein binding inter-
actions was carried out using Pymol 2.1 software. The 
Lamarckian genetic algorithm was employed for molecu-
lar docking calculations, with the following parameters: a 
population size of 150, a maximum of 25 million energy 
evaluations, a maximum number of generations set to 
2000, a crossover rate of 0.8, a mutation rate of 0.02, 10 
independent docking runs, and final docking structures 
evaluated based on binding free energy. Docking scores 
were considered in conjunction with interaction patterns 
to infer the potential activity of screened compounds.

Tissue digestion and patient derived organoid 
establishment
Three BCa tissue specimens were collected from patients 
undergoing transurethral cystectomy (TUR-B) at the 
Department of Urology, Affiliated Cancer Hospital of 
Fudan University, to establish Patient-Derived Organoids 
(PDOs). Tissue specimens were initially placed in a basal 
medium (Advanced DMEM F12 Serum Free medium, 
Gibco, 12634010). Following mechanical disruption, the 
tumor tissues were minced into a paste, washed in Basal 
medium (800×g for 5 min), and then digested at 37 °C in 
an enzyme mixture containing 2.5  mg/ml Collagenase 
II (ThermoFisher 17101015) and 10  μM Y-27632-HCl 
Rock Inhibitor (MCE, 146986–50-7) in Basal medium for 
10–15  min, with stirring every 5  min. The digested tis-
sue was further washed with Basal medium (1000  rpm, 
5  min). The resulting precipitate was resuspended in 
1–2  ml TrypLE Express (ThermoFisher, 12605028) and 

digested at 37  °C for 5  min. The digestion process was 
halted with Basal medium through a 70 μm cell strainer 
(Corning, 352350). The cell filtrate was centrifuged 
again (1000  rpm, 5  min). Cell clusters were then resus-
pended in organoid matrix gel (Coring, 356231) and 
seeded into Ultra Low Adhesion (ULA) 24-well plates 
(Coring, 3743). After a 30 min incubation at 37 °C under 
5% CO2 conditions, Bladder Cancer Organoid Specific 
Medium (500 μl/well, Bladder Organoid Kit, K2126-CB) 
was added. CellTiter-Glo 3D (Promega, G9682) was 
employed to measure relative cell activity following the 
manufacturer’s instructions.

Immunohistochemistry (IHC) staining of RAC3
IHC was performed on FFPE sections. The antibody 
used was RAC3 (1:200, ab124943, Abcam). The paraf-
fin specimens were obtained from 10 patients diag-
nosed with NMIBC at our center in the year 2023. Each 
patient underwent transurethral resection of bladder 
tumor (TURBT) followed by intravesical gemcitabine 
instillation.

Cell culture and transfection
Bladder cancer cell lines T24 and 5637 were obtained 
from the American Type Culture Collection (ATCC) 
and cultured in DMEM supplemented with 10% FBS and 
100 U/ml penicillin–streptomycin at 37 °C with 5% CO2. 
RAC3 knockdown plasmids, shRAC3, and control empty 
vector shNC, were transfected into the bladder cancer 
cells using Lipofectamine 3000. The shRNA sequences 
were provided in Additional file 1: Table S5.

RNA extraction and reverse transcriptase 
quantitative‑polymerase chain reaction(RT‑qPCR) 
and western blot
The primers of RAC3 (F: TCC CCA CCG TTT TTG ACA 
ACT; R: GCA CGA ACA TTC TCG AAG GAG), GAPDH 
(F: CTG GGC TAC ACT GAG CAC C; R: AAG TGG TCG 
TTG AGG GCA ATG) were designed using the primer 5.0. 
Total RNAs were extracted using an RNA Extraction Kit 
(Nuoweizan Biotechnology, Nanjing, China), and were 
reversely transcribed into cDNA using PrimeScript RT 
Master Mix (Takara, Shiga, Japan). The RNA expression 
levels of RAC3 were quantified using the  2–ΔΔCT (Livak) 
method.

Western blotting was performed as previously described. 
Proteins were extracted from harvested BCa cells sepa-
rately and quantified by BCA assay. The primary anti-
bodies used in this study were recombinant anti-RAC3 
antibody (1:1000, ab124943, Abcam) and anti-GAPDH 
antibody (1:5000, ab181602, Abcam) in our study.

http://dbtoolkit.cistrome.org/
http://dbtoolkit.cistrome.org/
http://www.rscb.org/pdb
http://www.rscb.org/pdb
https://pubchem.ncbi.nlm.nih.gov/
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Cell proliferation and migration assay
CCK-8 and colony formation assay were used for the 
proliferation test. Wound-healing assay were used for 
the migration test. Covered surface areas were measured 
using Image-J software.

Cell apoptosis analysis
Apoptosis was examined by flow cytometry using 
Annexin V-PE/7-AAD Apoptosis Kit (Liankebio, Hang-
zhou, China) following the protocol of the instructions. 
We employed EDTA-free pancreatic enzyme digestion 
during the experiment to minimize cell damage from 
digestion and pipetting, thus reducing potential experi-
mental biases. After 24  h treatment with PIK-75 or 
DMSO, cells were harvested and incubated with Annexin 
V-PE and 7-AAD for 5 min under light-protected, room 
temperature conditions, followed by immediate analysis 
by flow cytometry.

Subcutaneous tumor model
Following the injection of 5 ×  106 MB49 cells (100  μl) 
into six-week-old C57BL/6 mice, tumor volumes were 
assessed weekly using the formula: volume(mm3) = 0.52 
× (length ×  width2). After 35  days, all mice were sacri-
ficed. Additionally, the mice were subjected to intra-
peritoneal administration(i.p.) of PIK-75 or DMSO (as a 
control) following tumor establishment, to evaluate the 
therapeutic efficacy of PIK-75 against BCa.

Statistical analysis
The majority of the statistical analyses were conducted 
using R software 4.2.1 or GraphPad Prism 6. Otherwise, 
six machine learning algorithms, XGboost, Catboost, 
Random Forest, AdaBoost, LightGBM, and Gradien-
Boosting were implemented with Python 3.8.5 version. 
Differences between variables were ascertained by t-test 
or one-way ANOVA, respectively. Non-parametric 
tests (Wilcoxon test and Kruskal–Wallis tests) were also 
applied when the homogeneity of variance was not satis-
fied. Correlation analysis among variables was conducted 
by Pearson or Spearman analysis. All P values were bilat-
eral, and P < 0.05 was considered a statistically significant 
difference.

Results
Identification of gemcitabine‑based immune‑related 
genes (GIRGs) in BCa
The workflow of our study was shown in Fig. 1. The Gem-
citabine-based Immune-Related Genes (GIRGs) gene set 
was delineated by analyzing differentially expressed genes 
(DEGs) in gemcitabine-resistant and sensitive cell lines, 
followed by the intersection with immune-related genes 
(IRGs). Specifically, a total of 3365 DEGs, comprising 1691 

upregulated and 1674 downregulated genes, were identi-
fied (Fig. 2A). Subsequent intersection with IRGs resulted 
in the identification of 275 GIRGs (Fig. 2B and Additional 
file  1: Table  S1). So, we posited that GIRGs were intri-
cately associated with the immune mechanisms underly-
ing gemcitabine resistance in BCa. This gene set served as 
the foundation for the subsequent development of clinical 
prognostic signature.

Genetic landscape of GIRGs in high and low‑risk subgroups
Somatic mutations and copy number variants are 
believed to be involved in cancer ontogeny and may be 
associated with prognosis, drug sensitivity, and immune 
phenotype [2], and BCa possesses one of the highest 
somatic alterations of all cancers. To explore the prospec-
tive connection between somatic alterations and GIRS, 
we analyzed the patterns of gene mutations and copy 
number variations (CNVs) between the high GIRS and 
low GIRS subgroups in the TCGA-BLCA cohort. The 
overall landscapes of somatic mutations per case in the 
two groups showed that the tumor mutation burden of 
the high GIRS subgroup was significantly higher than 
that of the low GIRS subgroup. The range of mutations 
per case in the high-risk group varied from 0 to 37, while 
in the low-risk group, it ranged from 0 to 19 (Additional 
file 1: Fig. S2A and C). In terms of specific genes, LRP1 
had a relatively high mutation frequency of 10% in the 
high-risk group, whereas AHNKK (16%) and FGFR3 
(14%) had relatively high mutation frequencies in the 
low-risk group (Additional file 1: Fig. S2A and C). More-
over, the main type of single nucleotide variant (SNV) 
was Missense_Mutation, and C → T was the primary 
style of base conversion in both two groups. Thirty genes 
that possessed a higher alterations frequency were listed 
in Additional file 1: Fig. S2B and D.

Establishment and validation of the GIRS signature 
for the prognostic prediction of bladder cancer
In the TCGA-BLCA training cohort, the modeling 
approach employed is a stepwise survival analysis frame-
work, incorporating the univariate Cox analysis (uni-Cox), 
LASSO-Cox, and multivariate Cox analysis (multi-Cox) 
models. Firstly, the uni-Cox model provided a preliminary 
understanding of each gene, assisting in the identification 
of factors potentially associated with survival time. 57 sur-
vival-related GIRGs were screened out (Additional file  1: 
Table  S1). Subsequently, LASSO was utilized for feature 
selection and regularization, helping to reduce the model’s 
complexity by pinpointing features with significant impacts 
on survival time. As shown in the results of Fig. 2C, when 
the partial likelihood deviance reaches its minimum, the 
optimal λ is determined to be 27 (Fig. 2C; Additional file 1: 
Table S2). Then, the multi-Cox model considered multiple 
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Fig. 1 The workflow of our study
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Fig. 2 Identification of GIRGs and construction of GIRS signature. A A volcano plot was used to visualize the DEGs between GEM-sensitive 
and GEM-resistant T24 cell lines. B A Venn diagram was adopted to visualize the GIRGs. C The LASSO regression lambda filter. The optimal λ 
was generated when the partial likelihood of deviance reached the minimum value and the corresponding LASSO coefficients of each GIRG were 
also obtained. D The forest plot illustrated the Multivariate Cox regression analysis of OS in the TCGA training cohort. E, F GIRS scores among distinct 
molecular subtypes [Lund1 staging system (E); AJCC TNM staging system (F)] in GSE32894. Statistical comparisons were conducted using 
the Kruskal–Wallis test
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variables, simultaneously adjusting for their effects on sur-
vival time to achieve a more comprehensive understand-
ing of the relative contributions of each factor. Eventually, 
13 GIRGs were selected to establish the gemcitabine-based 
immune-related gene signature (GIRS) and the formula for 
calculating the risk score is derived from the coefficients 
obtained in the final step of multi-Cox by the correspond-
ing gene expression level, referred to as GIRS (Fig.  2D), 
GIRS = expression of OAS1 * (−  0.116582176) + expres-
sion of AHNAK * 0.209856412 + expression of LTBP1 * 
0.124776682 + expression of RAC3 * 0.218453203 + expres-
sion of GBP2 * −  0.23894607 + expression of SHC3 
* (−  0.240912651) + expression of NFATC1 * 
0.166421191 + expression of GIPR * (− 0.227052796) + expres-
sion of PTK2B * (−  0.23141687) + expression 
of PAK6 * 0.645350893 + expression of RLN2 
* (−  0.219819016) + expression of NAMPT * 
0.161238622 + expression of IGF2 * 0.080204401. Based 
on the median value of GIRS, patients can be categorized 
into high-risk and low-risk groups. The K-M survival analy-
sis showed poorer overall survival in the high GIRS group 
than in the low GIRS group (Log-rank test, p = 5.364e−12, 
Fig.  3A). As to the model evaluation, the AUC values for 
the GIRS model of 1, 3and 5  year were 0.738, 0.779, and 
0.751 (Fig. 3B). The C-index of GIRS was 0.7021958 (95% 
confidence interval (CI) 0.6606−0.7438, p = 1.643737e−21).

To further assess the robustness of the GIRS model, its 
performance was validated in two independent cohorts 
(GSE13507, GSE32894). We found that the GIRS worked 
well in all validation cohorts and that the high GIRS 
group had poorer OS than the low group (GSE32894, 
Logrank test, p = 6.487e−04, Fig.  4A; GSE13507, Log-
rank test, p = 3.96e−02, Additional file  1: Fig. S1A). 
Moreover, ROC curves and the C-index showed moder-
ate to high sensitivity and specificity in all validation sets 
as well. In GSE32894, the AUC values of 1, 3 and 5 year 
were 0.794, 0.787, 0.780 (Fig.  4B), and the C-index was 
0.7968 (95% confidence interval (CI) 0.7201−0.8736, 
p = 3.391163e−14). In GSE13507, the AUC values of 1, 3 
and 5 year were 0.646, 0.562, 0.588 (Additional file 1: Fig. 
S1B), and the C-index was 0.5953 (95% confidence inter-
val (CI) 0.5216–0.6690, p = 0.0112). Additionally, the dis-
tribution of the GIRS, survival time, survival status and 

the expression of 13 GIRGs in three datasets were visual-
ized in Figs. 3C, 4C, and Additional file 1: Fig. S1C.

Additionally, we conducted a comprehensive compari-
son between GIRS and established molecular subtypes 
of BCa. We observed that lower GIRS corresponded to 
better prognostic subgroups, such as MS1a and MS1b 
(Kruskal−Wallis, p = 9.3e−07), as well as lower T stage 
(Kruskal−Wallis, p = 6.7e−06), reflecting the adequate 
reliability and extrapolation nature of our signature 
(Fig. 2E and F). These findings underscore the robust reli-
ability and generalizability of our GIRS signature (Fig. 2E 
and F). The ability of GIRS to align with distinct molec-
ular subtypes of BCa and their corresponding clinical 
outcomes highlights its potential as a reliable prognostic 
tool, demonstrating its superiority in characterizing the 
heterogeneity within BCa.

In summary, our GIRS signature has demonstrated 
consistent and robust accuracy in prognostic prediction, 
as evidenced by the results of KM curves, ROC curves, 
and the C-index in both the training and validation 
cohorts. In practical clinical scenarios, such as the man-
agement of NMIBC patients facing multiple options for 
intravesical instillation, the treatment decision becomes 
pivotal. Specifically, for a patient identified with a high 
GIRS, choosing BCG infusion over gemcitabine or epiru-
bicin may offer more significant clinical benefits.

Nomogram construction and validation
To further optimize the GIRS and provide a clinically 
relevant quantitative method for clinicians to predict 
the prognosis of patients, a nomogram that integrated 
the GIRS and other clinical parameters was formu-
lated to visualize the risk prediction of survival in 1, 3, 
or 5 years (Figs. 3D, 4D, and Additional file 1: Fig. S1D). 
Patients with accessible clinical statistics in the TCGA-
BLCA training cohort (N = 365), GSE13507 (N = 164), 
and GSE32894 (N = 222) validation set were put into 
the construction of nomograms. Following independent 
parameters, age, gender, T stage, grade, and GIRS were 
assigned scores via the “rms” R package [3]. Higher total 
points on the nomogram corresponded to worse clinical 
outcomes for patients. Remarkably, the incorporation of 
the above clinical variables into the nomogram resulted 
in significantly increased AUC and C-index compared to 

(See figure on next page.)
Fig. 3 Survival analysis between GIRS subgroups and nomogram development in the TCGA-BLCA training cohort. A Kaplan–Meier curve analysis 
of OS between high and low GIRS subgroups. B Time-dependent ROC analysis of GIRS for predicting OS at 1, 3, and 5 years. C The distribution 
of GIRS signature, the vital status of patients, and the expression of GIRGs. D Nomogram development. E Time-dependent ROC curves at 1, 3, 
and 5 years of the nomogram. F–H The calibration plots of nomogram for predicting BCa patients with 1, 3, and 5-year OS. The nomogram’s ideal 
performance is shown by the dashed lines. I–K The decision curve analysis of nomogram and other clinical factors for 1, 3, and 5-year risk. The black 
line represents the hypothesis that no patient died after 1, 3, and 5 years
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Fig. 3 (See legend on previous page.)
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the GIRS alone. Particularly in GSE32894, the AUC val-
ues of 1, 3and 5  year were 0.916, 0.937, 0.930 (Fig.  4E), 
and the C-index was 0.9262 (95% confidence interval 
(CI) 0.8994 –  0. 0.9530, p = 2.455099e-213). Similarly, 
in the TCGA-BLCA cohort, the AUC values of 1, 3a nd 
5 year were 0.738, 0.779, 0.751 (Fig. 3E), and the C-index 
was 0.7195 (95% confidence interval (CI) 0.6805–0.7585, 
p = 2.497877e−28). In GSE13507, the AUC values of 1, 
3and 5  year were 0,683, 0.879, 0.904 (Additional file  1: 
Fig. S1E), and the C-index was 0.7687 (95% confidence 
interval (CI) 0.7009–0.8366, p = 8.238777e-15).

Moreover, calibration curves and decision curve anal-
ysis (DCA) were employed to visually appraise the con-
sistency of the nomogram and the net clinical benefit 
with the “rmda” R package [4, 5]. The calibration curves 
demonstrated a strong alignment between the predicted 
results and actual survival outcomes, as illustrated in 
Figs. 3F–H, 4F–H, and Additional file 1: Fig. S1F–H. The 
nomogram’s ideal performance is shown by the dashed 
lines. The DCA curves indicated that the nomogram has 
the highest predictive efficacy compared to other exist-
ing criteria, such as T staging, suggesting its substan-
tial potential for clinical application (Figs.  3I–K, 4I–K, 
and Additional file 1: Fig. S1I–K). Overall, the proposed 
nomogram demonstrated excellent performance in the 
TCGA-BLCA training cohort and the validation cohorts, 
underscoring its potential as a reliable prognostic tool.

Implications of GIRS for immunotherapy, chemotherapy, 
and biological mechanisms
Due to the high tumor burden and immunogenicity of 
BCa, immune checkpoint inhibitors (ICIs) are considered 
promising treatments for BCa. However, due to tumor 
heterogeneity, only a minority of patients exhibit a posi-
tive response. The identification of predictors has been 
critical to the development of immunotherapy strategies. 
Hence, our primary objective was to investigate whether 
the GIRS could serve as a predictor for immunotherapy 
efficacy. We utilized two immunotherapy-related data-
sets: the uroepithelial carcinoma dataset (IMvigor210), 
comprising samples treated with anti-PD-1, and the 
malignant melanoma dataset (GSE91016), involving 
samples treated with both anti-PD-1 and anti-CTLA-4. 
Patients were classified into four categories according 

to the difference in treatment efficacy: progressive dis-
ease (PD), stable disease (SD), partial remission (PR), and 
complete remission (CR). GIRS was calculated from the 
expression profile data of the mentioned cohorts, and 
patients were divided into high and low GIRS subtypes 
accordingly. The distributions of GIRS for patients exhib-
iting different immunotherapeutic responses was shown 
in Fig.  5A and F. The K–M survival analysis showed a 
higher OS for the low GIRS subgroup in the above two 
datasets (IMvigor210, Log-rank test, p = 0.0037, Fig.  5B, 
and GSE91016, Logrank test, p < 0.0001, Fig.  5H), in 
agreement with the previous training and validation 
set results, further demonstrating the robustness and 
extractability of the model in predicting prognosis. As 
regards the prediction accuracy, the average AUC values 
of 6-, 12and 18-month prognosis predictions reached 
0.640, 0.680, and 0.584 on the IMvigor210 cohort 
(Fig. 5C). Similarly, in GSE91016, the AUC values of 60-, 
120and 180-month were 0.949, 0.944, and 0.865 (Fig. 5I). 
Then it was observed that a higher percentage of patients 
responded to ICIs in the low GIRS group, (Fig.  5E and 
G), and the overall GIRS score in the CR/PR group was 
lower than that in the SD/PD group (IMvigor210, t-test, 
p = 5.3e−05, Fig.  5D, and GSE91016, t-test, p = 0.00019, 
Fig.  5J). The above results implied that patients receiv-
ing ICIs had better disease regression in the low-GIRS 
group than in the high-GIRS group. This may be part of 
the explanation for why the low-GIRS group exhibited 
better overall survival than the high-GIRS group. Simi-
larly, in cohort GSE52219, a greater proportion of those 
classified as low-GIRS responded to MVAC neoadjuvant 
chemotherapy regimens (Methotrexate; Vinblastine Sul-
fate; Adriamycin; Cisplatin) (Fig. 5K). In summary, GIRS 
could serve as a valid biomarker for predicting therapeu-
tic efficacy in ICIs immunotherapy and chemotherapy in 
BCa patients.

Enrichment analysis, cluster analysis and correlation 
analysis between GIRS subtypes
The difference in pathway activities scored per patient 
by GSVA between the high and low GIRS subgroups was 
shown in Fig.  5A. In high GIRS group, genes related to 
epithelial to mesenchymal transition (EMT) are signifi-
cantly enriched (Fig.  6A). Several oncopathways, such 

Fig. 4 Survival analysis between GIRS subgroups and nomogram validation in the validation cohort GSE32894. A Kaplan–Meier curve analysis of OS 
between high and low GIRS subgroups. B Time-dependent ROC analysis of GIRS for predicting OS at 1, 3, and 5 years. C The distribution of GIRS 
signature, the vital status of patients, and the expression of GIRGs. D Nomogram development. E Time-dependent ROC curves at 1, 3, and 5 years 
of the nomogram. F–H The calibration plots of nomogram for predicting BCa patients with 1, 3, and 5-year OS. The nomogram’s ideal performance 
is shown by the dashed lines. I–K The decision curve analysis of nomogram and other clinical factors for 1, 3, and 5-year risk. The black line 
represents the hypothesis that no patient died after 1, 3, and 5 years

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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as cell cycle-related pathway, HIPPO pathway, NOTCH 
pathway, RAS pathway, and WNT pathway, were acti-
vated in the high GIRS group (Fig. 6B; all p-value < 0.001).

Furthermore, we operated a clustering analysis in the 
TCGA-BLCA cohort. The results demonstrate that NMF 
manifests comprehensive advantages where subgroup 
1 consists of 183 samples, and subgroup 2 has 217 sam-
ples. All three clustering algorithms, including NMF, 
SNFCC+, and CC, successfully differentiated the patient 
groups based on clinical survival information (NMF: 
p = 0.000498; SNFCC+: p = 8.34e−05; CC: p = 3.38e−05) 
(Additional file 1: Fig. S5C). NMF outperforms the other 
methods in terms of the average silhouette width (ASW) 
method (NMF: ASW = 1; SNFCC+: ASW = 0.99; CC: 
ASW = 0.86) (Additional file  1: Fig. S5B). Additionally, 
NMF exhibited distinct boundaries between color clus-
ters, representing individual patient communities, indi-
cating accurate and effective isolation of the subgroups. 
In summary, of these three evaluation methods, NMF 
more accurately characterized the inter-sample correla-
tions and felicitously isolated the subpopulations. The 
results of the Sankey diagram in Fig.  6C indicated that 
subgroup 2 tended to correspond to MIBC subtypes with 
worse prognosis, such as Ba/Sq subtype, luminal-infil-
trated subtype, and neuroendocrine type.

Additionally, as depicted in Fig. 6D, we also carried out 
a correlation analysis of metabolism-related pathways 
and GIRS. We could find that GIRS had a negative cor-
relation with lipid metabolism-related pathways.

We then examined the discrepancies in the immune 
landscape between GIRS subtypes in an attempt to 
explore possible underlying mechanisms for the differ-
ences in treatment efficacy. Since our prognostic gene 
signature was based on the differential expression of 
immune-related genes, it was reasonable to assume that 
GIRS could be closely related to immune infiltration, 
thereby causing differences in immunotherapeutic effi-
cacy. To confirm this speculation, we performed immune 
cell infiltration analyses via the CIBERSORT algorithm. 
The abundance of 24 immune cell types was depicted in 
Additional file 1: Fig. S3A and C. Moreover, we investi-
gated the diversity in tumor-infiltrating immune cells 

in the TME. We found that the low-GIRS group had 
higher CD8 T cell infiltration (Wilcoxon test; p < 0.0001; 
Additional file  1: Fig. S3B), and GIRS was significantly 
positively correlated with CD4 memory cells and M1 
macrophages (r > 0.4; Additional file 1: Fig. S3D). Hence, 
we further described 30 types of T cells and macrophages 
in the high or low GIRS subgroup. Overall, the low GIRS 
group had a relatively higher infiltration of T cells and 
macrophages, with significant differences in all types of 
CD8 T cells in particular (Additional file 1: Fig. S4).

Drug sensitivity analysis and small‑molecule targeted 
drugs prediction
The drug susceptibility analysis revealed that the high-
risk group, as determined by GIRS, was more sensitive to 
Cisplatin, Cyclopamine, Dasatinib, Docetaxel, Imatinib, 
Embelin, Midostaurin, Parthenolide, and Bexarotene 
(Fig. 7A) while the low-risk group, was more sensitive to 
Nutlin, Methotrexate, PAC.1, GW.441756, Erlotinib, and 
Gefitinib (Fig.  7B). Remarkably, these findings aligned 
with a previous study to some extent [6], providing addi-
tional support for the significance and applicability of the 
gene signature in influencing medication decisions for 
BCa patients. Consequently, our gene signature held val-
uable potential for guiding the selection of chemotherapy 
and targeted agents for BCa patients.

To predict small-molecule targeted drugs specifi-
cally for the high-risk group, a differential expression 
analysis was performed between the high-risk and low-
risk groups in the TCGA-BLCA cohort. Genes with a 
|log2FC|> 1 were considered differentially expressed 
using the R package “limma”. Subsequently, 150 upregu-
lated DEGs and 150 downregulated DEGs were uploaded 
to the CMap database (https:// porta ls. broad insti tute. 
org/ cmap/). By analyzing the connectivity scores, which 
represent the similarity between the gene expression pat-
tern induced by a drug and the gene expression profile of 
the high-risk group, the top ten small-molecule targeted 
drugs were identified. The specific list of these drugs can 
be found in Additional file 1: Table S3. In summary, the 
GIRS could provide valuable guidance for drug selection 

(See figure on next page.)
Fig. 5 Implications of GIRS for immunotherapy and chemotherapy response prediction in three therapeutic cohorts. A Distribution of GIRS 
for patients exhibiting different immunotherapeutic responses in the IMvigor210. B Kaplan–Meier curve analysis of OS between high and low 
GIRS subgroups in the IMvigor210. C Time-dependent ROC analysis for predicting OS in the IMvigor210. D GIRS score in the CR/PR group and SD/
PD group in IMvigor210. Statistical comparisons were conducted using the t-test (p = 5.3e−05). E Boxplot displayed the GIRS signature in patients 
with different immunotherapy responses in the IMvigor210. F Distribution of GIRS for patients exhibiting different immunotherapeutic responses 
in the GSE91061. G Boxplot displayed the GIRS signature in patients with different immunotherapy responses in the GSE91061. H Kaplan–Meier 
curve analysis of OS between high and low GIRS subgroups in the GSE91061. I Time-dependent ROC analysis for predicting OS in the GSE91061. 
J GIRS score in the CR/PR group and SD/PD group. Statistical comparisons were conducted using the t-test (p = 0.00019). K Boxplot displayed 
the GIRS signature in patients with different immunotherapy responses in the GSE52219

https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
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in BCa patients, enabling individualized precision drug 
therapy for different GIRS subgroups.

Identification of prognostic hub gene and upstream 
transcription factors (TFs)
To identify the hub gene that significantly contributed 
to the predicted model, six machine-learning algorithms 

Fig. 5 (See legend on previous page.)
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(XGboost, Catboost, Random Forest, AdaBoost, Light-
GBM, and GradienBoosting) were employed to analyze 
the feature importance of the 13 genes in the signature. 
As shown in Fig. 8A–F, the predictive accuracy of the six 
machine learning algorithms was notable. Among them, 
LightGBM algorithm demonstrated the highest accuracy 
in survival prediction, while CatBoost exhibited a rela-
tively conservative prediction. Subsequently, we utilized 
SHAP values to interpret the contribution of each gene to 
the model. As illustrated in Fig. 8G–L, we observed that 
the SHAP values for RAC3 consistently ranked within 
the top three across the results of all six algorithms. 3 

algorithms (Random Forest, GradienBoosting, Ada-
Boost) proved that RAC3 had the largest contribution 
to the model. In the other three algorithms (XGboost, 
Catboost, LightGBM), the contribution value of RAC3 to 
the model was ranked in second or third place. To sum 
up, the contribution of RAC3 was consistent and sta-
ble across different algorithms. Therefore, we designate 
RAC3 as the hub gene with the highest contribution to 
the model predictions.

Subsequently, we examined potential transcription fac-
tors responsible for RAC3 transcription by Cistrome DB 
Toolkit. As shown in Additional file 1: Fig. S6A and B, the 

Fig. 6 Enrichment analysis and correlation analysis between GIRS subtypes based on the TCGA cohort. A Difference in pathway activities scored 
per patient by GSVA between the high and low GIRS subgroups. Shown were t values from a linear model. B Violin plot illustrated the difference 
in oncopathways between the high and low GIRS subgroups. C Sankey plot visualized the relationships among the C1/C2 clusters, Lund1 subtypes, 
GIRS, and survival status. D Butterfly plot illustrated the correlation between the GIRS and metabolic pathways, the enrichment pathways based 
on GSVA of GO and KEGG terms
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Fig. 7 Drug sensitivity analysis in GIRS subgroups (A) Nine drugs that were more sensitive to high GIRS patients. B Six drugs that were more 
sensitive to low GIRS patients
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Fig. 8 Hub gene identification by 6 machine learning algorithms. A–F 6 machine learning classifier accuracy (Catboost, Random Forest, GDBT, 
LGBM, Adaboost, and BSXGB). Red lines represent true data and blue lines represent predicted data. G–L Through six machine learning algorithms 
(Catboost, Random Forest, GDBT, LGBM, Adaboost, and BSXGB), the contribution value of each gene that makes up the signature to the model 
is calculated and ranked from largest to smallest. SHAP value represents the absolute average of the effect of each gene on the model
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top 10 transcription factors were ELF1, H2AZ1, NRF1, 
KDM2B, ZBTB7A, MYC, MYH11, SMC1A, POLR2A, 
and SAP30. Among these identified potential factors, the 
expression levels of H2AZ1 and NRF1 were positively 
associated with RAC3 (H2AZ1, R = 0.33, p = 1.6e−1, 
Additional file  1: Fig. S6C; NRF1, R = 0.32, p = 9.5e−11, 
Additional file  1: Fig. S6C). These results indicated that 
RAC3 was the hub gene in our predictive signature, and 
its transcription was most likely regulated by H2AZ1 and 
NRF1.

Molecular docking analysis
To further explore the most effective small-molecular 
drug targeting on RAC3 protein, we performed a molec-
ular docking analysis of the RAC3 protein with the top 
ten screened small-molecular drugs (5-iodotuberci-
din, A-443644, AT-7519, Bisindolyl-aleimide-ix, CDK-
inhibitor, Dactinomycin, JNK-9L, PF-562271, PIK75, 
Topoisomerase) sourced from CMap. The molecular 
docking results were presented in the data-heatmap file 
(Additional file  1: Table  S4), and the visual representa-
tion is shown in Fig.  9. It was confirmable that bind-
ing energy serves as a reliable predictor of the binding 
activity between receptors and ligands. Actually, Lower 
binding energy values indicated tighter conformational 
binding. A binding energy below −  5  kcal/mol signi-
fied good binding ability, while a binding energy below 
−  7  kcal/mol suggested strong activity [7]. As depicted 
in Additional file  1: Table  S4, all small-molecule drug 
compounds exhibited binding energies below −  6  kcal/
mol, signifying a favorable match with the target protein, 
RAC3. Among them, two drugs, named PIK75 (bind-
ing energy = −  9.5  kcal/mol) and PF-562271 (binding 
energy = − 9.3 kcal/mol), demonstrated the lowest bind-
ing energies and were visualized using Pymol2.1 soft-
ware (Fig. 9A and C). The amino acid residues to which 
the two drugs bonded in the protein pocket were clearly 
delineated in Fig. 9B and D. It was evident that PIK75 dis-
played the highest affinity for the active site of the RAC3 
protein. The active amino acid residues of RAC3 that 
interacted to PIK75 included LYS-16, ASP-57, TYR-32, 
THR-17, GLY-15, CYS-18, LYS-116, PHE-28, LEU-160, 
and ALA-159 (Fig.  9B). PIK75 formed multiple hydro-
gen bonds with THR-17, GLY-15, CYS-18, and LYS-116, 
yielding a strong effect on binding stability. In addition, 
the benzene ring of PIK-75 formed robust π–π conju-
gated interactions with PHE-28, which contributed to a 
strong hydrophobic effect and facilitated the formation of 
the stable complex as well. Similarly, PF-562271 formed 
hydrogen bonds (LYS-116, ILE-33, THR-35, THR-17, 
and LEU-160), halogen bon (ASP-118) and hydrophobic 
(PH-28, CYS-18) interactions with RAC3 (Fig. 9D). These 
interactions effectively facilitated the formation of stable 

complexes between small molecules and the Rac3 pro-
tein. To sum up, Both PIK-75 and PF-562271 exhibited 
favorable interactions with RAC3 through various mech-
anisms and demonstrated strong associations with these 
protein targets.

PIK‑75 down‑regulated the gene expression of RAC3 
at mRNA and protein levels
Previous studies have shown that RAC3, a small GTP-
binding protein belonging to the RAS superfamily, 
controls a variety of biological processes such as cell 
growth, cytoskeletal reorganization, and protein kinase 
activation [8]. Importantly, it served as an oncogene 
in a variety of tumors, including BCa, which was indi-
cated closely associated with cancer invasion [9–11]. 
Cheng et al. [9] found that RAC3 expression was over-
expressed in BCa tissues and cells, and patients with 
up-regulated RAC3 had worse survival outcomes. 
Wang et al. [12] found that RAC3 mediated autophagy 
through the PI3K/AKT/mTOR pathway and promoted 
the occurrence and metastasis of BCa. Our bioinfor-
matics validation in public databases also showed that 
RAC3 was one of the upregulated oncogenes that neg-
atively correlated with survival status in BCa, which 
was consistent with previous study [9, 12]. To further 
validate the relationship between RAC3 and gemcit-
abine sensitivity, we collected tumor tissue paraffin 
specimens from 20 patients with NMIBC who received 
intravesical gemcitabine instillation postoperatively. 
Among them, 10 patients exhibited gemcitabine resist-
ance, experiencing tumor recurrence shortly, while the 
remaining 10 patients were gemcitabine-sensitive, with 
no recurrence within 2  years. IHC staining was con-
ducted to assess the expression of RAC3. The results 
revealed a significant upregulation of RAC3 expression 
in gemcitabine-resistant patients compared to gemcit-
abine-sensitive patients (Fig. 10A, Additional file 1: Fig. 
S7A). This suggested that patients with elevated RAC3 
expression may be more prone to developing gemcit-
abine resistance. Then, we knocked down the expres-
sion of RAC3 in T24 and 5637 cell lines. The efficiency 
was confirmed through Western blot (Fig.  10B) and 
quantitative PCR (qPCR) (Fig.  10C). Subsequently, we 
selected sh2, which exhibited a significant reduction in 
RAC3 expression, for further experiments. We found 
that the IC50 values for gemcitabine decreased from 
10.15  μM to 6.028  μM in T24 and from 10.52  μM to 
6.452 μM in 5637 cells after knocking down the expres-
sion of the RAC3 (Fig.  10D). We could indicate that 
inhibiting the expression of RAC3 may enhance the 
sensitivity of bladder cancer cells to gemcitabine. 
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PIK‑75 inhibited the proliferation, and migration 
and enhanced the apoptosis of bladder cancer cells 
and reduced the viability of bladder cancer organoids
Then, we delved into whether PIK-75 could influence the 
malignant biological behaviors exhibited by BCa cells. 
We initiated an assessment of our tumor cell lines’ sen-
sitivity to PIK-75. Notably, the Bladder Cancer cell lines 

T24 and 5637 displayed nearly equivalent drug sensitiv-
ity and tolerance to PIK-75, with IC50 values of 122.8 nM 
and 131.6  nM, respectively (Additional file  1: Fig. S7B). 
Notably, upon treatment with PIK-75 (100 nM) for 24 h, 
the survival rate of both cell lines exceeded 70–80%. 
Additionally, there was a significant reduction in RAC3 
expression observed at both mRNA and protein levels. 

Fig. 9 3D structure of RAC3- PIK-75 complex and RAC3- PF-562271 complex based on molecular docking. A The binding mode of the complex 
RAC3 with PIK-75. B The amino acid residues to which PIK-75 bonded in the protein pocket. C The binding mode of the complex RAC3 
with PF-562271. D The amino acid residues to which PF-562271 bonded in the protein pocket
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Particularly noteworthy was the T24 cell line, where the 
RAC3 protein became nearly undetectable after treat-
ment (Fig.  10E, F). CCK-8 assay further verified the 
proliferation inhibition of BCa cells by PIK-75, which 
revealed a statistically significant lower OD450 value at 
all time points (Fig. 11A). Furthermore, the results of the 
cloning formation experiment showed that regardless of 
the colony formation numbers or size, the PIK-75-treated 
group was significantly less than the control group. The 
colony formation efficiency was dramatically decreased 
in vitro (Fig. 11B). The results of the wound healing assay 
were shown in Fig.  11C. The cells in the control group 
migrated and nearly covered the scratch wound rapidly in 
72 h, while the migration ability of tumor cells was inhib-
ited after incubation with PIK-75(100  nM). The FACS 
analysis of Annexin V-PE/7-AAD staining demonstrated 
an increase in the early apoptosis rate of the T24 cell line 
to approximately 5–6%, with a concurrent rise in the late 
apoptosis/necrosis rate to about 3–4%. Additionally, the 

early apoptosis rate of 5637 cells increased to around 2%, 
accompanied by a rise in the late apoptosis/necrosis rate 
to approximately 5–6% (Fig.  11D). Furthermore, treat-
ment of BCa organoids with PIK-75 or DMSO for 48  h 
resulted in a significant 30% reduction in cell viability, as 
illustrated in Fig. 11E and F). Following this, we further 
validated the efficacy of PIK-75 in a subcutaneous tumor 
model in mice. The results demonstrated that mice 
treated with PIK-75 exhibited slower tumor growth and 
smaller tumor volumes compared to the control group 
(Fig.  11G). These findings highlight the potential thera-
peutic efficacy of PIK-75 for BCa.

Discussion
BCa poses a significant social health challenge due to its 
sustained high morbidity and mortality rates, and unfor-
tunately, its burden has remained largely unchanged over 
the course of several decades [13]. Gemcitabine (GEM) 
has become the cornerstone of chemotherapy for BCa, 

Fig. 10 RAC3 was higher expressed in GEM-resistant patients. A Representative images of IHC staining of RAC3 of tumor tissue 
from gemcitabine-sensitive (GEM-sensitive) or gemcitabine-resistant (GEM-resistant) patients. B Western blot analysis of RAC3 in T24 and 5637 
after transfected with shNC or shRAC3. C qPCR analysis of the mRNA levels of RAC3 after transfected with shNC or shRAC3. D IC50 analysis of T24 
and 5637 treated by gemcitabine. E Western blot analysis of RAC3 after PIK-75- or DMSO-treated. F qPCR analysis of the mRNA levels of RAC3 
after PIK-75- or DMSO-treated
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while the persistent hurdles of chemoresistance and 
tumor relapse continue to pose major clinical challenges. 
Presently, clinicians rely on the TNM staging system as 
the basis for treatment decisions and surveillance strat-
egies [14]. However, this system primarily employs a 
macro staging approach based on anatomical consid-
erations and fails to account for genomic alterations. 

Consequently, there exist substantial limitations in the 
selection of appropriate treatment strategies for patients 
with chemotherapeutic-resistant BCa, resulting in unfa-
vorable survival outcomes and prognoses. Therefore, 
there is an urgent imperative to establish a more robust 
personalized assessment protocol capable of identifying 
patients who may exhibit refractory BCa and predicting 

Fig.11 PIK-75 inhibit the growth of BCa in vitro and in vivo. A, B CCK8 assay (A) and colony formation assay (B) of BCa cells. C A wound-healing 
assay of BCa cells. D The FACS results of Annexin V-PE/7-AAD staining after PIK-75- or DMSO-treated. E, F Morphological changes (E) and 3D cell 
viability assay (F) of BCa organoids after PIK-75- or DMSO-treated. G Images of the xenograft tumors from MB49 cells subcutaneously injected 
c57BL/6 mice and tumor growth curves were plotted. The mice were subjected to intraperitoneal administration (i.p.) of PIK-75 or DMSO (as 
a control) following tumor establishment
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their likelihood of poor survival prognosis. To date, 
numerous independent studies have focused extensively 
on gene signatures or novel biomarkers to enhance the 
accuracy of predicting GEM chemosensitivity and patient 
prognosis [15, 16].

Nonetheless, existing gene signatures or biomark-
ers correlated with chemoresistance at the transcription 
level are promising but have not yet been suitable for 
routine clinical applications. Moreover, descriptions of 
changes occurring in the immune TME before and after 
chemotherapy are lacking [1]. To address the demands 
of the clinical decision support system, here we aimed 
to investigate the regularity of genomic and transcrip-
tome alterations of GEM-resistant BCa cell lines from the 
GSE190636 dataset. Additionally, we explored the com-
bination pattern of chemo-immune features (gene signa-
ture), in an attempt to identify the driving factors behind 
tumor treatment resistance. Our objective was to stratify 
patients into different risk groups, thereby providing a 
novel perspective for personalized therapy and progno-
sis prediction. To rationalize the changes in the immune 
TME induced by chemotherapy, GSE190636, a tran-
scriptomic data of GEM-resistant or sensitive BCa cell 
lines, was used to obtain DEGs, and further intersected 
with a prior defined immune-related gene set, IRGs, to 
define GIRGs. Next, we adopted the a stepwise survival 
analysis framework, incorporating the uni-Cox, LASSO 
and multi-Cox survival analysis to identify GIRGs. Sub-
sequently, a 13-gene signature, GIRS, was constructed 
using multiple well-established public BCa patient 
cohorts, along with a nomogram incorporating GIRS 
and other clinical factors. Notably, in previous studies, 
when screening for prognosis, univariate Cox analysis 
was usually conducted to screen out relevant variables, 
followed by multivariate Cox analysis to further con-
firm the independent association of these variables with 
survival. However, this approach does not consider the 
influence of multicollinearity among variables. Most sig-
natures perform well on their training queues and a few 
external cohorts but exhibit weak performance in new 
cohorts [17], probably due to poor generalization caused 
by overfitting. The LASSO algorithm addresses this issue 
by simultaneously achieving variable selection and model 
parameter estimation, effectively solving the problem of 
multicollinearity in regression analysis and mitigating 
overfitting concerns to a certain extent [18]. The stepwise 
modeling approach of uni- Cox + LASSO + multi-Cox 
enables a more precise estimation of each gene’s impact 
on survival time. This enhances the accuracy and inter-
pretability of our prognostic signature, while preventing 
overfitting and improving model generalizability. Indeed, 
Our GIRS signature and nomogram demonstrated 
moderate to high accuracy and stable performance in 

multiple independent cohorts, as evidenced by Kaplan–
Meier analysis, ROC curves, C-index, calibration 
curves, decision curves, and subgroup analysis. These 
results highlight the potential of our model to signifi-
cantly enhance medical practice. Notably, in the valida-
tion cohort, GSE32894, the areas under the ROC curves 
of our novel nomogram exceeded 0.9, and the C-index 
reached 0.9265, which indicates high accuracy and strong 
extrapolation of our model. In the subgroup analysis of 
GSE32894 (Fig. 6E), we also found that the risk stratifica-
tion according to GIRS was in alignment with the result 
of a previous research [19], where higher GIRS corre-
sponded to subgroups with worse prognosis (MS2b2.1, 
MS2b2.2) or higher T stage, confirming the sufficient 
reliability of our signature.

Cancer immunotherapy represents a revolutionary 
change in the therapeutic landscape for solid tumors, 
particularly bringing great therapeutic benefits for 
advanced disease [20, 21]. However, only a small per-
centage of BCa patients are responsive to ICIs, delaying 
disease progression and improving survival. In addition, 
certain emerging chemo-immune synergistic combina-
tion regimens, such as pembrolizumab + GEM/CDDP 
(KEYNOTE-361), have failed to demonstrate significant 
advantages over chemotherapy alone in BCa [22, 23]. In 
this study, by analyzing multiple cohorts with drug treat-
ment information (GSE91061; IMvigor410; GSE52219), 
we also identified the clinical values of GIRS in the pre-
diction of drug sensitivity and efficacy. Furthermore, we 
extensively explored the immune landscape at the bio-
informatics level through immune infiltration analysis, 
GSVA enrichment analysis, and correlation analysis. 
Encouragingly, the GIRS classification of patients aligned 
with the actual regression of patients following immune 
checkpoint inhibitors (ICIs) administration. Patients who 
achieved complete or partial remission (CR/PR) gener-
ally exhibited lower GIRS values. Among those classified 
as low risk by GIRS, a higher proportion of individu-
als responded to MVAC neoadjuvant chemotherapy 
regimens.

Moreover, based on the preliminary immune infiltra-
tion analysis by the CIBERSORT algorithm and correla-
tion analysis, GIRS showed a positive correlation with 
activated CD4 memory T cells and macrophage M1. 
Consequently, we conducted further analysis on the 
differential infiltration of 30 types of T cells and mac-
rophages in the high and low GIRS groups. The results 
indicated that patients in the low GIRS group demon-
strated overall higher levels of T cell and macrophage 
infiltration. Increased infiltration of immune cells may 
enhance anti-tumor immunity and lead to improved 
immunotherapeutic outcomes. However, it is important 
to note that due to limitations in the available data, some 
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of the comparisons between the two groups only exhib-
ited a trend without statistical significance. Therefore, 
further validation is required to support these findings.

Precision medicine has the objective to individual-
ize medical treatment for each patient as early as possi-
ble. Therefore, we utilized the cMAP database to select 
chemotherapeutic or targeted agents that showed dif-
ferential activity in different GIRS subgroups. This infor-
mation could serve as a valuable reference for clinicians 
to formulate individualized therapeutic strategies in the 
future. Collectively, these findings suggest that our GIRS 
signature and nomogram have the potential to provide 
reasonable guidance for identifying treatment-sensitive 
BCa patients receiving first-line immunotherapy, chem-
otherapy, or targeted therapy. In conclusion, our study 
supports the notion that the application of our GIRS sig-
nature and nomogram can aid in the individualization 
of treatment approaches for BCa patients. By providing 
reasonable guidance for the selection of appropriate ther-
apeutic interventions, including immunotherapy, chemo-
therapy, or targeted therapy, our findings facilitate the 
advancement of precision medicine.

As displayed in the forest plot in Fig. 2D, the genes that 
constituted our signature are as follows: OAS1, AHNAK, 
LTBP1, RAC3, GBP2, SHC3, NFATC1, GIPR, PTK2B, 
PAK6, RLN2, NAMPT, and IGF2. Numerous previous 
studies have described the possible functions of some of 
these genes. Gu et al. indicated that AHNAK acted as a 
tumor suppressor to assist p53 in inhibiting the transcrip-
tion of stemness-related genes [24]. Lee et  al. identified 
AHNAK as a novel candidate biomarker for the liquid-
based cytological diagnosis of bladder uroepithelial car-
cinoma through quantitative proteomics studies [25]. 
Kawahara et al. study found that NFATc1 was instrumen-
tal in BCa growth and that NFATc1 inactivation, espe-
cially with CsA and FK506, poses a potential treatment 
for BCa [26]. Additionally, Cheng et  al. demonstrated 
that RAC3 played a carcinogenic role in BCa cells, and 
overexpression of RAC3 activated JAK/STAT oncogenic 
signaling pathway [9, 27]. Wang et al. found that knock-
ing down RAC3 enhanced autophagy mediated by PI3K/
AKT/mTOR pathway. Targeting RAC3 was a promis-
ing therapeutic method to inhibit BCa progression and 
prolong survival time [12]. Next, we employed machine-
learning approaches to filtering out the hub gene that 
made the most significant contribution to the GIRS sig-
nature. In the field of machine learning, a fundamental 
theorem asserts that there is no algorithm capable of 
perfectly solving all problems, especially in the context of 
supervised learning, such as predictive modeling. These 
algorithms are influenced by various factors. So, it’s rec-
ommended to compare and validate results when using 
multiple algorithms to ensure consistent and reliable 

outcomes. In this study, we employed a total of six dif-
ferent machine learning algorithms to analyze the feature 
importance of the 13 genes in the signature to augment 
the confidence and stability of our results. Ultimately, the 
contribution of RAC3 was consistent and stable across 
different algorithms. Therefore, we designated RAC3 as 
the hub gene with the highest contribution to the model 
predictions. We validated the expression of RAC3 in tis-
sue specimens from 20 NMIBC patients who received 
intravesical gemcitabine instillation. We observed higher 
levels of RAC3 expression in gemcitabine-resistant 
patients compared to gemcitabine-sensitive patients. In 
line with this, our in  vitro findings demonstrated that 
knocking down RAC3 in T24 and 5637 cells led to an 
enhancement in their sensitivity to gemcitabine. This 
suggested that gemcitabine may not be recommended 
to be preferred as a postoperative perfusion drug in 
NMIBC patients with high RAC3 expression in clinical 
applications. However, the role of RAC3 in gemcitabine 
resistance required further validation through additional 
in  vivo experiments in future studies. Additionally, we 
utilized molecular docking to identify the small molecule 
drug PIK-75 with the highest affinity for the hub gene 
RAC3. Notably, PIK-75 exhibited a significant influence 
on various malignant biological traits of BCa in vitro and 
in vivo. These findings highlight the potential therapeutic 
efficacy of PIK-75 for BCa.

By amalgamating machine learning, molecular dock-
ing, TF analysis, expression validation, functional assays, 
and IHC validation, our study has elucidated the poten-
tial role of RAC3 in gemcitabine resistance and BCa pro-
gression. In forthcoming research, we are committed to 
meticulously establishing gemcitabine-resistant cell lines 
to augment the comprehensiveness and persuasiveness 
of our findings. Crucially, our investigation identified 
PIK-75, a small molecule drug with a pronounced affin-
ity for the hub gene, presenting it as a potential thera-
peutic option for BCa patients exhibiting insensitivity to 
gemcitabine. These findings create new avenues for fur-
ther investigation and offer potential directions for the 
advancement of targeted therapies in BCa.

In conclusion, our study provides valuable insights 
and forms a foundation for future investigations in the 
dynamic landscape of BCa management. Through the 
implementation of GIRS to categorize patients into high 
and low-risk groups, our model serves as a crucial tool 
for clinicians, facilitating the formulation of personalized 
and effective treatment strategies.

Conclusions
In conclusion, the GIRS prognostic signature, inte-
grating immunological features and chemotherapy 
response, introduces an innovative approach to risk 
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stratification in BCa patients. This signature can poten-
tially improve prognostic prediction accuracy and guide 
the selection of individualized treatment regimens. By 
integrating immunological features and chemotherapy 
response, the GIRS signature addresses an important 
gap in risk assessment for BCa patients. It holds prom-
ise for enhancing clinical decision-making and optimiz-
ing treatment strategies. The hub gene, RAC3, plays a 
crucial role in BCa and is significantly associated with 
resistance to gemcitabine. This finding provides new 
clues for a deeper understanding of the mechanisms 
underlying BCa drug resistance and may serve as a 
key target in the search for treatment strategies. Con-
currently, we identified that the small-molecule drug 
PIK-75 exhibits an affinity for RAC3, effectively target-
ing this pivotal gene. This lends robust support to the 
development of innovative treatment approaches, with 
PIK-75 demonstrating potential efficacy and clinical 
application prospects in BCa.
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