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Abstract
Background Colorectal cancer (CRC) is a malignancy of remarkable heterogeneity and heightened morbidity. 
Cancer associated fibroblasts (CAFs) are abundant in CRC tissues and are essential for CRC growth. Here, we aimed 
to develop a CAF-related classifier for predicting the prognosis of CRC and identify critical pro-tumorigenic genes in 
CAFs.

Method The mRNA expression and clinical information of CRC samples were sourced from two comprehensive 
databases, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Using a weighted gene 
co-expression network analysis (WGCNA) approach, CAF-related genes were identified and a CAF risk signature was 
developed through the application of univariate analysis and the least absolute shrinkage and selection operator 
(LASSO) Cox regression model. EdU cell proliferation assay, and transwell assay were performed to detect the 
oncogenic role of KCNE4 in CAFs.

Results We constructed a prognostic CAF model consisting of two genes (SFRP2 and KCNE4). CRC patients were 
classified into low- and high-CAF-risk groups using the median CAF risk score, and patients in the high-CAF-risk 
group had worse prognosis. Meanwhile, a higher risk score for CAFs was associated with greater stromal and CAF 
infiltrations, as well as higher expression of CAF markers. Furthermore, TIDE analysis indicated that patients with a high 
CAF risk score are less responsive to immunotherapy. Our further experiments had confirmed the strong correlation 
between KCNE4 and the malignant phenotypes of CAFs. Moreover, we had shown that KCNE4 could actively promote 
tumor-promoting phenotypes in CAFs, indicating its critical role in cancer progression.
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Introduction
Colorectal cancer (CRC) is a prevalent and fatal malig-
nancy of the gastrointestinal tract worldwide [1, 2]. The 
development of metastasis to distant organs is strongly 
associated with a reduced 5-year survival rate and lower 
quality of life [3, 4]. Therefore, it is crucial to develop 
effective strategies to prevent CRC metastasis. CRC is a 
complex disease that involves not only neoplastic can-
cer cells but also a diverse array of immune and stromal 
cells that coexist within the tumor microenvironment 
(TME) [5, 6]. The TME is a dynamic and heterogeneous 
milieu that plays a crucial role in the initiation, progres-
sion, and metastasis of CRC, ultimately determining the 
tumor’s biological behavior, which has a direct bearing 
on the patient’s prognosis [7, 8]. Therefore, understand-
ing the complexity and heterogeneity of the TME in 
CRC is essential for the development of effective thera-
pies that could target both the cancer cells and their 
microenvironment.

Cancer-associated fibroblasts (CAFs), which constitute 
the primary constituents of the tumor stroma, serve as 
significant regulators that modulate tumor migration and 
progression, promote epithelial–mesenchymal transition 
(EMT), and cause both chemoresistance and immuno-
suppression [7, 9]. Functionally, CAFs secrete extracel-
lular matrix components that shape the TME, creating 
a physical barrier against immune cell infiltration, which 
results in a reduction of cytotoxic immune cell infiltra-
tion, enabling tumor immune escape [9, 10]. Additionally, 
CAFs secrete immunosuppressive cytokines facilitating 
the formation of an immunosuppressive microenviron-
ment, further impairing immune cell function and pro-
moting immune escape [11, 12].

Currently, CAFs are generally classified into myofibro-
blast CAFs (myoCAFs) and inflammatory CAFs (iCAFs) 
[13–15]. MyoCAFs are mainly located around tumor 
cells and are involved in the formation of the extracellu-
lar matrix [16]. On the other hand, iCAFs secrete vari-
ous cytokines and chemokines that can act on tumor 
cells [15]. However, some targeted therapy studies aimed 
at CAFs have surprisingly revealed that removing CAFs 
may actually promote tumor progression or metastasis, 
implying a significant degree of heterogeneity within the 
CAFs population [17, 18]. Hence, targeting the CAFs-
mediated immunosuppressive stromal microenviron-
ment, in conjunction with immunotherapy, could be a 
viable strategy for improving the response to immune 
checkpoint inhibitors (ICI). Whereas, numerous clinical 

trials targeting CAFs, including those that targeted FAP 
protein expressed in CAFs cells, have yielded unsatisfac-
tory results, highlighting the pressing need for identify-
ing a specific CAFs marker that can be leveraged as a 
therapeutic target [19, 20].

Through the utilization of RNA-seq data obtained from 
TCGA and GEO datasets, our study adopted the system-
atic bioinformatics algorithm WGCNA to identify the 
hub modules most strongly correlated with stromal CAFs 
infiltration. Subsequently, we employed univariate and 
LASSO Cox regression analyses to screen for potential 
prognostic CAFs markers, and discovered KCNE4 and 
SFRP2 as robust candidates. We then developed a two-
gene signature based on these markers, which effectively 
predicts clinical outcome and therapeutic response in 
patients with CRC. Potassium Voltage-Gated Channel 
Subfamily E Regulatory Subunit 4 (KCNE4) was identi-
fied and subsequently validated as a potential biomarker 
candidate through our rigorous investigation.

Of the two pivotal genes, KCNE4’s role in CAFs 
remains largely unexplored. Here, we report for the first 
time that overexpression of KCNE4 in normal fibroblasts 
drives the conversion of NAFs to CAFs and enhances 
tumor cell metastasis. Consequently, targeting KCNE4 
can reverse the malignant properties of CAFs and offer a 
potential therapeutic avenue for CRC.

Materials and methods
Data acquisition
The TCGA RNA-seq data in fragments per kilobase of 
transcript per million mapped reads (FPKM) format, 
along with the corresponding clinical data of TCGA 
colon and rectal cancer (TCGA-CRC) samples, were 
acquired through the UCSC Xena browser (GDC hub) at 
https://gdc.xenahubs.net. The gene profiles and clinical 
data of 177 CRC samples in GSE17536 [21] were acquired 
by downloading the dataset from the GEO project.

The calculation of stromal score and estimation of CAF 
infiltration
To quantify the degree of stromal infiltration within each 
individual tumor specimen, we employed the Estima-
tion of Stromal and Immune cells in Malignant Tumor 
tissues (ESTIMATE) algorithm and the advanced esti-
mate R package (version 1.0.13) to calculate the stro-
mal score [22]. Moreover, four distinct methodologies 
were employed to accurately quantify the abundance of 
CAFs, thus improving our understanding of their crucial 

Conclusion The two-gene prognostic CAF signature was constructed and could be reliable for predicting prognosis 
for CRC patients. Moreover, KCNE4 may be a promising strategy for the development of novel anti-cancer therapeutics 
specifically directed against CAFs.
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function within the TME. The Estimate the Proportion of 
Immune and Cancer cells (EPIC) algorithm, leveraging 
constrained least square optimization, enabled precise 
cell-type deconvolution [23]. Additionally, the xCell algo-
rithm harnessed gene signature enrichment analysis and 
distinguished different subsets of CAFs populations [24]. 
The microenvironment cell populations-counter (MCP-
counter) algorithm based on the expression of specific 
marker genes was used to obtain more detailed infor-
mation on CAFs landscape [25]. These methods were 
implemented using the deconvolute () function from the 
immunedeconv R package (version 2.0.3) [26]. Moreover, 
the Tumor Immune Dysfunction and Exclusion (TIDE) 
method was seamlessly implemented through the user-
friendly interface accessible at http://tide.dfci.harvard.
edu/ [27].

EPIC: Focuses on estimating cell fractions in tumor 
samples using reference gene expression profiles from 
blood and tumor-infiltrating cells, covering a compre-
hensive range of nonmalignant cell types found in human 
tumors, including immune, stromal, and endothelial 
cells. It aims for precise absolute cell fraction predictions 
[28].

xCell: A gene signature-based approach that deduces 
the presence of 64 different immune and stromal cell 
types by integrating 1822 human cell type transcriptomes 
from various sources. xCell employs a curve-fitting com-
parison method and introduces a spillover compensation 
technique to accurately differentiate between cell types 
[24].

MCP-Counter: Offers robust quantification of eight 
immune and two stromal cell populations in heteroge-
neous tissues via transcriptomic data, producing abun-
dance scores for specific cell types. It facilitates direct 
comparisons of cell type abundance across samples 
within a study, functioning on a per-sample basis [25].

TIDE: Simulates tumor immune evasion mechanisms 
by analyzing the roles of T cell dysfunction and barri-
ers to T cell infiltration, based on gene expression and 
its impact on patient survival. TIDE predicts immuno-
therapy outcomes more accurately than traditional bio-
markers and identifies potential regulators of immune 
checkpoint blockade resistance [27].

The induction of CAF and stromal co-expression network
The WGCNA R package (version 1.72) was utilized 
to construct co-expression networks and identify hub 
genes that targeted CAFs infiltrations and stromal 
scores [29]. For both the TCGA-CRC and GSE17536 
cohorts, the top 5,000 genes were selected from the 
MAD for input gene selection. Utilizing the topologi-
cal overlap measure (TOM) and dissimilarity (1-TOM) 
between genes, genes were identified in the adjacency 
matrix. Subsequently, a dynamic tree cut algorithm 

was applied to the dendrogram to detect modules of 
co-expressed genes. A subset of hub genes was identi-
fied for further analysis by overlapping the most cor-
related module genes between the TCGA-CRC and 
GSE17536 cohorts. This subset showed the highest 
correlation between module eigengenes and EPIC-
quantified cancer-associated fibroblast infiltrations, as 
well as the stromal score.

The analysis of the kyoto encyclopedia of genes 
and genomes and gene ontology
The biological functions of the hub genes were analyzed 
using the clusterProfiler R package (version 3.14.3). This 
analysis included evaluation of molecular functions 
(MFs), biological processes (BPs), cellular components 
(CCs), and pathways based on GO and KEGG databases 
[30]. Statistics were considered significant when p < 0.05.

Predictive algorithm development and verification
The TCGA cohort was used to construct the CAF risk 
model, while the GEO cohort was utilized as the vali-
dation cohort. Prognostic CAF hub genes for overall 
survival (OS) were identified through performing univar-
iate Cox regression analysis. To decrease the number of 
genes, a LASSO Cox regression analysis was conducted 
with 1,000 iterations using the glmnet R package for 
genes with p < 0.05 [31]. An individual’s CAF risk score is 
calculated as ∑ (βi * Expi), where βi is the LASSO coef-
ficient of ith gene, and Expi is its expression. The CRC 
patients’ cohort was divided into high- and low-CAF 
risk groups based on their respective median CAF scores 
to establish the CAF risk model. The distinction in OS 
between these groups was evaluated using Kaplan-Meier 
curves and a log-rank test.

Somatic alteration data collection, analysis, and 
enrichment analyses
The somatic mutation data of the TCGA-CRC cohort 
were acquired using the GDCquery Maf () function 
with the “mutect2” [32] pipeline of the TCGAbiolinks 
R package [33]. In both the low-CAF-risk and high-
CAF-risk groups, the top 20 genes with the highest 
mutational frequencies were determined. The com-
parison of KEGG pathway gene sets between high- and 
low-CAF-risk groups in TCGA-CRC dataset was per-
formed using Gene Set Enrichment Analysis (GSEA). 
The “c2.cp.kegg.v7.4.symbols” gene sets from MSigDB 
were employed [34]. Additionally, ssGSEA [35] was 
employed to estimate the enrichment scores for the 
gene sets related to Focal adhesion, TGF-β, ECM 
receptor interaction, and Regulation of actin cytoskel-
eton. The association between CAF risk score and gene 
set enrichment scores was assessed using Spearman’s 
correlation analysis.

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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The outcomes of chemotherapy and immunotherapy 
prediction
Genomics of Drug Sensitivity in Cancer [GDSC] data-
base (https://www.cancerrxgene.org/) [36] was used to 
estimate half-maximal inhibitory concentration (IC50) 
values of common drugs in each CRC sample based 
on the transcriptome data by ridge regression through 
ten-fold cross-validation in pRRophetic R package (ver-
sion 0.5) [37]. The TIDE online algorithm at http://tide.
dfci.harvard.edu/ was utilized to predict the response to 
immune checkpoint blockade therapy [27]. The predic-
tive performance of the CAF risk signature was evaluated 
using ROC curves and the corresponding area under the 
curves (AUC).

Cancer cell line Encyclopedia (CCLE) validation
To confirm our cellular-level observations, mRNA 
expression profiles of the identified markers were pro-
cured from the CCLE database (https://portals.broadin-
stitute.org/ccle) [38] for both fibroblasts and CRC cell 
lines. Heatmaps and Wilcoxon tests were utilized to scru-
tinize the expression patterns of these markers in both 
cell types.

Clinical samples
Fresh tissue samples were obtained from patients 
with CRC at Peking University Cancer Hospital. Tis-
sue samples were frozen in -80℃ for following the 
research. The Ethics Committee of Peking University 
Cancer Hospital approved all studies involving clinical 
samples.

Isolation and culture of CAFs
Fresh human CRC tissue and adjacent normal tissue were 
procured from Peking University Cancer Hospital for this 
investigation. Prior to uniformly compressing the CRC 
tissue onto a culture plate, fragments of 2 mm diameter 
were excised. CAFs were permitted to migrate using 20% 
FBS-DMEM medium at 37  °C and 5% CO2 for a period 
of 1–2 weeks, following which they were purified via 
enzymatic digestion. Subsequently, western blotting was 
carried out to confirm the expression of FAP, FSP1 and 
α-SMA in the CAFs.

Cell lines
The LoVo, HCT116 and RKO cell lines were obtained 
from the Chinese Academy of Medical Sciences (Bei-
jing, China), and HEK293T cells were obtained from 
the American Type Culture Collection (ATCC). Cells 
were cultured in DMEM medium (Gibco) with 10% fetal 
bovine serum (FBS) (Gibco) and 1% penicillin-strepto-
mycin at 37 °C with 5% CO2.

Western blot
Fresh tumor and adjacent non-cancerous tissues from 
CRC patients were homogenized using a Servicebio 
homogenizer (KZ-III-FP) in Thermo Fisher Scientific 
RIPA lysis buffer (89,900). Tissue was homogenized, 
incubated on ice for 30 min, centrifuged at 12,000 rpm, 
and mixed with 5× loading buffer. Boiling the sample 
for 10 min at 100 °C prepared it for subsequent analysis. 
Samples were transferred to PVDF membranes (0.22 μm) 
after SDS-PAGE and overnight incubated with pri-
mary antibodies. HRP-conjugated secondary antibodies 
were then added, and the membranes visualized using 
enhanced chemiluminescence. Experiments were inde-
pendently conducted three times. Antibodies utilized in 
the experiment were as follows: anti-KCNE4 (1:1,000; 
ER61021), anti-α-SMA (1:1000; ET1612-13), anti-FAP 
(1:1000; ET1704-23), anti-Vimentin (1:1000; ET1610-
39), anti-FSP1 (1:200; ET1612-13) anti-β-actin (1:10000; 
R1207-1) were obtained from Hangzhou HuaAn Bio-
technology. The HRP-conjugated goat anti-mouse IgG 
secondary antibody (1:1000; CST, #91,196) and HRP-
conjugated goat anti-rabbit IgG secondary antibody 
(1:1000; CST, #7074) were provided by Cell Signaling.

RNA extraction and qRT-PCR
To isolate RNA from either CAFs or tissues, we employed 
the Trizol Universal Reagent (TIANGEN, DP424) and 
followed the manufacturer’s instructions. The reverse 
transcription reaction was then performed using the 
PrimeScript™ RT reagent Kit (Takara, RR037Q). The sub-
sequent measurement of relative gene expression levels 
was carried out using the Premix Ex Taq™ (Probe qRT-
PCR) kit (Takara, RR39LR). To ensure reliability and 
reproducibility, all experiments were conducted indepen-
dently in triplicate. The qRT-PCR primers are provided in 
Supplementary Table S1.

Cell migration assay
Cells at logarithmic growth phase were digested and re-
suspended in serum-free medium. Cells were seeded at a 
concentration of 5 × 105 cells/ml in the upper chamber of 
transwell plates containing 200 µL of medium. The lower 
chamber had 700 µL of 10% FBS-containing DMEM 
medium. The chambers were incubated at 37 °C for 24 h. 
Following the incubation, the chambers were immersed 
in 4% paraformaldehyde solution for 30  min, thereafter 
staining with crystal violet or DAPI. Cell counts on the 
undersurface of the PET membrane were determined by 
averaging cell counts obtained from the middle and four 
peripheral fields of perspective.

EdU assay
The BeyoClick™ EdU-594 Cell Proliferation Assay Kit (Bey-
otime, C0078S) was used for detecting cell proliferation in 

https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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this experiment. CAFs or NAFs cells (5 × 106) were cultured 
overnight in a 6-well plate. On the following day, 2×EdU 
working solution was added to the cells in equal volume, 
bringing the final concentration to 10µM, and they were 
cultured for an additional 2 h at 37 °C. After EdU labeling, 
the medium was aspirated, and cells were fixed with 1 ml 
of 4% paraformaldehyde (Beyotime, P0099) at room tem-
perature (RT) for 15 min. Next, the fixed cells were washed 
three times with 1 ml of washing buffer for 3–5 min each 
time, after which 1 ml of permeabilization solution (Beyo-
time, P0097) was added to each well and incubated at RT 
for 10–15 min. Then, the cells were washed 1–2 times with 
1 ml of washing buffer, for 3–5 min each time, after remov-
ing the permeabilization solution. Next, 0.5  ml of Click 
reaction solution was added to each well, and the plate 
was gently shaken to ensure uniform reaction mixture cov-
erage. Cells were incubated in the dark at RT for 30 min. 
Thereafter, the Click reaction solution was removed, and 
each well was washed three times with washing buffer, for 
3–5  min each time. Lastly, the cells were examined and 
imaged using a fluorescence microscope with an excitation 
wavelength of 594 nm.

Generation of stable expression mammalian cell lines by 
lentivirus
We generated a firefly luciferase plasmid and the KCNE4 
gene for stable expression of the latter. Full-length human 
KCNE4 was amplified from cDNA of CAFs with the fol-
lowing primers: F: 5’- A T G G G A C T G A A A A T G G A G C C 
T C T G A A-3’, R: 5’- G G A A T T C T G A T G G A T G T T C T C C G 
A G G-3’. For lentivirus packaging, three plasmid-packing 
systems were used. HEK293T cells were transfected with 
800 ng of lentiviral vector, 400 ng of pCMV-VSV-G, and 
600 ng of psPAX2 packaging plasmids, along with 1 mg/ml 
PEI (6 µl), in 6-well plates. After approximately 48–72 h, 
the cell medium containing lentiviruses was collected fol-
lowing filtration through a 0.22 μm filter membrane. Next, 
we infected CAFs and HCT116 cells with the KCNE4 
lentivirus (MOI = 10) and firefly luciferase lentivirus 
(MOI = 10) for 48 h. The cells were subsequently selected 
with 1 µg/ml puromycin in medium for 7 days to obtain 
a stable pool of transgene-expressing cells. The harvested 
cells were then used for downstream experiments.

RNA interference
The siRNAs were transfected into cells using GP-trans-
fect-Mate (GenePharma, Shanghai, China) in serum-
free medium following the manufacturer’ s instructions. 
Sequences of siRNAs used were as follows:

Si-NC: 5ʹ- U U C U C C G A A C G U G U C A C G U T T-3ʹ;
Si-KCNE4#1: 5ʹ- C C U C U U G G A C U G G A C G A U U T 

T-3ʹ;
Si-KCNE4#2: 5ʹ- C C U C C U G C U G C U G U A C A A A T 

T-3ʹ;

Mouse models of peritoneal metastasis
Following a comprehensive database analysis, it was 
evident that KCNE4 exhibited no discernible correla-
tion with gender or age. Employing methodologies akin 
to those described in previous literature [39], female 
BALB/C nude mice, weighing 15 g and aged 4–6 weeks, 
were deliberately housed under specific pathogen-
free (SPF) conditions. This meticulous care and ethical 
approach adhered strictly to the guidelines set forth by 
the Institutional Animal Care and Use Committee at the 
Beijing Cancer Hospital (Ethics Approval Number: EAEC 
2022-04). One million HCT116 cells were mixed with 
either 100,000 NAFs-OE Vector or 100,000 NAFs-OE 
KCNE4 and injected intraperitoneally to induce perito-
neal metastasis. Luciferin suspended in PBS was injected 
intraperitoneally at a dose of 4  mg/mouse to visualize 
tumors using an In Vivo Imaging System. Approximately 
4–6 weeks after transplantation, the tumor formation in 
the peritoneal metastasis nodes were quantified at the 
endpoint after sacrificing the mice.

Mouse models of liver metastasis
Female BALB/C nude mice weighing 15 g and aged 4–6 
weeks were housed in SPF conditions in compliance with 
the Institutional Animal Care and Use Committee guide-
lines of the Beijing Cancer Hospital (Ethics Approval 
Number: EAEC 2022-04). HCT116 cells and CAFs were 
cultured to approximately 80–90% confluence in a 10-cm 
dish and subsequently harvested with trypsin-EDTA 
solution (Catalog number GNM25200, Genom). The cells 
were washed twice with sterile PBS and enumerated. One 
million HCT116 cells were mixed with either 100,000 
Vector-CAFs or 100,000 KCNE4-CAFs and injected into 
the spleen (50 µL per mouse) to induce liver metastasis. 
Tumors were visualized by injecting luciferin (intraperi-
toneal, 4 mg/mouse) suspended in PBS and imaged with 
an In Vivo Imaging System twice a week, approximately 
8 weeks post-transplantation. To evaluate tumor forma-
tion in the spleen and nodal metastasis in the liver, mice 
were sacrificed at the endpoint, approximately 8 weeks 
post-transplantation.

Immunohistochemistry (IHC)
The tissue blocks containing formalin-fixed and paraf-
fin-embedded surgical specimens of esophageal cancer 
were sectioned into 4  mm slices for immunohisto-
chemistry (IHC). Subsequently, the sectioned tissues 
underwent deparaffinization and were treated with 
0.3% H2O2 in methanol at RT for 10  min to quench 
endogenous peroxidase activity. Antigen retrieval 
was accomplished by microwave heating in a sodium 
citrate buffer solution. Following cooling, sections 
were subjected to a 40-minute incubation with block-
ing reagent at RT. The sectioned tissues were then 
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exposed to primary antibodies against anti-KCNE4 
(1:100; 18289-1-AP) or anti-α-SMA (1:300; ET1612-
13) overnight at 4℃. Subsequent to three 5-minute 
PBS washes, sections were incubated with secondary 
antibodies for 30  min at RT. Following further wash-
ing steps, visualization was achieved using an enzyme 
substrate, with subsequent counterstaining conducted 
with hematoxylin.

Hematoxylin and Eosin (H&E) staining
The FFPE (Formalin-Fixed Paraffin-Embedded) sections 
of mouse liver tissues underwent antigen retrieval via 
heat treatment at 65  °C for 1  h. Deparaffinization was 
achieved using xylene, followed by rehydration through 
graded ethanol solutions. Hematoxylin staining was 
applied for 5  min, and differentiation was performed 
using 1% hydrochloric acid in alcohol, followed by exten-
sive tap water rinsing until achieving optimal blue color-
ation. Subsequently, counterstaining was executed with 
eosin. The sections were then dehydrated using ethanol, 
cleared with xylene for transparency, mounted with a 
neutral resin, and subjected to microscopic examination 
for imaging purposes.

Statistical analysis
The data presented in this study represents the 
mean ± SEM (Standard Error of the Mean) and was ana-
lyzed using GraphPad Prism version 8 and R software 
(version 4.2.2; https://www.r-project.org/). Paired or 
unpaired Student’s t tests, one-way ANOVA tests, and 
Spearman correlation analysis were used to analyze bar 
graphs and assess correlations between two variables. 
Additionally, the log-rank test was applied to compare 
the Kaplan-Meier curves. The threshold for statistical sig-
nificance was set at ****P < 0.0001, ***P < 0.001, **P < 0.01, 
*P < 0.05, or ns (P > 0.05).

Results
Co-expression network constructed by WGCNA
By utilizing multiple computational methods, including 
EPIC, xCell, MCP-counter, and TIDE, we successfully 
predicted CAF infiltration. Additionally, stromal scores 
were quantified using the estimate algorithm. Signifi-
cantly, Kaplan-Meier analysis revealed that high levels of 
CAF infiltration and stromal scores are associated with 
poorer OS in CRC patients. The levels of CAF_EPIC, 
CAF_TIDE, and stromal scores were found to be mark-
edly linked to worse OS in TCGA-CRC and GSE17536 
datasets, underscoring the potential necessity of more 
thorough investigation of CAF and stroma-associated 
genes in CRC (Fig. S1a-f ).

WGCNA analysis was executed on both TCGA-CRC 
and GSE17536 datasets. To build a scale-free topol-
ogy network, we determined the soft threshold power 

(β) of 4 in TCGA-CRC (scale-free R2 = 0.867) (Fig.  1a) 
and 4 in GSE17536 (scale-free R2 = 0.9292) (Fig.  1b). 
In TCGA-CRC, the hierarchical clustering tree identi-
fied 19 co-expression models (Fig.  1c), and the MEtan 
module displayed the strongest positive relationship 
the CAF proportion (Cor = 0.76, P = 3e-118) and stro-
mal score (Cor = 0.93, P = 9.99e-269) (Fig.  1e). For 
GSE17536, the hierarchical clustering tree revealed 
that 19 co-expression models were clustered (Fig.  1d), 
with the MEturquoise module presenting the most sig-
nificant positive correlation with the CAF proportion 
(Cor = 0.88, P = 9e-58) and stromal score (Cor = 0.93, 
P = 2e-79) (Fig.  1f ). Thus, we directed our attention to 
these two modules for more research. In the MEtan 
module, the scatter plots suggested a robust relation-
ship between MM and GS concerning CAF (Cor = 0.92, 
p = 1e-200) (Fig. 1g); in the MEturquoise module strong 
correlations were observed between MM and GS for 
CAF (Cor = 0.95, P = 1e-200) (Fig.  1h). Subsequently, 
applying MM > 0.8 and GS > 0.4 as the cut-off points, a 
total of 192 genes in the MEtan module of TCGA-CRC 
and 153 genes in the MEturquoise module of GSE17536 
singled out as hub genes that were connected with CAF 
scores.

Functional analyses of selected CAF-related genes and 
construction a risk model based on CAF
A Venn diagram was utilized to identify 75 hub genes 
by overlapping and screening the above-mentioned 
CAF-related genes (Fig.  2a). Thereupon, we investi-
gated the functions and pathways associated with the 
75 genes using GO and KEGG analyses. The main 
enriched GO terms were linked to extracellular matrix 
organization, extracellular structure organization 
(BP); collagen-containing extracellular matrix and 
extracellular matrix structural constituents were the 
major enriched CC and MF terms (Fig.  2b). The main 
enriched KEGG pathways were extracellular matrix 
organization, would healing, and regulation of BMP 
signaling pathway (Fig. 2c).

The 75 shared hub genes were analyzed using the 
univariate Cox regression, and 9 genes associated 
with OS with a p value less than 0.05 were identified 
and further analyzed using LASSO Cox regression 
(Fig. 2d, e). Ultimately, two genes were selected to con-
struct the CAF risk model: CAF risk score = expression 
of KCNE4 * 0.22282 + expression of SFRP2 * 0.00545 
(Fig. 2f ). The patients stratified as high-CAF-risk using 
Kaplan-Meier curves showed poorer OS in compari-
son to those categorized as low-CAF-risk in both the 
TCGA-CRC cohort (HR = 1.478, 95% CI: 1.035–2.111, 
log-rank p = 0.031) (Fig.  2g) and GSE17536 cohort 
(HR = 1.81, 95% CI: 1.129–2.902, log-rank p = 0.013) 
(Fig. 2h).

https://www.r-project.org/
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Correlations between CAF risk score and CAF infiltration, 
somatic variation, chemotherapy sensitivity and 
immunotherapy response
To verify the accuracy of the CAF model as a reliable 
predictor of CAF infiltrations, we performed Spearman’s 
correlation analyses between the CAF risk score and the 
stromal score, as well as the CAF abundances predicted 
by EPIC, xCell, MCP-counter, and TIDE, respectively. 
Our findings revealed a strong and positive correlation 
between the CAF risk score and the multi-estimated 
CAF infiltrations and stromal score in both TCGA-CRC 

(Fig. 3a). These results indicate that the CAF risk score is 
a credible predictor of CAF infiltrations. To further vali-
date the association between the expression levels of the 
two genes and CAFs, we compared their expression lev-
els with a collection of CAF markers in the TCGA-CRC 
cohort (Fig.  3b). A robust and positive association was 
detected between the expression levels of both genes and 
the majority of the CAF markers, indicating that the two 
genes are representative of CAFs.

We used waterfall plots to display the 20 genes with the 
highest mutational frequencies in the low- and high-risk 

Fig. 1 Co-expression network constructed by WGCNA. a, b. A soft-thresholding power (β) of 4 was chosen for subsequent analysis based on the scale-
free topology criterion in TCGA-CRC (a) and GSE17536 (b). c, d. Genes with similar expression patterns were clustered into co-expression modules in 
TCGA-CRC (c) and GSE17536 (d) based on dendrograms created from hierarchical clustering. e, f. Correlation between gene modules’ eigengenes and 
phenotypes in TCGA-CRC (e) and GSE17536 (f) datasets. g, h. Scatter plots of the module membership (MM) and gene significance (GS) of each gene in 
the tan module of TCGA-CRC (g) and the turquoise module of GSE17536 (h)
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subgroups, stratified by CAF risk score. Intriguingly, 
there was a considerable overlap in the most common 
mutational genes between the low- and high-CAF-risk 
groups (Fig. 3c). The finding indicated that there is not a 
significant correlation between the levels of CAF scores 
and the types of gene mutations present in CRC.

Typically, radical surgery is the primary modality of 
treatment for CRC patients, followed by adjuvant che-
motherapy and ICI therapy where necessary. To assess 
the potential impact of CAF on CRC treatment, we 
estimated the half-maximal inhibitory concentration 

(IC50) values for multiple anti-tumor drugs, includ-
ing those commonly used in CRC treatment, using 
the GDSC database. Wilcoxon analyses revealed sig-
nificant differences in IC50 values observed between 
high- and low-CAF-risk patients with CRC. The results 
revealed that low-CAF-risk patients were sensitive to 
5-Fluorouracil, KRAS (G12C) inhibitor-12, Sorafenib, 
Palbociclib, Oxaliplatin, and Wnt-C59 (Fig. 3d). Immu-
notherapy is considered one of the most significant 
recent advances, especially for patients with micro-
satellite instability-high (MSI-H) CRC. To assess the 

Fig. 2 Identification of Key Genes and Establishment of Prognostic Models. (a) The intersection of TCGA-CRC tan and GSE17536 turquoise module genes 
was presented in the Venn diagram. (b, c). GO, KEGG analysis of the 75 genes. (d) Genes associated with overall survival in TCGA-CRC were screened 
using the univariate Cox analysis. (e) The two-gene prognostic signature was identified by Lasso–Cox regression analysis. (f) The construction of the CAF 
risk model. g, H. Kaplan-Meier analyses revealed that CRC patients in the high-CAF-risk group had poorer overall survival rates in both TCGA-CRC (g) and 
GSE17536 (h) cohorts
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potential of the CAF risk score as a predictor of immu-
notherapy response in CRC patients, we employed the 
TIDE algorithm. Our analysis of TCGA-CRC dataset 
revealed that patients with low CAF scores showed 
greater immunotherapy sensitivity, as evidenced by 
lower TIDE scores, compared to those with high CAF 
scores (Fig.  3e). Additionally, the non-responder sub-
group had significantly higher CAF scores than the 
responder subgroup (Fig.  3f ). Our analysis of the 
TCGA-CRC dataset demonstrated that the model is an 

effective predictor of immunotherapy response, with an 
AUC value of 0.796 (Fig. 3g).

Cross-dataset validation of important gene-KCNE4
The CAF risk model is predominantly based on two 
genes, KCNE4 and SFRP2. While SFRP2 has been exten-
sively studied, the role of KCNE4 in fibroblasts remains 
unclear and has received limited attention in the litera-
ture. Therefore, the primary objective of our study is to 
elucidate the expression and distribution of KCNE4 

Fig. 3 Correlations Between CAF risk score and Infiltration, somatic variation, and drug response.  (a) Spearman’s correlation analysis of CAF risk score 
with stromal scores and multi-estimated CAF infiltration. (b) Spearman’s correlation analysis of CAF markers with CAF risk score and two signature genes. 
(c) The top 20 mutational genes in low- and high-CAF-risk groups of TCGA-CRC. (d) Comparison of chemotherapy drug IC50 values between low- and 
high-CAF-risk Groups. (e, f). TIDE immunotherapy prediction analyses. (g) ROC curves of the CAF risk score in predicting immunotherapy responses in 
TCGA-CRC
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within the microenvironment of CRC, as well as its role 
in fibroblasts. To investigate the association between 
KCNE4 expression and CAF infiltration in various cancer 
microenvironments, we utilized a range of algorithms, 
including EPIC, MCP-counter, XCell, and TIDE, avail-
able on the TIMER2.0 database, and obtained evidence 
demonstrating a positive correlation with a particular 
emphasis on CRC (Fig. 4a). Subsequent analyses showed 

that the expression of KCNE4 in fibroblasts was signifi-
cantly higher than that of CRC tissues (Fig.  4b, c). We 
investigated the connection between KCNE4 expression 
and CRC prognosis by utilizing the GEPIA website; our 
observations indicated a negative correlation between 
KCNE4 expression levels and the OS and disease-free 
survival (DFS) of CRC patients (Fig.  4d, e). Our inves-
tigation into the expression of KCNE4 in CRC revealed 

Fig. 4 Cross-dataset validation of important gene-KCNE4. (a) The results of TIMER2.0 analysis reveal significant correlations between KCNE4 expression 
and the infiltration of CAFs in various tumor tissues, which are represented by red and blue squares on the scatterplot, where red denotes significant posi-
tive correlations, while blue denotes significant negative correlations. b, c. The expression levels of KCNE4 in CCLE database were analyzed using a heat 
map (b) and box plot (c). (d, e). The association between KCNE4 expression and OS as well as DFS in TCGA-CRC cohort. (f-h). The analysis also showed a 
positive correlation between KCNE4 expression levels and tumor stage. (i) The expression differences of KCNE4 in age status. (j) KCNE4 expression differ-
ences in gender. (k) The KCNE4 expression levels in different cell types using five single-cell sequencing datasets from the GEO database in CRC. (l, m). 
The relationship between KCNE4 expression levels and the expression of CAFs marker genes FAP, ACTA2, and VIM utilizing the single-cell dataset from 
CRC_GSE146771. Data in bar graphs indicate mean ± SEM. ns: no significant, **P < 0.01 and ***P < 0.001
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a positive correlation with tumor stage, and T and N 
classification, suggesting a strong link between elevated 
KCNE4 levels and poor clinical prognosis (Fig. 4f-h). In 
our subsequent analysis, we systematically examined the 
variations of this gene among male and female patients, 
as well as those below and above 65 years of age. Remark-
ably, no significant differences were discerned in the 
expression of KCNE4 between these two groups, under-
scoring the insignificance of this gene with respect to 
both age and gender (Fig.  4i, j). Moreover, we first ana-
lyzed the expression of KCNE4 at the single-cell levels 
in different cell types using the TISCH (Tumor Immune 
Single-cell Hub) database, which revealed that KCNE4 
was exclusively highly expressed in fibroblasts and was 
low or not expressed in immune cells, epithelial cells, 
and tumor cells (Fig. 4k). Intriguingly, KCNE4 exhibited 
a co-expression pattern with characteristic CAF markers, 
including FAP, ACTA2, and VIM, within the CAFs group 
(Fig. 4l, m). Collectively, our findings suggest that KCNE4 
is a specific marker of CAFs and is a negative prognosti-
cator for CRC patients.

KCNE4 tissue expression validation and CAF extraction in 
CRC
We extracted proteins from both tumor and adjacent 
normal tissues from 12 CRC patients and quantified 
the expression level of KCNE4 using Western blot-
ting. Our results indicated a significant upregulation of 
KCNE4 in tumor tissue compared to adjacent normal 
tissue (Fig. 5a, b), which were in line with TCGA-CRC 
paired analysis (Fig. 5c). To further elucidate the role of 
KCNE4 in CAF and NAF cells, we isolated and cultured 
these cell types from both tumor and adjacent normal 
tissues of CRC patients (Fig. 5d). We confirmed the suc-
cessful isolation of CAF and NAF cells through West-
ern blotting of various characteristic markers, including 
FAP, α-SMA, and FSP1. Notably, we observed signifi-
cantly higher expression levels of these markers in CAF 
cells compared to NAF cells (Fig.  5e). The expression 
of KCNE4 was further analyzed in CRC cells, as well 
as NAFs and CAFs. Notably, we found that KCNE4 
expression was primarily detected in fibroblasts and 
significantly higher than that in tumor cells. Remark-
ably, the expression of KCNE4 was higher in CAFs than 
in NAFs (Fig. 5f ). Subsequently, to further confirm the 
tumor-promoting ability of CAFs, we applied condi-
tioned media derived from NAFs and CAFs, along with 
regular media, to the bottom chamber of a transwell 
assay and observed their effect on tumor cell migra-
tion. Notably, compared to conditioned media from 
NAFs or regular media controls, media derived from 
CAFs significantly increased the migratory capacity of 
tumor cells (Fig. 5g). In order to further investigate the 
role of CAFs playing in promoting tumor progression, 

we performed in vivo experiments by co-culturing 
HCT116 cells with NAFs or CAFs, and then injecting 
the mixed cultures into the peritoneal cavity of mice to 
simulate peritoneal metastasis. Remarkably, our results 
showed that tumor spread was significantly increased 
in mice co-cultured with CAFs compared to those co-
cultured with NAFs (Fig.  5h-k), which is consistent 
with our in vitro findings.

The oncogenic role of KCNE4 in CAFs
To investigate the functional role of KCNE4 expression 
in CAFs, we conducted a correlation analysis between 
KCNE4 and several malignancy markers in CAFs, includ-
ing FAP, FSP1, VIM, and ACTA2, using the TCGA 
database. Notably, our results demonstrated a strong 
positive correlation between KCNE4 and these malig-
nancy markers, indicating an important role for KCNE4 
in the malignant phenotype of CAFs (Fig. 6a). According 
to previous studies, CAF migratory capability, attributed 
to specific migratory, adhesive, and paracrine signaling 
mechanisms, may be a significant contributor to cancer 
progression and metastasis [40, 41]. Moreover, we con-
ducted EdU incorporation and migration assays and 
found that KCNE4 overexpression significantly increased 
NAFs proliferation and migration (Fig. 6b-d). In contrast, 
when KCNE4 was knocked down in CAFs, we observed a 
downregulation of CAFs malignancy markers, as well as 
a significant reduction in CAFs proliferation and migra-
tion, as demonstrated by EdU incorporation and migra-
tion assay results (Fig. 6e-g).

GSEA was performed on the TCGA-CRC dataset 
between high- and low-CAF-risk groups. As displayed 
in Fig. S2a, b, the major enriched KEGG signaling 
pathways were cell adhesion molecules cams, ECM 
receptor interaction and focal adhesion. Extensively, 
ssGSEA results declared that the CAF risk score was 
positively correlated with focal adhesion and TGF-β 
signaling hallmarker gene sets (Fig.  S2c-f ). Consider-
ing these results, we established a in vitro co-culture 
model. CAFs with overexpression or knockdown of 
KCNE4 gene were seeded in culture plates until full 
confluence. Afterwards, GFP-labeled HCT116 or LoVo 
cells were added onto the CAFs monolayers. After 
15  min, unbound tumor cells were washed away and 
the remaining adherent tumor cells were analyzed. 
CAFs in the control group exhibited stronger adhesion 
to tumor cells compared to those with KCNE4 knock-
down (Fig.  6h). Meanwhile, overexpression of KCNE4 
in CAFs enhanced adhesion between CAFs and tumor 
cells (Fig.  S3a). In addition, we added conditioned 
media from fibroblasts with knockdown or overex-
pression of KCNE4 in the lower chamber of transwell 
plates. Our results demonstrated that conditioned 
media from KCNE4-knockdown CAFs weakened the 
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migration-promoting effects of CAFs on tumor cells 
(Fig. 6i). In contrast, conditioned media from KCNE4-
overexpressing NAFs enhanced the migration-pro-
moting effects on tumor cells (Fig. S3b). In our pursuit 
of understanding the pivotal functions mediated by 
KCNE4 and its interaction with chemotactic and cyto-
kine factors, we delved into the existing literature on 
CAFs secretome. Conducting a thorough correlation 

analysis between genes reported in these studies and 
our KCNE4, we identified a subset of genes exhibit-
ing strong correlations. These selected genes under-
went further validation through qRT-PCR testing. 
Notably, our qRT-PCR results unveiled a significant 
and pronounced upregulation of IGF1 in the NAFs-
OE KCNE4 group compared to the NAFs-OE Vector 
group (Fig. 6j). Furthermore, through in-depth analysis 

Fig. 5 KCNE4 tissue expression validation and CAFs extraction in CRC. (a, b). KCNE4 protein expression was shown in 12 paired tumor and para-tumor 
tissue by Western blot. (“N” for non-tumor, “T” for tumor). (c) KCNE4 expression in paired CRC samples from TCGA. (d) Images display the isolation of NAFs 
and CAFs from CRC adjacent normal tissue and tumor tissue. (e) Western blot was used to measure the expression levels of FAP, α-SMA and FSP1 in NAFs 
and CAFs.  (f) qRT-PCR analysis of KCNE4 in different cell types. (g) Migration of CRC cells incubated with CM derived from NAFs or CAFs. (h-i). In vivo 
bioluminescence imaging of mice administered with HCT116 (Luci) cells via intravenous intraperitoneal injection in the presence of either NAFs or CAFs 
(n = 4). (j) Dissected intraperitoneal tumor nodules after humanitarian execution (n = 4). (k) The intraperitoneal tumor weights in each group were statisti-
cally analyzed. Data in bar graphs indicate mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Student’s t test (b, i, k), paired Student’s t test (c), 
multi-group analysis of variance (g)
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of TCGA database, we elucidated a discernible positive 
correlation between IGF1 and KCNE4, thus substan-
tiating our experimental observations (Fig.  6k). These 
findings suggested that KCNE4 played a crucial role 
in enhancing adhesion between fibroblasts and tumor 
cells, as well as facilitating tumor cell migration by pro-
moting fibroblast self-activation.

Upregulation of KCNE4 in CAFs drives metastasis of CRC 
cells
The most common metastasis seen in CRC patients 
is liver metastasis. Hence, in order to determine the 
impact of elevated KCNE4 expression in NAFs on liver 
metastasis of CRC cells, we conducted rigorous in vivo 
assays by injecting NAFs and CRC tumor cells into the 
spleens of nude mice (Fig. 7a). Remarkably, our findings 

Fig. 6 The oncogenic role of KCNE4 in CAFs. (a) Spearman’s correlation analysis was utilized to determine the correlation between the expression levels 
of FAP, VIM, FSP1, ACTA2, and KCNE4, with the data from the GEPIA database. (b) Immunoblot Analysis of CAFs Markers in NAFs with Induced KCNE4 over-
expression. (c) The effect of KCNE4 on NAFs proliferation was determined by EdU incorporation assay. (d) Impact of KCNE4 on NAFs migration revealed via 
transwell Migration. (e) The protein levels of CAFs markers in CAFs transfected with KCNE4 siRNAs. (f) EdU assay for detecting proliferation CAFs Prolifera-
tion following KCNE4 siRNA transfection. (g) Migration of CAFs transfected with KCNE4 siRNAs. (h) Cell adhesion assay of LoVo- and HCT116-GFP cells on 
CAFs transfected with KCNE4 siRNA-NC or siRNA-KCNE4. (i) Migration of LoVo and HCT116 cells incubated with CM derived from CAFs transfected with 
KCNE4 siRNA-NC or siRNA-KCNE4. (j) The mRNA expression levels of the target genes of multiple chemokine and cytokine. (k) Analysis of the correlation 
between KCNE4 and IGF1 from the TCGA database. Data in bar graphs indicate mean ± SEM. **P < 0.01, ***P < 0.001, ****P < 0.0001. Student’s t test (c, d), 
multi-group analysis of variance (f, g, h, i, j)
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unveiled a compelling phenomenon, as the overex-
pression of KCNE4 in NAFs remarkably facilitated the 
metastatic potential of CRC cells (Fig.  7b). Notably, 
this remarkable enhancement in metastatic capability 
led to the formation of a significantly higher number of 
metastatic colonies within the murine liver (Fig.  7c). In 
each experimental group, liver slices were stained with 

hematoxylin-eosin (HE), revealing noticeable tumor 
metastatic foci in the liver in the NAFs overexpressing 
KCNE4 (Fig. 7d).

In addition, we implemented an intraperitoneal metas-
tasis model in mice. HCT116 cells were introduced into 
the mouse peritoneal cavity, co-administered with either 
NAFs-OE Vector or NAFs-OE KCNE4 cells. Strikingly, 

Fig. 7 Upregulation of KCNE4 in CAFs drives liver metastasis of CRC cells. (a) A mouse liver metastasis model was constructed by simultaneous injection 
of CRC cells and NAFs into the spleen. (b) In vivo bioluminescence imaging of mice administered with HCT116 (Luci) cells via intrasplenic injection in the 
presence of either NAFs-OE Vector or NAFs-OE KCNE4 (n = 5). (c) Comparison of liver metastases in HCT116/NAFs-OE Vector and HCT116/NAFs-OE KCNE4 
groups. (d) Representative HE staining reveals liver metastasis in nude mice following 8 weeks of spleen injection with CRC cells and NAFs-OE Vector or 
NAFs-OE KCNE4 (n = 5). The white arrow indicates the metastatic node (scale bar, 1000 μm). (e) In vivo bioluminescence imaging of mice administered 
with HCT116 (Luci) cells via intraperitoneal injection in the presence of either NAFs-OE Vector or NAFs-OE KCNE4 (n = 5). (f) Comparison of intraperitoneal 
metastases in HCT116/NAFs-OE Vector and HCT116/NAFs-OE KCNE4 groups. (g) Immunohistochemistry was employed to assess the distribution of 
KCNE4 and α-SMA in peritoneal metastatic nodules derived from mice in Fig. 7f. (h) Immunohistochemistry was employed to scrutinize the distribution of 
KCNE4 and α-SMA in paired primary colorectal cancer tumors and their corresponding liver metastases. Data in bar graphs indicate mean ± SEM. *P < 0.05, 
**P < 0.01. Student’s t test (b, c, e, f )
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mice in the NAFs-OE KCNE4 group exhibited a signifi-
cantly higher number of intraperitoneal metastatic nod-
ules compared to the NAFs-OE Vector group (Fig. 7e, f ). 
Subsequently, we conducted histological staining on the 
peritoneal nodules, revealing a pronounced elevation in 
the expression of α-SMA and KCNE4 in the NAFs-OE 
KCNE4 group compared to the NAFs-OE Vector group 
(Fig. 7g).

Furthermore, our validation efforts extended to the 
clinical domain. Directly obtaining primary CRC lesions 
and their paired liver metastatic lesions from patients, 
we performed immunohistochemical staining for α-SMA 
and KCNE4. The results demonstrated a substantial 
increase in the expression of α-SMA and KCNE4 in the 
liver metastatic lesions compared to the primary lesions 
(Fig. 7h).

Discussion
CRC is a heterogeneous disease with multiple subtypes 
that possess distinct molecular and clinical character-
istics [42]. Although the molecular mechanisms driv-
ing the development and progression of CRC have been 
extensively studied, the specific role of CAFs in this sub-
type remains uncertain [43, 44]. CAFs are critical con-
stituents of the TME and have been shown to promote 
CRC growth and progression [45]. Consistent with previ-
ous findings, our study revealed that patients with high 
stromal or CAFs scores had poorer prognosis [46, 47]. By 
applying WGCNA, univariate Cox and LASSO regres-
sion algorithms, a two-gene (SFRP2 and KCNE4) prog-
nostic CAF model was constructed and validated [48]. 
In addition, by employing the TIDE online algorithm, 
we found a significant correlation between lower CAFs 
risk scores and improved response to immunotherapy in 
patients with CRC.

Further exploring the two identified key genes, we 
found limited research on the KCNE4 gene in the 
context of CAFs. We subsequently utilized CRC sin-
gle-cell sequencing data from the GEO database to 
confirm that KCNE4 is predominantly expressed in 
CAFs within tumor tissues and its expression is coin-
cident with that of malignant CAFs markers. GSEA 
revealed that ECM receptor interaction and focal 
adhesion gene sets were highly enriched in the high-
CAF-risk group. CAFs and cancer cells could commu-
nicate with each other through direct contact during 
tumor progression, such as cell adhesion. Our previ-
ous study reported that CDH11-mediated juxtacrine 
interaction of gastric cancer cells and fibroblasts pro-
motes metastasis via YAP/tenascin-C [49]. Mechanis-
tically, we noted that knockdown of KCNE4 in CAFs 
resulted in a downregulation of malignant CAF mark-
ers, a decrease in adhesion between CAFs and tumor 
cells, and a reduction in CAF-mediated pro-metastatic 

effects on tumor cells. Conversely, overexpression of 
KCNE4 yielded opposite results. These results suggest 
that KCNE4 represents a promising therapeutic target 
for CAFs in cancer treatment.

With respect to the two identified markers in the 
model, SFRP2 was reported as a top biomarker of 
a predominant CAF population and inactivation of 
SFRP2 in CAFs impaired their ability to induce the 
migration and invasion of colon cancer cells, as well as 
their tumorigenicity in vivo by creating an immuno-
suppressed environment [48]. Mo et al. reported that 
SFRP2+ CAFs are crucial for predicting GC patients’ 
prognosis and the efficacy of immune checkpoint 
blockade therapy, as well as promoting GC progression 
[50]. We observed that high-CAF-risk CRC patients 
were less sensitive to several drugs like ICI therapy, 
and this result fitted well with the finding that the 
aforementioned study in GC.

KCNE4 was previously demonstrated to modulates 
Kv1.3 current properties, including slowing activation, 
accelerating inactivation, and retaining the channel at 
the endoplasmic reticulum [51]. Despite the impor-
tance of ion channel regulation in tumorigenesis [52], 
the role of KCNE4 in cancer remains poorly under-
stood. Encouragingly, a recent study investigating CRC 
found that elevated KCNE4 expression was associated 
with radioresistance and upregulation of the PI3K/
AKT signaling pathway [53]. Our study revealed that 
KCNE4 was predominantly expressed in CAFs and 
had a pro-tumorigenic function. Expression analysis of 
primary cultured CAFs and tumor cell lines revealed a 
significantly higher expression of KCNE4 in CAFs than 
in tumor cells. Further investigation is needed to deter-
mine the relative importance of KCNE4 in tumor cells 
versus CAFs.

The underlying mechanisms driving the transition 
from NAFs to CAFs phenotype remain inadequately 
understood. According to Chen et al. study [52], the TME 
is characterized by an elevated potassium-rich milieu, 
which has been shown to impair the anti-tumor potential 
of tumor-associated macrophages (TAMs). Given this, it 
is plausible that elevated KCNE4 expression in CAFs rep-
resents an adaptation to the potassium-rich milieu of the 
tumor immune microenvironment. In the future, the role 
of potassium ion dynamics in modulating the transition 
from NAFs to CAFs, as well as the specific mechanisms 
by which elevated KCNE4 expression regulates fibroblast 
malignant phenotypes, represent key areas of investiga-
tion that will deepen our understanding of the complex 
interplay between the TME and cancer cells. Elucidating 
these mechanisms may be critical for the development 
of targeted therapeutic strategies aimed at disrupting 
tumor-stromal interactions and improving clinical out-
comes for CRC patients.
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Conclusions
In summary, we established a two-gene prognostic 
CAF signature which held great potential for predicting 
patient survival outcomes and response to therapeutic 
interventions. Meanwhile, our study provided compel-
ling evidence indicating that CRC CAFs played a criti-
cal role in promoting tumor growth and metastasis, and 
that elevated expression of KCNE4 was associated with 
enhanced proliferation and migratory capacity of CAFs, 
as well as enhanced tumor-promoting properties of 
CAFs. These findings highlighted the importance of the 
TME in promoting cancer progression and suggested 
that targeted disruption of tumor-stromal interactions, 
such as those mediated by KCNE4, could represent a 
promising strategy for the development of novel anti-
cancer therapeutics.
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