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in Germany [1]. Although surgical approaches combined 
with new therapeutic strategies, such as immunotherapy, 
significantly prolong recurrence-free survival of stage 
III melanoma, > 50% of patients relapse after 3 years [4]. 
Interestingly, relapse of stage I melanoma patients may be 
delayed for years or even decades [5]. Recurrence occurs 
locally (19.6%), in regional lymph nodes (29.8%) or at dis-
tant sites (50.6%), such as lung, brain and in intraabdomi-
nal or bone locations [6]. The underlying mechanism of 
late recurrence is thought to be tumor dormancy. Tumor 
dormancy and metastatic recurrence are nowadays a 
significant diagnostic and therapeutic challenge, the 
mechanism for which must first be understood [7]. Many 
of these mechanisms have been primarily discovered in 
other tumor types than melanoma and will therefore also 
be discussed here.

Hallmarks of tumor dormancy
Cancer dormancy encompasses two distinct states, which 
are not mutually exclusive: tumor mass dormancy on a 
population-level and cellular dormancy [8]. Tumor mass 
dormancy is characterized by a balance of tumor-cell 

Introduction
Advanced malignant melanoma still has a poor progno-
sis. Melanoma originates from malignant transforma-
tion of melanocytes in the skin, uvea, or mucosa. Around 
23,000 new cases and around 3,000 deaths per year are 
reported in Germany [1] with a 2.5–6% annual increase in 
incidence since the 1990s [2]. Melanoma can be divided 
into four stages which are defined by thickness, ulcer-
ation, and metastasis. Stages I and II are still localized and 
likely to have a good prognosis, whereas stages III and 
IV are defined by regional (III) and distant (IV) metas-
tasis [3]. For stage IV melanoma, the prognosis remains 
poor, with a five year survival rate of approximately 25% 
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Abstract
Many cancer-related deaths including melanoma result from metastases that develop months or years after the 
initial cancer therapy. Even the most effective drugs and immune therapies rarely eradicate all tumor cells. Instead, 
they strongly reduce cancer burden, permitting dormant cancer cells to persist in niches, where they establish a 
cellular homeostasis with their host without causing clinical symptoms. Dormant cancers respond poorly to most 
drugs and therapies since they do not proliferate and hide in niches. It therefore remains a major challenge to 
develop novel therapies for dormant cancers. In this review we focus on the mechanisms regulating the initiation 
of cutaneous melanoma dormancy as well as those which are involved in reawakening of dormant cutaneous 
melanoma cells. In recent years the role of neutrophils and niche components in reawakening of melanoma cells 
came into focus and indicate possible future therapeutic applications. Sophisticated in vitro and in vivo melanoma 
dormancy models are needed to make progress in this field and are discussed.
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proliferation and death keeping the tumor cell population 
at a constant level. Cellular dormancy describes a state 
of growth arrest on a single cell level in which cells have 
undergone a reversible G0-G1 cell cycle arrest. Dormant 
cancer cells are defined by three essential properties: 
they persist within a foreign microenvironment, they are 
reversibly growth-arrested and they resist targeted and 
cytotoxic treatments. It is increasingly appreciated that 
the microenvironment has an important role in confer-
ring and maintaining these states [8].

Cancer dormancy is under dynamic control and there 
are a series of stages in the life cycle of a dormant can-
cer cell that include niche dependence, cell cycle arrest, 
drug resistance, immune evasion, metastatic relapse, and 
reversibility [9]. As a first step, the disseminated cancer 
cells (DCCs) have to find the right supportive niches 
and occupy those. It is well known that tumor cells have 
a preference for specific organs to home, e.g. melanoma 
cells prefer lymph nodes, bone, lung, liver, skin and brain 
[10, 11]. Second, DCCs have to interact with the niche 
components as Steven Paget proposed already over 100 
years ago in the “seed and soil” hypothesis [12]. It is also 
now well established that cancer cells prepare a meta-
static niche (so called pre-metastatic niche) before leav-
ing the primary tumor [13]. Third, the DCCs have to 
adapt to the niche by cellular reprogramming to establish 
a reversible growth-arrested state and to evade immu-
nosurveillance. Many evidences until now clearly show 
that dormancy is not solely a cell-intrinsic property and 
that the niche is actively involved in the reprogramming 
of tumor cells to keep them either dormant or to reac-
tivate them [9, 14]. In particular, the interaction of dis-
tinct immune cells with the tumor microenvironment 
resulting in remodeling of the niche and in reactivation 
of dormant cancer cells is of importance [9]. Clearly, 
a more detailed understanding of the interplay of dor-
mant cancer cells and the niche components is needed 
to understand the mechanism of dormancy induction, 
maintenance and escape.

Dormant cancer cells share some characteristics with 
other cells undergoing proliferative arrest, namely senes-
cent cells and quiescent cancer stem cells [15]. “Senes-
cence at the cellular level” was described as early as 1961 
by Hayflick and Moorhead, who found a limited ability 
of diploid cells to divide [16]. It is generally understood 
to be an irreversible cell cycle arrest with altered pheno-
type [17, 18]. Nevertheless, re-entry into the cell cycle 
was proven to be possible under certain circumstances 
in an in vitro model of lymphoma cells [19]. In addition 
to cell cycle arrest, the senescent associated secretory 
phenotype (SASP), macromolecular damage, and altered 
metabolism are counted as hallmarks of senescence [18].

Senescence cannot be defined by a specific marker, 
but only by the synopsis of senescence-associated 

characteristics [18]. Cytoplasmic markers such as 
β-galactosidase, as well as lipofuscin detection with 
Sudan-Black-B stain, detect metabolic, lysosomal 
changes [20, 21]. Cell cycle arrest is often induced by p16 
and p21, which inhibit cyclin-dependent kinases and, 
thus, preventing cell cycle progression [22, 23]. At the 
same time, proliferation markers, such as Ki-67, are nega-
tive [24]. In addition, a highly variable spectrum of SASP 
components, such as the proinflammatory cytokines IL-6 
and IL-8, are secreted [25]. Senescence is a response to 
stressors, which include, for example, activation of onco-
genes, telomere shortening or genotoxic substances 
[26–28]. In contrast to senescence, tumor dormancy is 
a clinical term that describes remaining growth-arrested 
cells in the patient. However, since senescent and dor-
mant cells exhibit overlapping characteristics, a contin-
uum between both states may be assumed [29].

Besides a cellular and a tumor mass dormancy, the 
existence of cancer stem cells, often referred to as “slow-
cycling cells”, has been described [9, 30]. They differ from 
the dormant tumor cell by low differentiation and stem 
cell markers and no definitive growth arrest [31–33]. A 
hierarchical organization with few tumor stem cells has 
been described for colorectal cancer [32]. The model is 
challenged by a xenotransplantation model in melanoma 
in which 25% of unselected melanoma cells were able to 
form tumors under permissive conditions [34].

Clinical evidence of melanoma dormancy
Cancer dormancy was originally defined by Willis in the 
late 1940s and later by Hadfield in the early 1950s as a 
temporary growth arrest [35, 36]. Cells can detach from 
a primary tumor and travel as DCCs through blood ves-
sels to new sites in the body. After settling into other 
tissues, they initially hide in a quiescent state in their 
niche, where they are protected from the immune sys-
tem or actively suppress immune responses [37, 38]. 
DCCs are already found in the lymph node very early 
after primary melanoma development [39] and the num-
ber of DCCs in the sentinel and regional lymph nodes 
correlates with the prognosis of melanoma patients 
[40, 41]. Their clinical and mouse model data suggest a 
parallel progression with early dissemination of mela-
noma cells, as 50% of tumor spread occurs in tumors of 
< 0.5  mm thickness [39]. As further proven by Han et 
al., DCCs of melanoma and breast cancer were already 
detected at a pre-metastatic stage in the lymphatic ves-
sels of a mouse model [42]. Early DCCs may prepare the 
tumor niche into which late DCCs may settle [43]. Clini-
cal existence of dormant melanoma cells is underlined 
by an impressive example: various recipients of kidney 
transplants from immune competent donors, who had a 
primary melanoma removed up to 32 years prior to the 
organ donation, developed melanoma metastases in the 



Page 3 of 16Singvogel and Schittek Cancer Cell International           (2024) 24:88 

immune suppressed recipients that were derived from 
dormant tumor cells in the kidney grafts [44]. There exist 
several other examples of the inadvertent transmission 
of dormant melanoma cells from a donor to the organ 
transplant recipient [45] or of recurrence more than 10 
years after diagnosis of stage I-III melanoma [46–49]. 
All of these data indicates that under specific condi-
tions, especially under impaired host immunity, dormant 
tumor cells awake, acquire proliferative capacity and dis-
seminate into other target organs. The trigger factors 
involved in reawakening of dormant tumor cells are still 
not identified, but an active immune response is likely to 
be involved.

Dissemination of melanoma cells and metastasis
Metastatic progression is assumed to be either linear or 
parallel [43, 50]. In 1989, Clark et al. describes metastasis 
as a linear process in which tumors accumulate genetic 
and epigenetic alterations and progress from radial, to 
vertical, to invasive growth phases after which tumor 
cells disseminate [51]. In the linear model one expects a 
high degree of similarity between the primary tumor, the 

DCCs and its metastases [50]. However, tumor cell dis-
semination can also occur early when the primary tumor 
is still very small and progress at the metastatic site in 
parallel to the progression of the primary tumor which 
might continue to seed cells. In the parallel model one 
expects a higher degree of genomic diversity between the 
metastases and the primary tumor [52] (Fig. 1).

Independent of a linear or parallel progression pathway 
disseminated melanoma cells must first gain access to 
the lymphatic system, through which they preferentially 
disseminate (Fig. 1). To clear a pathway, melanoma cells 
secrete the metalloproteinases MMP-2 and MMP-9 that 
degrade the extracellular matrix (ECM), or they stimu-
late surrounding fibroblasts to release MMP-1 under in 
vitro and in vivo conditions [53–55]. Loss of adhesion 
molecules such as E-cadherin interrupts intercellular 
junctions between melanoma cells and keratinocytes, 
therefore allowing migration [56]. E-Cadherin repres-
sion in a cell culture melanoma model is regulated by 
epithelial-mesenchymal transition (EMT) promoting 
transcription factors such as Slug, Zinc Finger E-Box 
Binding Homeobox 1 (ZEB1), Twist and Snail [56, 57]. 

Fig. 1 Metastatic process of melanoma. 1. Melanoma cells may detach from the tumor in parallel to the growth of the primary tumor or in a linear pro-
cess in which tumors first accumulate genetic and epigenetic alterations after which tumor cells disseminate. They undergo an epithelial-mesenchymal-
like transition for higher invasive potential before entering the lymphatic or vascular system. 2. Melanoma cells circulate within the body and may adapt 
an endothelial phenotype within the vascular niche. 3. Melanoma cells occupy their niche and interact with the tumor microenvironment (TME) which 
includes extracellular matrix (ECM), cellular components and cytokines. They may undergo apoptosis, or either enter a proliferative or dormant state (cre-
ated with BioRender.com)
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EMT marker expression in patient samples is associated 
with a metastatic, invasive phenotype in melanoma [58]. 
Another delineating feature of disseminated melanoma 
cells in patients is their lower BRAF mutation rate, mak-
ing them distinct from the proliferating primary tumor 
cells [39].

In the second step, tumor cells spread throughout the 
body via the lymphatic and blood systems [42]. Mela-
noma cells may remain in an intravascular niche within 
secondary organs, such as the lung. In vivo lineage trac-
ing in a mouse model revealed a switch to an endothelial 
quiescent phenotype (CD31+) with loss of typical mela-
noma markers, emphasizing the plasticity of melanoma 
cells [59] (Fig. 1).

Thirdly, DCCs actively transmigrate through the vascu-
lar wall to occupy the tumor niche. Prior to occupancy, 
primary tumors including melanoma may shed soluble 
factors, such as exosomes, to prepare a favorable “soil”, 
the pre-metastatic niche in mice and humans [13, 60]. 
After settlement, DCCs interact with components of the 
microenvironment, which consists of ECM, cells (fibro-
blasts, immune cells) and soluble factors (cytokines, che-
mokines). The further fate of the melanoma cell depends 
on cell-intrinsic properties (“seed”) and its environment 
(“soil”) [12] (Fig.  1). As demonstrated by Eyles et al. in 
RET.AAD mice, few of the disseminated cells undergo 
apoptosis. Remaining melanoma cells maintain a dor-
mant state in the presence of CD8 + T cells while prolifer-
ating in the absence of immune control [61].

Molecular and cellular mechanisms regulating 
melanoma dormancy
Melanoma plasticity and phenotype switching
The life cycle of a cancer cell – including transitions from 
circulating DCC to the growth-arrested cancer cell in the 
distinct niches up to the escape from the dormant state - 
requires a high plasticity of the cells, which is influenced 
by niche components [62]. As DCCs may contain fewer 
genetic aberrations compared to primary or metastatic 
tumors in the same patient, dissemination of melanoma 
and breast cancer cells is often an early event during can-
cer progression and epigenetic changes allow adaption to 
new circumstances [39, 63–65].

Melanoma cells can reversibly switch between a pro-
liferative and an invasive phenotype, a model which is 
called the phenotype switching model first described by 
Hoek et al. [66, 67]. Both cell states can co-exist in the 
tumors of patients emphasizing the intratumor heteroge-
neity [68, 69]. Interestingly, temporal single-cell tracing 
in mice indicates that only the population of melanoma 
cells with an invasive, mesenchymal-like state constitute 
a pool of metastatic initiating cells that switch cell iden-
tity while disseminating to secondary organs [68]. Phe-
notype-switching is described to be mainly based on the 

relative expression of the transcription factors microph-
talmia transcription factor (MITF) and SOX10. Whereas 
cells expressing low levels of MITF have a slow-cycling, 
mesenchymal-like, pro-invasive phenotype, higher levels 
of MITF correlate with proliferation and differentiation 
[69–72]. Interestingly, low MITF levels are also found 
in drug resistant melanoma cell lines, which was previ-
ously defined as hallmark of dormancy [73]. MITF acts 
as a “rheostat” and is considered as one of the key regula-
tors of melanoma phenotype switching [71, 74]. SOX10 
can promote MITF expression and SOX10 downregula-
tion induces a slow proliferating mesenchymal-like state 
[75, 76]. SOX10 depletion in melanoma cells in vitro 
induces an invasive-like state and a dormant-like phe-
notype in vivo [77]. Intriguingly, loss of SOX10 leads to 
SOX9 upregulation in an antagonistic fashion [78]. In 
melanoma, SOX9 is a driver of the mesenchymal-like 
state [79]. Epithelial to mesenchymal transition (EMT)-
like processes enable melanoma cells to disseminate from 
the primary site [76, 80] and this is orchestrated by the 
main transcription factors Snail, Slug, ZEB1 and Twist1, 
whereas their repression is required to promote meta-
static growth in vivo [81, 82].

Dormant cancer cells have distinct transcriptional and 
epigenetic profiles compared with proliferating cancer 
cells and few evidences yet indicate that they may have 
slowed their metabolic rate, are more dependent on 
glucose, glutamine and fatty acid metabolism and have 
been shown to have increased mitochondrial activity [9, 
83, 84]. However, there is no universally valid marker 
for dormant melanoma cells and, therefore, no uniform 
detection method. In melanoma the transforming growth 
factor β (TGF-β) is linked to dormancy since it promotes 
cell migration, immune escape, and metastasis [85, 86]. 
Blocking TGF-β can prevent the development of mela-
noma bone metastases and decrease the progression of 
established osteolytic lesions [87]. On molecular level, 
blocking of TGF-β in a melanoma in vitro model results 
in a GLI2low/MITFhigh phenotype, which in turn leads to 
reduced WNT5A expression and to less invasive capaci-
ties [88].

Besides cell-intrinsic factors regulating proliferation, 
migration and invasion, micro-environmental factors 
such as nutrients, oxygen, cytokines, and growth fac-
tors influence the reversible switch [62, 76]. Hypoxia 
and inflammatory signals from the microenvironment 
are able to promote the switch from a proliferative to 
an invasive phenotype [89–92]. Inflammation of the 
lung can induce EMT of dormant breast cancer cells in 
a mouse model via the expression of ZEB1, resulting in 
reactivation of the dormant cancer cells [93].

There is a constant crosstalk of the dormant cancer 
cells with cells in the niche to modulate ECM compo-
nents to either keep the cells dormant or getting them 
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reactivated and inducing metastatic spread [94, 95]. 
Dormant breast cancer cells can activate stromal cells 
to release niche ECM components such as periostin and 
tenascin C, which in turn activate tumorigenic stem cell 
signaling pathways such as Wnt, Nanog and Oct4 in the 
cancer cells leading to their metastatic outgrowth [80]. 
Tissue stiffness and matrix composition are important 
parameters in the induction of dormancy in melanoma 
cells in vitro [96, 97]. Matrix metalloproteinases (MMPs), 
which can degrade ECM-components are associated 
with melanoma progression [98]. Extracellular vesicles 
secreted by melanoma cells can reshape the premeta-
static niche facilitating colonization of disseminated mel-
anoma cells [13, 60, 99].

Signaling pathways
Melanoma cells have a high degree of plasticity [62]. Low 
levels of Ki-67, as well as high levels of cyclin-dependent 
kinase (CDK) inhibitor p27, are indicative of melanoma 
cell dormancy [100]. The MAPK signaling pathway plays 
a role in proliferation, growth, differentiation, migration, 
and apoptosis [101]. In breast cancer, and head and neck 
carcinoma, low ERK 1/2 activity with increased activa-
tion of p38 (ERKlow/p38high) is indicative of dormancy 
[102, 103]. Consequently, cell cycle regulators, such as 
p27 and the orphan nuclear receptor NR2F1, are increas-
ingly expressed, triggering growth arrest [104, 105]. In 
cell culture models of melanoma, ERK and p38 are phos-
phorylated simultaneously and promote proliferation, 
hence an inactivation of both proteins may be assumed 
during growth stagnation [106]. Interestingly, p38 
modulates key players of the unfolded protein response 
involved in the ER stress pathways suggesting that dor-
mant melanoma cells are in a state of cellular stress [97].

The PI3K/AKT signaling pathway is activated by recep-
tor tyrosine kinases (RTK) and promotes growth and sur-
vival of melanoma cells [107–109]. When downstream 
targets such as PHF19 are silenced, the phenotype of 
melanoma cells in a spheroid model shifts from a prolif-
erative to an invasive state [110]. Glucocorticoid-induced 
leucine zipper (GILZ) deactivates a downstream target 
of the PI3K/AKT pathway in a murine melanoma model, 
and its repression increases p21 levels to induce a cell 
cycle arrest [31].

The STAT3 signaling pathway opens the gateway 
towards proliferation or apoptosis in dormant mela-
noma cells. Induced by SOX2 depletion or interferon 
(IFN)β, activated P-STAT3 binds abundantly to the p53 
promoter and enhances the apoptotic pathway in an in 
vitro melanoma model [111, 112]. Conversely, knockout 
of STAT3 increases MITF transcription and leads to a 
proliferative phenotype. Intermediate STAT3 activation 
with a MITFlow phenotype is expected to keep mela-
noma cells in the dormant state [113]. Further dormancy 

maintaining genes and modulating factors in melanoma 
are reviewed by Janowska et al. [114].

Mechanisms of melanoma dormancy induction 
and reawakening
Dormancy can be differentiated into angiogenic  (A), 
immune-mediated  (B), and tumor microenvironment 
(TME)-mediated (C)  dormancy (Fig.  2). Growth arrest-
ing and reawakening factors can be assigned to these cat-
egories [29, 115].

Angiogenic dormancy refers to nutritional depriva-
tion, as well as hypoxia in the absence of adequate vas-
cularization, leading to an equilibrium between apoptosis 
and proliferation within the micrometastasis [116, 117]. 
A central role is attributed to the angiogenesis inhibi-
tor thrombospondin-1 (TSP-1), which is secreted by 
immune cells or melanoma cells in a xenograft model 
[118, 119]. In addition to its anti-angiogenic effect, TSP-1 
is involved in the induction of a mesenchymal invasive 
MITFlow phenotype (EMT-like process) of melanoma 
cells in vitro and embryonic chicken neural tube and is 
found to be aberrantly expressed in biopsies of metastatic 
melanoma [120]. TSP-1 further controls the suppres-
sion of natural killer (NK) cells in vitro, possibly block-
ing immune surveillance of melanoma in vivo (Fig.  2A) 
[121]. Expanding the definition of angiogenic dormancy 
is reasonable, as individual melanoma cells may remain 
dormant in the perivascular niche with abundant nutri-
ent supply. Therefore, vascular-derived factors may pre-
vent proliferation [97, 122]. Angiogenic dormancy may 
be disrupted in a process called the angiogenic switch 
[123]. In melanoma, proangiogenic factors, such as vas-
cular endothelial growth factor (VEGF) and epoxyeico-
satrienoic acid of the endothelium, allow vascularization 
in mice (Fig. 2A) [124, 125]. It should be noted that dur-
ing hypoxia- an inducer of angiogenic dormancy- target 
genes of hypoxia-induced factors (HIF) such as VEGF are 
increasingly expressed in cultured melanoma cells, indi-
cating a contrary role of hypoxia in dormancy [126, 127].

The immunogenic dormancy in cancer is maintained 
by the innate (e.g. NK cells) and acquired (e.g. T cells) 
immune system, whose interplay is orchestrated by T 
helper cells [128]. NK cells and tissue-resident CD8 + T 
cells prevent outgrowth of metastases in murine and 
human melanoma models (Fig. 2B) [129–131]. The effect 
is postulated to be rather cytostatic than cytotoxic [61]. 
In addition, NK cells, CD8 + T cells, and T helper cells 
secrete cytokines like IFNγ, tumor necrosis factor (TNF), 
and IL-2, preventing tumor growth and angiogenesis 
in a melanoma and a pancreatic cancer mouse model 
(Fig. 2B) [132–135]. Assuming cellular dormancy, single 
tumor cells must protect themselves from immunogenic 
eradication for long-term persistence. On the one hand, 
melanoma cells may bypass the immune system and 
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evade killing by down-regulating major histocompat-
ibility complex I (MHC-I), driven by TGF-β [136]. On 
the other hand, higher MHC II expression allows bind-
ing to lymphocyte activation gene-3 (LAG3) on mela-
noma-associated T cells, ultimately ensuring melanoma 
cell survival in vitro (Fig.  2B) [137]. T cells can main-
tain cancer cells in permanent dormancy and are able to 
prevent disseminated melanoma cells in visceral organs 
from expanding [46, 61, 138, 139]. In a mouse melanoma 
model, intratumoral injection of IL-2 results in decreased 
tumor growth and long-term tumor dormancy depend-
ing on the presence of T cells or natural killer cells [134].

The immune system is also involved in the reawaken-
ing of melanoma. Under immunosuppression, for exam-
ple after organ transplantation, metastases of malignant 
may occur in patients due to lack of immune control 
[140]. Furthermore, activation of the immune system, 
e.g. under systemic inflammation or infiltration of stro-
mal inflammatory cells into the tumor (macrophages, 

lymphocytes), is associated with lymphatic invasion and 
cancer recurrence in melanoma and other cancer types 
(Fig. 2B) [141–143].

ECM and associated factors form the tumor niche, and 
directly interact with tumor cells. ECM components, like 
collagen XIV or other fibrillar collagens, display pro-dor-
mancy properties in an in vitro melanoma model [96]. 
Fibronectin, secreted by melanoma cells themselves, is 
associated with enhanced migratory and proliferative 
properties in in vitro assays, as well as expression of EMT 
markers along with a downregulation of MITF in patient 
samples (Fig.  2C) [144, 145]. The configuration of ECM 
components is crucial for its proliferation-promoting or 
-inhibiting effect. Fibroblast-derived MMP-14 degrades 
collagen XIV in vitro, therefore antagonizing the growth-
arresting effect on melanoma cells [98]. As another vari-
able, the stiffness of a fibrin matrix can be increased. 
Thus, p21 and p27 are epigenetically upregulated, and 

Fig. 2 Mechanisms of dormancy induction. Dormancy can be classified into angiogenic (A), immune-mediated (B), and tumor microenvironment (TME)-
mediated (C) dormancy and can be influenced by growth arresting and reawakening factors (created with BioRender.com). More information can be 
found in the text
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dormancy is induced in human and murine melanoma 
cells under in vitro and in vivo conditions (Fig. 2C) [146].

Last, factors can be bound to ECM, such as prolifera-
tion-promoting insulin-like growth factor (IGF) -1 which 
was proven to enhance proliferation in a 3D melanoma 
model [147]. Additionally, WNT5A has been identified as 
activator of dormancy. However, fibroblasts undergo age-
related reprogramming and release a soluble antagonist 
(sFRP1) of WNT5A, thus enabling metastatic outgrowth 
of melanoma metastases in mice (Fig. 2C) [148].

Some of the above factors may be preferentially 
assigned to tumor mass, others to cellular dormancy. 
Nevertheless, a role at both levels cannot be excluded. 
Analysis at the single cell level could improve our under-
standing of cellular dormancy induction.

Neutrophils in melanoma
Macrophages, NK cells and neutrophils account for more 
than 80% of tumor-associated immune cells in mela-
noma, of which neutrophil invasion is related to poor 
prognosis [149–151]. Clinical studies indicated that ele-
vated numbers of circulating neutrophils are an indepen-
dent marker of adverse prognosis in melanoma patients 
and negatively predict response towards immunother-
apy [152–155]. Upon ultraviolet radiation of melanoma 
in mice, neutrophils invade into the tumor and induce 
a more migratory phenotype, local angiogenesis and 
angiotropism [91]. Thus, local and systemic inflammation 
by neutrophils may be drivers of melanoma progression. 
Systemic inflammation may be triggered by smoking or 
obesity, resulting in increased activation of neutrophils in 
patients [156–158].

Neutrophils are a heterogeneous cell population with 
high plasticity. In melanoma patients, single-cell cytom-
etry by time of flight (CyTOF) identified seven subtypes 
exhibiting diverse capacities for reactive oxygen species 
(ROS) release and phagocytosis. Compared to healthy 
individuals, melanoma patients have more imma-
ture neutrophils, which may show a different response 
towards tumor cells [159]. In the following section, we 
differentiate only into antitumor (N1) and protumor (N2) 
phenotypes, with a clear preponderance of evidence on 
the tumor-promoting side (Fig. 3, A + B) [160].

Antitumor effects include direct cytotoxicity of neu-
trophils, therefore sustaining a tumor mass dormancy 
(Fig.  3A) [161]. A melanoma and lung cancer mouse 
model were able to prove that upregulation of receptor 
tyrosine kinase MET in neutrophils allows enhanced 
tumor infiltration. Upon binding of hepatocyte growth 
factor (HGF), nitric oxide is released to kill melanoma 
cells [162]. Further antitumoral evidence is limited to 
other cancer types. ROS (hydrogen peroxide, H2O2) 
mediate their cytotoxic effect in breast cancer cells in 
vitro and in vivo via H2O2-sensitive TRPM2 channels, 

resulting in Ca2 + influx [163]. Apoptosis is further 
induced by IFNγ-dependent stimulation of neutrophils 
with subsequent expression of tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) towards 
leukemic T cells in vitro [164]. Neutrophils interfere 
in tumor-ECM interaction of uterine cancer in mice, 
leading to detachment from the basement membrane 
and hypoxic cell death [164, 165]. Neutrophils also har-
bor cytostatic-inducing properties. Cells of the innate 
immune system release IL-1β, which upregulates ZEB1 
in breast cancer cells and induces growth arrest by EMT 
[166]. Neutrophils may incorporate other immune cells 
into tumor suppression, as reviewed elsewhere [160].

Melanoma cells may force neutrophils into an N2-pro-
tumoral phenotype (Fig.  3B). This is shown in two 
recently published melanoma studies [167, 168]. The in 
vitro model, conducted by Anselmi et al., demonstrates 
that conditioned medium (CM) of A375 melanoma 
cancer stem cells (CSC) activates neutrophils. In turn, 
activated neutrophils favor cancer stemness (ABCG2 
upregulation) and sphere formation of A375 cells. In 
detail, proinflammatory cytokines of the CM (IL-6, IL-8, 
TGF-β) trigger the activation of ERK, p38 and STAT3 and 
overexpression of CXCR2 (chemokine receptor of IL-8) 
and NF-κB in neutrophils. Ultimately, ROS, NETs, MMP-
9, and other proinflammatory cytokines are released, 
making N2 polarization likely [167].

Similarly, extracellular vesicles (EV) derived from MV3 
melanoma cells, but not from melanocytes, increase 
the expression of N2 molecular markers, such as Arg1, 
CXCR4 and VEGF in neutrophils. Melanoma-derived 
EVs are able to attract neutrophils by activation of the 
CXCR2/PI3K-AKT signaling pathway, prolong their 
survival, and enhance NET release. Additionally, ROS 
production is increased, which has been previously asso-
ciated with tumor progression [168]. However, NO and 
peroxynitrite were stated to be cytotoxic to melanoma 
cells, and their level is, therefore, reduced in a N2 state 
of neutrophils. In contrast, LPS increases NO and per-
oxynitrite levels and increases neutrophil toxicity toward 
melanoma cells, implicating a stimulus-dependent differ-
entiation of PMN [169].

X-linked inhibitor of apoptosis (XIAP) has previously 
been linked to melanoma progression by its anti-apop-
totic function in cancer. However, emerging in vitro and 
in vivo evidence in attributes XIAP a role in neutrophil 
attraction through IL-8 and subsequent melanoma pro-
gression [170].

The pro-tumoral activity of neutrophils has been 
observed in other tumor types as well. ROS oxidatively 
damages DNA, thus promoting invasiveness in intesti-
nal cancer of mice [171]. Proinflammatory signals, like 
prostaglandin E2, NE and mitochondrial-dependent 
NET, released from neutrophils promote proliferation in 
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lung and anaplastic thyroid cancer [172–174] while IL-1 
receptor antagonist blocks the transition to senescence in 
prostate cancer in vitro and in vivo [175]. Again, neutro-
phils may exert their protumor effects by interacting with 
other immune cells or the TME [160].

In summary, evidence for the tumor-maintaining and 
growth-promoting effects of neutrophils predominates in 
melanoma as well as in other tumor cells.

NETs in melanoma
Neutrophils shape the TME by release of neutrophil 
extracellular traps (NETs), a process that has recently 
been studied with great interest [176]. NETs are large 
extracellular DNA-protein web-like structures, which 
are known to be released by neutrophils in response 
to infection and kill microbes by trapping [177]. NETs 

themselves create a proinflammatory environment and 
recruit additional neutrophils, which in turn can form 
new NETs – this constitutes a vicious circle that ulti-
mately promotes angiogenesis and tumor growth [151, 
178]. Interestingly, NETs can be induced in neutrophils 
not only by an infectious stimulus, but also by metastatic 
(and not by non-metastatic) cancer cells [151, 156].

Knowledge of NETs in melanoma is limited and con-
troversial. Schedel at al [179]. show that NETs are found 
in ulcerated melanoma, but their quantity does not cor-
relate with the patient’s prognosis. Melanoma cells bind 
integrin-mediated to NETs and are hindered in their 
invasion into Matrigel in vitro. NETs are applied at doses 
ranging from 5 to 93 ng/µl which results in reduced cell 
viability in a dose-dependent manner (Fig.  3C). This 
effect is reversible by DNase I and cannot be induced by 

Fig. 3 Neutrophils and NETs in cancer. A Neutrophils exert their effect in a cytolytic way. Neutrophils extravasate upon MET receptor upregulation, and 
HGF triggers nitric oxide release to induce cell death in melanoma cells. Hydrogen peroxide (H2O2) allows cytotoxic Ca2+ influx via TRPM2 into breast 
cancer cells. Neutrophils promote detachment of the basement membrane to make oxygen inaccessible in uterine cancer cells. IFNγ upregulates TRAIL 
in neutrophils to induce apoptosis in leukemic T cells. IL-1β by neutrophils induces upregulation of ZEB1 (EMT marker) to induce a phenotype switch. 
B Tumor cells may release cytokines or extracellular vesicles (EV) to activate neutrophils. In turn, effectors such as ROS or NETs are released to promote 
tumor growth. C Evidence in melanoma supports a proliferation-promoting role of NETs, impeding invasiveness and cell viability. Other tumor types sug-
gest an invasive phenotype upon NET release (created with BioRender.com)
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genomic neutrophil DNA. In summary, NETs show an 
antitumoral effect in vitro. These findings are confirmed 
in an in vivo model of melanoma, in which protumoral, 
IFNβ- deficient neutrophils only provide low levels of 
NETs and insufficient tumor control [180]. Interestingly, 
the opposite effect was shown in a melanoma mouse 
model (Fig. 3C). Neutrophils are primed towards NETo-
sis by granulocyte colony stimulating factor (G-CSF) and 
promote tumor growth [178.] The previously described 
studies also suggest that NET release is associated with 
melanoma progression.

Possible mechanisms of action of NETs in cancer have 
been reported in other tumor types [181–183]. In this 
context, the direct effect of NETs on cancer cells seems 
to promote invasiveness. In breast cancer cells, NETs 
have been shown to bind to the CCDC25 receptor, 
thereby increasing cell motility in mice via the integrin-
linked kinase (ILK) pathway [181]. In addition, breast 
and colorectal cancer cells transform into an invasive, 
mesenchymal (ZEB1-positive) state upon NET exposure 
(Fig. 3C) [182, 183].

The role of neutrophils and NETs in melanoma 
dormancy
Few studies address the effect on NETs in dormant can-
cer cells. The different pro- and antitumor effects do not 
allow clear conclusions whether NETs induce reawaken-
ing or sustain a dormant state. NETs mediate their effects 
partly via ECM components, and in vivo also via other 
immune cells or angiogenesis. This must be considered 
as a limitation of in vitro studies. Ultimately, the effect 
by NETs may also depend on the cell line studied. The 
mechanism behind the neutrophil-mediated enhance-
ment of tumor progression has been partly unraveled in 
breast and prostate cancer models.

Interestingly, it has been shown in breast cancer 
patients and mouse models that circulating tumor cells 
form clusters with neutrophils in the blood releasing 
cytokines such as IL-6 or G-CSF, which drives tumor 
proliferation and increases their metastatic potential 
[184]. These cytokines are also released during chemo-
therapy of breast cancer cells with taxanes through stro-
mal damage and increased neutrophil infiltration and 
lead to reawakening of dormant cancer cells in in vitro 
and in vivo models [185]. Surgical stress is able to elevate 
levels of IL-6 and IL-8 in a murine breast cancer model, 
which could in turn stimulate neutrophils [186]. It was 
recently shown in an in vivo breast cancer model that - 
depending on the spectrum of chemoattractants in the 
tumor microenvironment (e.g. CXCL1 or S100A8)- N1- 
or N2-polarized neutrophils are attracted and exert dif-
ferent functions, whereby N1- antitumor neutrophils can 
maintain dormancy [187]. In addition, stress- activated 

neutrophils lead to dormancy escape in lung and ovarian 
cancers by release of oxidized lipids [188].

In breast cancer, integrin and extracellular matrix 
remodeling events have previously been described as 
central dormant cell reactivation mechanisms [38, 189]. 
Interestingly, it was shown that cancer cells can hijack 
neutrophils to increase metastatic spread through the 
induction of NETs [156]. NETs initiate awakening of dor-
mant breast cancer cells in vivo by remodeling the ECM 
in the dormant niche leading to FAK/ERK/MLCK/YAP 
signaling in cancer cells. Toll-like receptor 9 (TLR9) in 
colon cancer cells binds extracellular DNA in vitro and 
is capable to promote tumor survival and progression 
through induction of autophagy [190]. NETs are also able 
to promote endothelial-mesenchymal transition through 
the subsequent activation of β-catenin signaling in vitro 
[190, 191]. Therefore, current evidence in several tumor 
models in vitro and in vivo suggests that neutrophils and 
NETs lead to cancer recurrence, which is in part medi-
ated by ECM remodeling. Nevertheless, not many data 
are available for melanoma in this respect and therefore 
further studies should be conducted in suitable in vitro 
and in vivo melanoma models.

NET signaling seems to be different from signaling by 
extracellular DNA released from dying cells. It has been 
shown that extracellular DNA can signal through DNA 
receptors such as RAGE or some cytosolic nucleic acid 
sensors initiating activation of the cGAS–cGAMP–
STING pathway [192, 193]. cGAS is a cytosolic DNA 
sensor that activates innate immunity by initiating the 
STING-IRF3-type I IFN signaling cascade. Interestingly, 
activation of this pathway promotes cellular senescence 
and is not involved in reawakening of dormant cancer 
cells [194–196]. Therefore, the mechanistic details of the 
role of immune cells, NETs or extracellular DNA in the 
niche in fostering dormancy or reawakening dormant 
tumor cells remain unknown.

In vitro and in vivo dormancy models in malignant 
melanoma
Dormancy models range from 2D and 3D in vitro mod-
els, to mouse and zebrafish in vivo models. The main 
challenges of the models include the long latency of clini-
cal dormancy and the complex interplay of the immune 
system [197].

2D in vitro models allow well-controlled conditions and 
are suitable for high throughput screening. As reported 
by Pradhan et al., dormancy can be induced by ECM, cell 
signaling (cytokines), biochemically (e.g. hypoxia) or by 
chemotherapy [198]. Accordingly, a rigid fibrin matrix 
induces growth arrest in a 2D melanoma model [146]. 
In a recently published in vitro model, senescence was 
induced by cytokines (IFNγ, TNF), as well as by 24–96 h 
treatment with chemotherapeutic agents (palbociclib, 
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doxorubicin). Stable growth arrest was induced for one 
week, however, its validity for long-term dormancy is 
limited [199]. This is clearly demonstrated in a study of 
breast and prostate cancer: after incubation with doxo-
rubicin or docetaxel for 2–4 days, reproliferation was 
not apparent until day 18–22 after treatment [200]. Ulti-
mately, in vitro models of melanoma may be used to elu-
cidate molecular mechanisms of dormancy induction 
and reawakening at the bulk or single cell level [100, 112].

More complex 3D in vitro models such as spheroids 
or organoids mimic cell-matrix and cell-cell interac-
tion in melanoma. Compared to monolayer culture, the 
conditions in spheroids result in a dormant, invasive 
phenotype, possibly triggered by surrounding ECM, 
hypoxic conditions or close intercellular contact [201, 
202]. Adding cellular components, such as fibroblasts 
and immune cells, to organoids provides evidence of the 
interplay between immune cells and ECM. Exemplary, 
loss of HAPLN1 (link protein of proteoglycans and hyal-
uron) release by fibroblasts resulted in an aligned ECM 
structure and elevation of the metastatic potential in 
melanoma. In contrast, mobility of T cells and polymor-
phonuclear cells was inhibited, therefore changing the 
immunogenic microenvironment [203].

In vitro dormancy models for breast cancer have been 
recently summarized [204]. Until now only few in vitro 
and also in vivo models investigate tumor dormancy 
in melanoma, and these were discussed already in this 
review, some of which provide limited evidence due to 
short follow-up [146, 199, 205]. In vivo tumor dormancy 
models have been recently reviewed extensively by Mah-
moud et al. [206] and Gu et al. [207] and with a focus on 
melanoma in vivo models by Patton et al. [197] and will 
therefore not be discussed in detail here. Unfortunately, 
not many in vivo studies have been published until now 
concerning melanoma dormancy, some of those were 
already described in this review. In a syngeneic mouse 
model of melanoma dormancy and GFP-labelled dor-
mant cell-derived cell lines it was shown that vaccination 
against melanoma did not prevent tumor cell dissemina-
tion and induced dormancy in vivo, which was regulated 
by glucocorticoid-induced leucine zipper (GILZ)-medi-
ated immunosuppression [31]. To follow the dynam-
ics of melanoma cell dissemination, niche occupancy, 
dormancy induction and reactivation the interaction 
between cancer cells and the microenvironment has to 
be studied in real time, e.g. by live cell imaging. High-
resolution imaging of fluorescently labeled melanoma 
cells has been used in a zebrafish model [208]. It has been 
shown that after metastatic dissemination, keratinocyte-
derived endothelin 3 (EDN3) the microenvironment pro-
vides signals to promote phenotype switching between 
invasive and proliferative states and provide proof that 
targeting tumor cell plasticity is a valuable therapeutic 

option. Using lineage tracing in a spontaneous metastatic 
melanoma mouse model it was shown that disseminated 
quiescent melanoma cells reside in intravascular niches 
in metastatic organs and are able to transdifferentiate 
into endothelial cells [59]. The ‘‘MET Alert’’ mouse, engi-
neered with a VEGFR3-luciferase reporter expressed 
specifically in lymphatic vessels reveals distinct patterns 
of metastatic progression of melanoma [209].

A great help in the visualization of the induction of 
tumor dormancy and reactivation in vitro or in vivo is the 
use of fluorescence reporter systems such as the fluores-
cence ubiquitination-based cell cycle indicator (FUCCI) 
system. In this construct, monomeric Azami Green 
(mAG) is bound to hGEM (geminin), while monomeric 
red fluorescent dye Kusabira Orange 2 (mKO2) is bound 
to the hCDT1 [210]. As these proteins are ubiquitylated 
by different E3 ligases, APCCdh1 and SCFSkp2 respectively, 
which are expressed in a cell cycle-dependent manner the 
cells end up changing their fluorescent signal accordingly. 
While a red signal can be detected in G1 phase, a green 
signal is visible in G2/M phase. Meanwhile, the transi-
tion from G1 to S phase results in an expression of both, 
which results in a yellow signal. It is also possible for the 
FUCCI transfected cells to temporarily show no fluo-
rescence at all, while in between phases. Using live cell 
imaging of the stably transfected cells the real-time cell 
cycle stage cells resided in can be detected and estimate 
cell proliferation over time. Another interesting method 
to track single tumor cells in heterogeneous cell popula-
tions in mice is the novel methodology CaTCH (CRIS-
PRa tracing of clones in heterogeneous cell populations) 
which enables lineage tracing of a barcoded small cell 
population [211, 212].

Therapeutic implications
The knowledge cited above and the ever-increasing 
insights into the molecular and immunological mecha-
nisms of the induction of tumor dormancy and their 
reactivation is important to design novel therapies to 
cure cancer patients or prolong their life. To achieve this, 
several problems have to be solved. First, the identifica-
tion of gene signatures or biomarkers indicative for the 
existence of dormant cancer cells in patients are neces-
sary. The use of single cell or spatial transcriptomics 
would greatly help in this respect. Second, sophisticated 
3D human modular in vitro and in vivo tumor dormancy 
models are needed to evaluate the complex interplay 
of tumor cells with microenvironmental factors and 
immune cells. Third, it has to be evaluated in the respec-
tive models which of the two different treatment options 
are more promising: either one keeps tumor cells in a 
dormant state, which implies the need to carry out life-
long treatment or one activates dormant cells in order 



Page 11 of 16Singvogel and Schittek Cancer Cell International           (2024) 24:88 

to improve the efficacy of antiproliferative therapies [65, 
114].

It still needs to be investigated which role an inflamma-
tory niche environment has on inducing tumor dormancy 
or reactivate those cells. Especially, novel immune target-
ing strategies in clearing dormant cancer cells have to be 
evaluated. In addition, the role of innate immune cells 
such as neutrophils, macrophages or myeloid-suppressor 
cells needs to be investigated in more detail by functional 
analyses in vitro and in vivo. Dormant tumor cells hid-
ing in niches must be better characterized in patient tis-
sue samples by highly advanced technological platforms 
(single cell technologies, highly multiplexed microscopy, 
imaging, bioinformatic analyses and machine learning 
tools). Based on this knowledge the path is clear to per-
form clinical studies for test effective therapeutic strate-
gies in patients with dormant cancers [46, 114, 213].

Conclusions
The molecular and immunological mechanisms involved 
in tumor cell dormancy and awakening are complex and 
seem to be different for each tumor type. Therefore, com-
plex 3D human in vitro models, sophisticated in vivo 
models using live cell imaging and analysis of patient 
material using single cell and spatial transcriptomics as 
well as functional assays taking into account the interplay 
of dormant cancer cells with the tumor microenviron-
ment are necessary to find novel therapies to eliminate 
dormant cancer cells. Findings of 2D models should be 
transferred to more complex 3D models, as they allow 
approximation to more complex in vivo conditions. 
Since phenotype switching has been shown to promote 
melanoma metastasis, lineage tracing strategies in com-
bination with single-cell multi-omics methods in suit-
able melanoma mouse models have still to be performed 
to follow the temporal fate of single cells from dissemi-
nation to metastasis to provide direct evidence of the 
molecular and phenotypic changes melanoma cells pass 
in order to metastasize [214]. Furthermore, spatial map-
ping of the phenotypic cell states in dormant melanoma 
cells in their niches and their molecular characteriza-
tion on single cell level will further improve our under-
standing of the influence of the niche environment on 
phenotype plasticity and the establishment of persistent 
melanoma cells. Each therapeutic strategy must consider 
the intra-tumor heterogeneity and cellular plasticity to 
prevent phenotype switching towards treatment-resis-
tant subpopulations. The time has come to uncover the 
secrets of dormant cancers and to design novel effective 
treatment strategies to eliminate dormant tumor cells to 
prolong patient’s survival.
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