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Background
Melanoma is not as common as other skin cancers; how-
ever, it is more lethal, resulting in approximately 75% of 
skin cancer-related deaths [1]. The rapidly increasing 
incidence of melanoma and the high lethality of advanced 
disease have prompted efforts to identify factors that 
drive melanoma development and progression [2, 3]. 
The approval of several therapeutic agents against mela-
noma has revolutionized the treatment of patients with 
advanced-stage disease [4]. Compared with a decade 
ago, the 5-year survival rate for patients with advanced 
melanoma treated with BRAF inhibitors, MEK inhibi-
tors, or single PD-1 antibodies has improved from 5% 
to approximately 30% [5–7]. However, transcriptional 
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Abstract
Background Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of 
targeted therapy have significantly weakened the benefits for patients with melanoma.

Main body Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. 
In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and 
melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic 
targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related 
mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the 
changes occurring in this pathway.

Conclusion The focus of this review is to provide strategies for developing novel diagnostic biomarkers and 
summarize their potential to alter resistance to targeted therapies and immunotherapy.
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reprogramming allows heterogeneous tumors to pass 
through different stages of melanoma progression and 
adapt to drug exposure during treatment [8–10], leading 
to targeted therapy and immunotherapy resistance.

Alternative splicing is a mode of transcriptional repro-
gramming and can change the stability, transport, and 
translation efficiency of mRNA through different splice 
forms, thereby directly or indirectly affecting gene regu-
lation [11]. Dysregulation of RNA splicing is generally 
a hallmark of almost all tumors [12]. Cancer-associated 
splicing alterations are caused by repetitive mutations 
and the altered expression of transport factors that con-
trol splicing, catalysis, and regulation [13]. Aberrant 
alternative splicing can promote tumorigenesis through 
various mechanisms, including increased cell prolif-
eration, decreased apoptosis, increased migration and 
metastatic potential, resistance to chemotherapy, and 
immune surveillance evasion [14, 15]. The generation of 
new abnormal proteins in the context of splicing events 
may render these cells vulnerable to pharmacological and 
immunological drugs that target these proteins or their 
associated pathways [16–18].

The evolution of high-throughput analysis techniques 
and the increasing availability of transcriptome data have 
led to an increased number of detected splicing vari-
ants and aberrant splicing events [19, 20]. However, how 
alternative splicing regulates drug resistance in targeted 
therapy and immunotherapy in melanoma is unclear. 
This review summarizes and discusses the mechanism of 
alternative splicing in the pathogenesis and progression 
of melanoma to address the current clinical dilemma of 
targeted therapy and immunotherapy resistance.

Altered expression of splicing factors in melanoma
Splicing factors participate in life activities throughout 
the body and act like “scissors” to accurately repair pre-
mRNA, remove redundant parts, form multiple mRNA 
sequences, and translate them into protein isomers with 
different biological functions [21]. The pre-mRNA splic-
ing pathway is a complex cycle involving the assembly, 
activation, splicing, and depolymerization of multiple 
RNA and protein components. Each splicing cycle com-
prises two consecutive transesterification steps. In the 
first step, the 5′-exon is released, forming an intron chain 
intermediate, often referred to as the branching process. 

The second step is exon ligation, where the 5′-exon is 
interconnected with the 3′-exon [22]. Splicing factors 
facilitate spliceosome splicing by stabilizing the active site 
and forming part of the dynamic spliceosome complex.

Alterations in splicing factors are associated with 
tumor development and progression in various cancer 
types [13, 14, 23]. The following sections describe the 
presence and roles of several splicing factors from differ-
ent protein families in melanomas.

Serine/arginine-rich proteins
Most serine/arginine-rich (SR) proteins are splicing acti-
vators in tumor pathology [24]. They bind to the pre-
mRNA of the exon splicing enhancer and enable exon 
recognition through spliceosomes, facilitating exon 
inclusion [25–27]. SR proteins interact with other spli-
ceosomal components via the SR structural domain, link-
ing the 5′- and 3′-splice site binding components, U1 
small nuclear ribonucleoproteins complex (U1 snRNP) 
and U2AF to trigger U1 snRNP, the combination of pre-
mRNA containing the 5′-splice site (Table 1) [28, 29].

SR splicing factor 1 (SRSF1) is an oncoprotein that 
positively regulates circMYC expression, potentially 
affecting melanoma cells [30]. Its phosphorylated iso-
form, SRPK1, controls pre-mRNA splicing by regulating 
pro-angiogenic isoforms [31]. In addition, an increased 
number of immune cells were observed in biopsies of 
mice treated with SRPK1/2 pharmacological inhibitors of 
metastatic melanoma [32–34]. In vitro assays indicated 
that inhibitors increase immunological sensitivity by 
intensifying the expression of antigen-presenting major 
histocompatibility complex (MHC) I and MHC II mole-
cules and splenocyte recruitment [34]. This revealed that 
the antimetastatic effects of SRPK1/2 inhibition may also 
include enhanced immune responses, suggesting a pos-
sible additional functional role of SRSF1/2 in tumor biol-
ogy [32–34].

SRSF3 regulates the p53-mediated process to sup-
press tumorigenesis [35]. SRSF3 is a critical enhancer 
of alternative splicing, inhibits melanoma growth, and 
amplifies sensitivity to MAPK-targeted therapies via the 
p53-MDM4 axis in different human melanoma cell lines 
and xenograft mouse models derived from patients with 
melanoma [36, 37].

SRSF6 is necessary to increase the Bim variant (a pro-
apoptotic member of the BCL-2 family) splicing [38]. 
Considering that SRSF6 is upregulated, inhibiting it with 
small interfering RNA using vemurafenib intercepts Bim 
variant mediation and apoptosis [39]. Therefore, render-
ing melanoma cells susceptible to BRAF V600E inhibitors 
is essential.

In summary, the SR family plays a crucial role in mela-
noma development and progression by promoting and 
regulating splice variant synthesis and acting as drug 

Table 1 SR family
Targeted Gene Effect

SRSF1 circMYC Affect lactate dehydrogenase activity
SRSF2 / T cell maturation
SRSF3 MDM4v6 p53-MDM4 axis
SRSF6 BIM Inhibit apoptosis pathway
SRPK1 VEGF Immunological susceptibility
SRPK2 / Immunological susceptibility
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induction mediators or regulators. Although SR proteins 
have been extensively described in cancer, SR protein 
dysregulation in melanomas is still unclear and requires 
further investigation.

Heterogeneous nuclear ribonucleoproteins
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are 
a protein superfamily that binds to pre-mRNAs through 
RNA-binding regions to form complexes and participate 
in alternative splicing [40, 41]. hnRNPs are strongly asso-
ciated with the pathogenesis and development of various 
cancers; high hnRNP expression levels can promote the 
proliferation, invasion, and metastasis of cancer cells and 
influence patient prognosis [42–45]. In addition, high 
hnRNP expression may participate in tumor resistance 
through damage repair mechanisms (Table 2) [46].

The absence of polypyrimidine tract-binding protein 1 
(PTBP1; hnRNP I) in dendritic cells can increase MHC II 
expression and disrupt T cell homeostasis without involv-
ing dendritic cell progression [47]. PTBP1 deficiency in 
dendritic cells can increase antitumor immunity [48, 49] 
and is also relevant to the CD44v6 variant expression in 
melanoma brain metastasis [50]. Therefore, PTBP1 is a 
leading factor in regulating immune responses.

Other hnRNPs also play a major role in alternative 
splicing and influence tumor development; however, 
no related studies have been conducted on melanoma 
treatment. hnRNP A1 combines with and activates the 
internal ribosomal entry sequence of melanoma stress-
induced antigens. Endoplasmic reticulum stress ago-
nists promote hnRNP A1 translocation and enhance 
stress-induced antigen translation and recognition by 
T-lymphocytes in melanoma cells [51]. hnRNP A2B1 is 
upregulated in melanoma stem cells and may act through 
post-transcriptional regulation to block melanoma stem 
cell apoptosis [52]. hnRNP C directly binds to the cis-
element of the 5′ coding region of p53 mRNA, promot-
ing p53 translation [53]. hnRNP U is a protein chaperone 
of protein kinase B (AKT) that interacts and cooperates 
with nuclear actin in transcriptional regulation; however, 
additional biochemical examination is needed to verify 
the assemblage of nuclear AKT and hnRNP in the cell 
system [54].

The influence of hnRNPs on melanoma has not been 
extensively explored; however, these findings provide a 
unique direction for melanoma treatment.

Splicing factor 3B subunit 1
Splicing factor 3B subunit 1 (SF3B1) encodes subunit 1 of 
the splicing factor 3b protein complex, which is involved 
in pre-mRNA splicing. Splicing factor 3b forms the U2 
snRNP with splicing factor 3a and a 12 S RNA unit [55, 
56].

SF3B1 is the most commonly mutated splicing factor, 
with approximately 15–20% of mutations occurring in 
uveal melanoma. SF3B1 mutations in cancers are primar-
ily missense mutations, with three mutation hotspots tar-
geting the R625, K666, and K700 codon positions [55, 57]. 
K700 mutations are common in hematopoietic malignan-
cies [58], whereas R625 mutations are the most frequent 
in uveal melanoma [59]. However, codon R625 repeat 
mutations in SF3B1 in uveal melanomas are absent in 
most cutaneous melanomas [60]. These findings suggest 
that the pathogenesis of the mutated genes is distinct; 
therefore, the target hotspots for each disease are differ-
ent, or diverse disease biology possibly drives the selec-
tion of individual mutations. This emphasizes the genetic 
diversity between cutaneous and uveal melanomas, and 
the demand for subtype-specific therapeutics.

Mutations in spliceosomal components alter intragenic 
splicing, causing intron retention or aberrant alterna-
tive splicing, disrupting the balance of protein isoforms 
and regulating cell growth and differentiation [61]. In in 
vivo studies, mutant SF3B1 stimulates aberrant splicing 
and represses downstream genes by negatively regulating 
AKT and nuclear factor kappa B (NF-κB) [62, 63]. In in 
vitro knock-in models, cell migration, tumorigenesis, and 
hypersensitivity to AKT kinase inhibitors were driven 
through coordinated NF-κB and AKT signaling activa-
tion [62]. In uveal melanomas with SF3B1 mutations, 
these splicing patterns induce the formation of tumor-
specific immunogenic neoepitopes [64]. Neoepitopes are 
attractive targets for adjuvant therapy, in which soluble 
biospecific reagents are used to redirect the activity of 
effector T cells with antibodies or affinity-matured T-cell 
receptors to tumor cells expressing neoepitopes [65, 66].

SF3B1 binds to cyclin-dependent kinase 11 and phos-
phorylates its N-terminal threonine residue to activate 
the spliceosome [67]. Phosphorylation is critical for the 
association of SF3B1 with U5 and U6 snRNAs in acti-
vated spliceosomes; therefore, inhibiting SF3B1 phos-
phorylation is a novel direction for tumor therapy.

Aberrant alternative splicing variants in melanoma
RNA splicing plays a pivotal role in melanoma [16, 68], 
and multi-omics approaches have pinpointed it as one 
of the most unregulated pathways in melanoma [69]. 

Table 2 hnRNPs
Targeted Gene Effect

hnRNP I 
(PTBP1)

CD44v6 T-cell homeostasis

hnRNP A1 Stress-induced 
antigens

Enhance translation and recogni-
tion by T lymphocytes

hnRNP A2B1 \ Apoptosis of melanoma stem cells
hnRNP C p53 Cis-element in the 5′ coding 

region of p53 mRNA
hnRNP U AKT Cooperates with nuclear actin in 

transcriptional regulation
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Additionally, a close association exists between alterna-
tive splicing and melanoma prognosis [70]. Therefore, 
alternative splicing in melanomas should be examined 
to develop new strategies for reversing drug resistance. 
Aberrant expression or variation in specific mRNA splic-
ing variants is related to cancer initiation, progression, 
aggressiveness, and drug resistance due to alternative 
splicing of critical genes [15, 17, 18]. The importance 
of specific SVs in melanomas is summarized in Table 3. 
Genes encoded by BRAF, neuroblastoma RAS (NRAS), 
the BCL-2 family, MDM4, and CD44 have been the most 
studied.

BRAF
BRAF encodes a serine/threonine kinase that is regulated 
by the MAP kinase pathway [71]. As a direct RAS effec-
tor, BRAF dimerizes to catalyze MEK and extracellular-
signal-regulated kinase phosphorylation and activation 
[72]. Approximately 40–60% of melanomas carry muta-
tions in BRAF [73]. The most common mutation is the 
valine replacement at codon 600 (V600E) with glutamic 
acid [74]. Vemurafenib and dabrafenib are BRAF V600E 
inhibitors approved for treating V600E-mutated mela-
nomas [75]. Although 63–76% of patients with advanced 
melanoma and BRAF V600E mutations benefited clini-
cally from combination therapy, the median progression-
free survival was only approximately 9 months, and 90% 
of patients experienced resistance within one year [75]. 
One mechanism of resistance to vemurafenib is a point 
mutation in intron 8, which leads to exons 4–8 being 
skipped, thereby eliminating the RAS-binding domain 
(Fig. 1) [76, 77].

The intricacy and heterogeneity of the pathways associ-
ated with the development of resistance to BRAF inhibi-
tors make it challenging to defeat acquired resistance 
with a “one-size-fits-all” approach. Several studies are 
currently underway to identify new therapeutic com-
binations that can restrict or prevent the development 
of resistance to BRAF inhibitors or overcome already-
developed resistance. Most findings indicate that disrupt-
ing the BRAF–MEK association during BRAF inhibitor 
therapy is a probable pharmacological target [73, 76–79]. 
PLX7904 and its clinical analog, PLX8394, inhibit MEK–
ERK1/2 signaling and G1/S cell cycle events, effectively 
blocking the survival and growth of vemurafenib-resis-
tant cells with diverse BRAF V600E splice variants [79]. 
These inhibitors are effective in vemurafenib-resistant 
tumors that express BRAF splice mutations and reduce 
the homodimerization of splice variants. They are cur-
rently undergoing preclinical trials and may be second-
line treatment options for patients unresponsive to 
vemurafenib or dabrafenib.

Two conserved phosphorylated residues exist in RAF 
regulation: serine 365 (S365) within CR2 and serine 
729 (S729) in the BRAF C-terminus [80–82]. The muta-
tion of S729 to a non-phosphorylatable residue reduces 
the interaction between the BRAF V600E splicing vari-
ant and MEK, decreases dimerization or oligomeriza-
tion, and promotes RAF inhibitor sensitivity [83, 84]. 
Conversely, the S365 mutation increases BRAF V600E 
homodimerization [83, 85]. Therefore, the induced S729 
site mutation or removal of the S365 site may contribute 
to the resistance to RAF inhibitors [86]. These outcomes 
provide evidence for aberrantly spliced forms of BRAF 
V600E to target resistance.

Table 3 The presence and role of specific SVs
Transcript Splicing event Functional role Molecular mechanism
BRAF Skipping of the BRAF V600E exons 4–8 Resistance to vemurafenib Missing the RAS-binding domain (RBD)
NRAS Isoform 1 (canonical) Resistance to vemurafenib

Potentially serve as biomarkers for 
therapeutic response and disease 
prognosis

Lower activity of MEK and ERK and a level of activity
Isoform 2 (insert exon3b) Caused less activity along the MEK/ERK axis and 

increased activity of AKT
Isoform 3(skipping of exon 3) Lower activity of MEK and ERK and a level of activity
Isoform 4(skipping of exons 3 and 4) Lower activity of MEK and ERK and a level of activity
Isoform 5(the fusion of the beginning of 
exon 2 with the end of exon 5)

Increased the activity of all downstream targets

BCL-2 Family Bcl-xL(alternative 5’ splice site selection 
within exon 2)

Confer chemo-resistance Binding the BH4 domain in the N-terminal

Mcl-1 L & Mcl-1 S Induced apoptosis Targeting Mcl-1 pre-mRNA with Mcl-1 antisense 
morpholino oligonucleotides resulted in a shift 
towards Mcl-1 S expression

BimS, BimL & BimEL Induced apoptosis of BRAFV600E 
melanoma

Unknown

MDM4 MDM4-S(skipping of exon 6) Increased sensitivity to cytotoxic 
chemotherapy and to inhibitors of 
the BRAF (V600E) oncogene

A negative regulator of p53

CD44 CD44v8-10 related to melanoma metastasis Regulated by CD82-U2AF2 axis
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NRAS
NRAS encodes a small GTP-binding protein associated 
with the cell membrane that links cell surface receptor 
tyrosine kinases to nuclear transcription factors [87]. 
NRAS is the second most frequently mutated oncogene 
in melanoma [88]; however, no effective treatment for 
NRAS mutations exists [89]. Immunotherapy with pro-
grammed cell death protein checkpoint inhibitors, such 
as nivolumab or pembrolizumab, is the first line of treat-
ment for surgically incurable stage III/IV melanoma with 
NRAS mutations [90]. However, the efficacy of immu-
notherapies for treating melanomas with NRAS muta-
tions is contentious [91, 92]. Second-line treatments for 
melanomas with NRAS mutations include inhibiting the 
MAPK signaling pathway, MEK, or a combination with 
other drugs [93, 94]. However, the therapeutic potency of 
existing drugs against melanomas with NRAS mutations 
is insufficient [94], highlighting the need to identify novel 
targets.

Since 2014, five NRAS isoforms have been shown to 
have different expression subtypes, enzymatic activities, 
and downstream oncogenicity [95]. Based on canonical 
form 1, the remaining four forms were created by insert-
ing the previously unknown exon 3(b) into form 2, skip-
ping exon 3 into form 3, skipping exons 3 and 4 into form 
4, and fusing the start of exon 2 with the end of exon 5 
into form 5 (Fig. 2).

Notably, only isoforms 1 and 2 contain codon 61 (exon 
3) that can activate constitutive RAS GTPases and switch 

their conformation toward the GTP-bound active state 
[96]. The proliferative activity of human melanomas 
with BRAF V600E mutations increases with NRAS iso-
form 2 overexpression and concomitant resistance to 
BRAF inhibitor therapy [97]. Increased PI3K activity in 
cells expressing isoform 2 is a fundamental mechanism 
of resistance. Unexpectedly, isoform 5 is localized in the 
nucleus and lacks GTPase activity, thereby increasing the 
activity of all downstream target proteins [98] and resis-
tance to vemurafenib [99]. The mechanism of this resis-
tance is unclear; hence, overcoming it requires further 
exploration. However, in some follow-up samples, the 
expression of all five NRAS isoforms was detected in the 
primary tumor and its metastases, which may act as neg-
ative prognostic indicators [100].

These new isoforms generate splicing variants that are 
more immunogenic than a typical protein with a mis-
sense mutation encoded by the same gene [99]. Regard-
less of whether melanoma with NRAS mutations has 
been deemed hopeless to treat, there is no doubt that 
novel splice variants inject new energy into targeted ther-
apy or therapeutic resistance [101, 102].

BCL-2 family
Members of the BCL-2 protein family control apoptotic 
pathways [103] and are identified by the appearance of at 
least one of four BCL-2 homology (BH) domains [104]. 
This family is divided into a pro-survival and two pro-
apoptotic groups. BCL-2, BCL-XL, BCL-W, MCL-1, 

Fig. 1 BRAF V600E. This figure schematically depicts the main linear alternative splicing events of BRAF V600E. The RAS-binding domain is missing by 
skipping exon 4–8, which induces the resistance to vemurafenib
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and BCL2A1 constitute the pro-survival group. The pro-
apoptotic subgroups include apoptosis effectors with 
multi-BH domains (BAX, BAK, and BOK) and apopto-
sis initiators with mono-BH3 domains (BIM and BAD) 
[105]. Pro-apoptotic and pro-survival members function 
through the binding of the BH3 domain to a groove on 
the surface, which is the switch to apoptosis [106–109].

BCL-XL displays high conformational flexibility with 
strict regulation of alternative splicing and post-tran-
scriptional induction by transcription factors or microR-
NAs [110, 111]. Alternative splicing via 5′ splice site 
selection with exon 2 regulates BCL-XL expression to 
produce two isoforms [112]. The expression of the MCL 
splice variant is related to the BRAF mutational status in 
melanoma cell lines; MCL1L and MCL1S mRNA expres-
sion is increased in BRAF V600E mutant melanoma cells 
[113]. Furthermore, PLX4720 is a selective BRAF inhibi-
tor that upregulates BimS isoform expression to mediate 
BRAF V600E melanoma cell apoptosis [38]. These find-
ings provide a basis for developing small molecules that 
directly target BCL-2 proteins in melanoma treatment.

Using BCL-2 family proteins-specific inhibitors is inef-
ficient owing to drug resistance mediated by the over-
expression of other BCL-2 proteins. Higher MCL1 and 

BCL2A1 expression invalidate BCL-2/BCL-XL inhibi-
tors (e.g., ABT199 and ABT263) in clinical and pre-
clinical observations, emphasizing the necessity of 
associating BCL-2/BCL-XL inhibitors with those of 
MCL1 or BCL2A1 [114]. In addition, splicing modula-
tors, such as E7107, are ideal combination partners with 
BCL-2/BCL-XL inhibitors, as they can efficiently modu-
late MCL1 and BCL2A1 [115]. This combination strategy 
is under investigation and can effectively inhibit most 
cancer-related anti-apoptotic BCL-2 family members, 
thereby expanding to heterogeneous indications and 
overcoming resistance to current BCL-2/BCL-XL-tar-
geted therapies [116].

These studies show that the BCL-2 family has great 
latent capacity as a novel approach to cancer treatment. 
Combination therapies can reverse incomplete responses 
and treatment resistance to single-agent cancer therapy; 
however, the development of small molecules that target 
the BCL-2 family remains challenging.

MDM4
As a critical upstream negative regulator of the tumor 
suppressor p53 [117], MDM4 is not expressed in most 
normal tissues but is upregulated in cancer cells to 

Fig. 2 NRAS cDNAs. This figure schematically depicts the five main linear alternative splicing events and protein amino acid length of NRAS. Based on the 
canonical form 1, the remaining four forms are created by inserting the previously unknown exon 3(b) into form 2, skipped exon 3 into form 3, skipped 
exons 3 and 4 into form 4, and fused the start of exon 2 with the end of exon 5 into form 5
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promote overgrowth and inhibit apoptosis [118–121]. 
Notably, MDM4 exon 6 is skipped in most normal tissues 
and may act as a switch for the formation of degraded 
transcription products [122]. This means that the pro-
duction of the MDM4-S isoform by skipping exon 6 
occurs through the nonsense-mediated mRNA degen-
eration pathway in normal adult tissues. In contrast, the 
increased inclusion of exon 6 causes the expression of 
full-length MDM4 in many human cancers [37]. Mecha-
nistically, some SR proteins may be involved in regulat-
ing MDM4 splicing variants; however, SRSF3 is one of 
the most essential enhancers of exon 6 in melanoma cells 
(Fig. 3) [37, 123].

The selective CDK4/6 inhibitor palbociclib indirectly 
blocks MDM4 pre-mRNA splicing, thereby reducing its 
expression and activating p53 [124]. Conversely, inac-
tivating p53 reduces CDK2 inhibition, which replaces 
CDK4/6 and is a key driver of palbociclib resistance [125, 
126]. Thus, inhibiting MDM4-p53 axis regulation can 
lead to the development of palbociclib resistance [124]. 
In addition, double targeting effects on CDK4/6 and 
mutant-BRAF or MEK can regress strong and persistent 
melanomas with BRAF- and NRAS-mutations in pre-
clinical studies [89, 127–130]. The interaction of MDM4-
p53 can promote functional restoration in melanoma 
cells and sensitize BRAF V600E oncogene inhibitors 
[131]. However, fluoroquinolones interfere with alterna-
tive splicing, causing MDM4 splicing to downregulate 
MDM4 expression and activate p53 [132].

In summary, MDM4 is a critical factor in p53 func-
tional impairment in human melanoma [131]. Under-
standing the regulatory mechanism of MDM4 protein 
levels in cancer is of therapeutic significance. Neverthe-
less, small molecules or stapled peptides have not been 

able to selectively and potently disrupt the MDM4-p53 
association in clinical trials [37]. However, combin-
ing them with fluoroquinolones is a bold new attempt, 
providing a prospective combination approach that can 
improve the efficacy of immunotherapy or targeted ther-
apy and reverse resistance.

CD44
CD44 is a cell surface glycoprotein involved in cell adhe-
sion and migration [133]. CD44 expression is also upreg-
ulated in cancer cell subpopulations and is a molecular 
hallmark of cancer stem cells [134]. The full-length CD44 
gene contains 20 exons. All CD44 family members have 
homologous domains with exons 1–5 at the N-terminus 
and exons 16–20 at the C-terminus [135]. CD44 can 
be divided into two isoforms: standard CD44 (CD44s), 
which comprises ten constant exons with no variant 
exons [136], and variant CD44 (CD44v), which has alter-
natively spliced exons deleted or inserted between the N- 
and C-terminal domains (Fig. 4) [137].

CD44v is extensively overexpressed in pan-cancer, 
inducing tumor cell proliferation and drug resistance, 
hallmarks of cancer stem cells [138]. High expression lev-
els of CD44v6 have been reported in primary melanoma 
with a propensity for brain metastasis [50]. In primary 
melanoma, a close correlation exists between splicing 
factors, such as ESRP1, ESRP2, PTBP1, and U2 snRNP 
auxiliary factor (U2AF2), and the expression of CD44v6 
[50]. In addition, the expression levels of CD44v8-10 
and U2AF2 are significantly higher in primary mela-
noma than in dysplastic nevi and are further increased 
in metastatic melanoma [139], a crucial milestone dur-
ing melanoma progression [140]. Mechanistically, U2AF2 
facilitates CD44v8-10 alternative splicing in malignant 

Fig. 3 MDM4 splicing events. This figure schematically depicts the main linear alternative splicing events of MDM4. MDM4-FL shows the full exons. Based 
on MDM4-FL, MDM4-S is produced by skipping exon 6. MDM4-A is by skipping exon 3–6. MDM4-G is by skipping exon6-9. MDM4-ALT2 is by skipping 
exon4-9
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melanoma [139]. In vitro research has provided evidence 
of the dependence of CD44 expression levels on sur-
vival upon vemurafenib treatment [141]. Although ani-
mal experiments supported the effect of hyaluronic acid 
(HA)-modified liposomes on the delivery of chemothera-
peutic agents to cancer cells with high CD44 expression, 
research on targeted therapy and immunotherapy is lack-
ing [142].

Therapeutic approaches include natural selective CD44 
inhibition, CD44 decoys, and HA-targeted couples, and 
these have been studied in different periods of preclinical 
and clinical trials [143]. Thus, CD44 is a promising thera-
peutic target for melanoma.

Discussion
Alternative splicing is a complex cellular mechanism 
that plays a crucial role in maintaining cell and tissue 
differentiation and normal cell function [20]. These fac-
tors closely regulate splicing events. For example, U2AF2 
promotes the alternative splicing of CD44v8-10 in malig-
nant melanoma [139]. Additionally, SRSF3 is a crucial 
enhancer of MDM4 exon 6 [37, 123]. Furthermore, com-
plex interactions exist between splicing factors; SF3B1 
can form spliceosomes with rRNA and inactivate them 
via phosphorylation [67]. SR proteins and hnRNPs are 
antagonistic interacting proteins that antagonize the 
action of hnRNPs in a concentration-dependent manner, 
preventing exon skipping (164). These complex interac-
tions and tissue-specific roles of splicing factors leave 
many gaps in research that need to be addressed.

Aberrant alternative splicing is a double-edged sword 
with completely different effects on various targets. For 
example, BRAF V600E confers resistance to vemurafenib 
through exon skipping [76, 77]. In contrast, NRAS 
increases vemurafenib resistance via aberrant splicing, 

generating isoforms 2 and 5 [97, 99]. Notably, the BRAF 
S729 mutation increases sensitivity to RAF inhibitors 
[86]. Apoptosis in BRAF V600E melanoma cells can be 
mediated by upregulating BimS isoform expression [38]. 
However, MDM4 upregulation sensitizes BRAF V600E 
oncogenic inhibitors [131]. Therefore, individualized 
evaluation and the design of targeted therapy and immu-
notherapy must be strictly followed (Fig. 5).

Most researchers expect to limit, prevent, or overcome 
targeted therapy and immunotherapy resistance in the 
form of combination therapy. Oncogenic splicing errors 
can be alleviated by oligonucleotide-mediated gene ther-
apy (siRNA or SSO), small molecule inhibitors targeting 
aberrant protein isoforms, and upstream splicing factors 
[144]. For example, small-molecule inhibitors target-
ing SF3B1 overcome BRAF V600E-driven vemurafenib 
resistance by competitively binding to SF3B1, prevent-
ing the formation of the U2 snRNP-SF3B1 complex with 
precursor mRNAs and inhibiting BRAF V600E exon 
jumping [77, 145]. SRPK is a member of the SR family, 
whose inhibitors enhance immune sensitivity by enhanc-
ing antigen-presenting MHC I and MHC II expres-
sion and recruiting splenocytes [34]. Specific deletion 
of PTBP1 in the hnRNP family in melanoma enhances 
MHC II expression and disrupts T-cell homeostasis [47], 
and hnRNP A1 assists in T-lymphocyte recognition in 
melanoma cells [51]. In addition, oligonucleotide-based 
therapy is an effective strategy for targeting wild-type or 
aberrant splicing variants with high selectivity or speci-
ficity. SSO has been used to modify MDM4 and BCL2L1 
splicing (Fig. 6) [37, 146]. In summary, combination ther-
apies can support the reversal of incomplete responses 
and treatment resistance in single-dose cancer therapies; 
however, the complexity and heterogeneity of the path-
ways involved in their development prevent them from 

Fig. 4 CD44 splicing events. This figure schematically depicts the main linear alternative splicing events of CD44. The full length of the CD44 gene in-
cludes 20 exons. The standard CD44 (CD44s) consists of ten constant exons with no variant exons. The variant CD44 (CD44v) has alternative splicing exons 
deleted or inserted between the N- and C-terminal domains, such as CD44v4-10, CD44v8-10, CD44v3, CD44v6
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reaching the standard for clinical use, which remains an 
urgent challenge.

Alternative splice-derived neoepitopes may also serve 
as potential therapeutic targets [65, 66]. NRAS pro-
duces splice variants that are more immunogenic than 
canonical proteins encoded by the same gene with mis-
sense mutations [99], and the number of CD44 variants 
is further increased in metastatic melanoma [50]. How-
ever, many barriers still exist to implementing therapeu-
tic strategies that specifically target these antigens. First, 
determining whether neoantigens are tumor-specific is 
crucial. Second, analyzing whether alternative splicing 
events within a tumor occur elsewhere in the body and 
not only in the healthy tissue surrounding the tumor is 
essential [21]. Furthermore, identifying alternative splic-
ing events at the subclonal level in tumors is challeng-
ing [147]. These findings indicate the great potential 
of splice variants in melanoma-targeted therapy and 
immunotherapy.

In conclusion, this review is the first to summarize the 
splicing process in melanoma and the changes occur-
ring in this pathway. Alternative splicing is associated 
with resistance to immunotherapy and targeted therapy 

Fig. 6 Alternative splicing in targeted therapy resistance. SRPK inhibitors 
enhance immune sensitivity by enhancing the expression of antigen-pre-
senting MHCI and MHCII molecules and the recruitment of splenocytes. 
The deletion of PTBP1 can enhance MHC II expression and disrupt T cell 
homeostasis, and hnRNP A1 assists T lymphocyte recognition of mela-
noma cells

 

Fig. 5 Alternative splicing in targeted therapy resistance. SRSF3 enhances the splicing event of MDM4 to combine with p53. SRSF6 regulates the splicing 
event of Bim. Both of them can assist BRAF inhibitors to block the process of the dimerization of BRAF and the combination with MEK. Conversely, NRAS 
increases resistance to BRAF inhibitors through aberrant splicing to generate isoforms II and V
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in melanomas. With the continuous improvement in sci-
ence and technology, an in-depth study of the molecular 
mechanism of alternative splicing in melanoma and con-
tinuous exploration of potential novel therapeutic tar-
gets can lead to newer and better treatment options for 
patients with drug resistance.
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