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Abstract

Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report

in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG

via dendritic cells. AllolgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced
tumor eradication via the reported and our proposed potential signaling pathways. AllolgG triggers systematic
immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations.
The promising perspectives of allolgG immunotherapy would have advanced from mouse models to clinical trials;
however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative
to promote future discussion.
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Introduction

Immunotherapy has achieved durable responses in some
cancer patients. However, the tumor microenvironment
poses significant challenges that limit its effectiveness
by creating an immunosuppressive milieu that shields
tumors from antitumor immunity, thereby prevent-
ing many patients from benefiting from these therapies.
Therefore, there is an urgent need to find new therapies
to improve patient outcomes. As we reported in the Jour-
nal of Hematology and Oncology in 2020, dendritic cells
(DCs) play a significant role in initiating and maintaining
the immune response against cancer cells [1]. These spe-
cialized cells can recognize and process antigens, present
them to T cells, and regulate immune responses upon
uptake of immune complexes (ICs), making them attrac-
tive targets for cancer immunotherapy.

The Fc region of the antibody contains constant
sequences, with only a small number of variants, and can
elicit a host of cellular responses by binding to various
Fc receptors expressed widely by different leukocytes.
Fc—FcyR interactions represent a key component of the
in vivo activity of therapeutic mAbs [2, 3]. The interac-
tion of IgG—FcyR activates various downstream immune
regulatory pathways with multiple functional conse-
quences, including activation of DCs and T cells [4].
Carmi et al. found that allogeneic IgG (allolgG) can com-
bine with dendritic cells to induce a powerful T-cell anti-
tumor response [5]. This review and perspective review
introduces the effects and safety of alloIgG tumor immu-
notherapy and the underlying mechanisms for its poten-
tial future clinical application.

Immunoglobulin G and FcyR are important

in immunity

Immunoglobulin G (IgG) comprises 10-20% of all
plasma proteins and 70-75% of total immunoglobulins
[6]. Its high antigen affinity, somatic hypermutation, and
essential role in immune memory are well established.
IgG includes IgG1, 1gG2, 1gG3, and IgG4 subtypes. [gG1
and IgG3 have the highest affinity for type I Fcy recep-
tors (FcyRs) for increased cytotoxic activity in vivo, while
IgG2 and IgG4 have poor affinity with all type I FcyRs [7].
In addition to activating C1q, IgG has multiple functions,
including binding to FcyRs on immune cells.

When multimeric IgG immune complexes interact
with activated FcyRs, receptor clustering and aggre-
gation occur, leading to phosphorylation of the ITAM
structural domain by SRC family kinases (such as LYN,
LCK, HCK, and FGR) and the recruitment and activa-
tion of SYK family kinases [8, 9]. This event activates
the PI3K-PKC pathway, resulting in Ca,” mobilization
and cellular activation [10, 11]. MEK and MAP family
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kinases and the Ras pathway are then activated [12].
The IgG-FcyR interaction and downstream signal-
ing may lead to antibody-dependent cellular cytotox-
icity (ADCC) or phagocytosis (ADCP), cytokine and
chemokine release, leukocyte differentiation and sur-
vival and T/B-cell responses [13-15].

Furthermore, IgG can directly neutralize toxins and
microbes [16]. IgG can also generate inflammatory
mediators and eliminate opsonized microbes [17].
An IgG molecule contains two variable Fab domains
for antigen binding, one constant Fc domain for FcyR
binding and a hinge region in a Y shape [18]. Although
the Fc domain has conventionally been considered
the invariant domain of an IgG molecule, it exhib-
its remarkable structural heterogeneity with different
IgG subclasses and biantennary N-linked glycans [19].
These structural determinants modulate the conforma-
tional flexibility of the IgG Fc domain and impact its
ability to bind to different types of FcyRs (type I or type
1) [20].

FcyRs are widely expressed on immune cells and
specifically bind to the IgG Fc domain [21]. Activating
FcyRs include FcyRI, FcyRIIA, FcyRIIIA, and FcyRIIIB
(CD64, CD32a, CD16a, CD16b) in humans and FcyRI,
FcyRIIL, and FcyRIV in mice [7]. A single inhibitory
receptor, FcyRIIB (also known as CD32b), is activated
by a tyrosine inhibition motif (ITIM) in both humans
and mice [22, 23]. Activating FcyR mRNA is expressed
in monocytes, macrophages, and monocyte-derived
DCs (moDCs), and inhibitory FcyRIIB mRNA is
expressed in mouse c¢DCs, plasmacytoid DCs (pDCs),
moDCs and macrophages. Human c¢cDCs and pDCs
express FcyRIIB mRNA as well as FcyRIIA. Both mouse
and human CD172a* ¢DCs express low levels of FcyRI,
as determined by flow cytometry [13, 20]. Although
mRNA expression does not always predict protein
expression, recent human and mouse flow cytometry
data support these findings [24]. These data suggest
that macrophages and moDCs express mRNA for most
of the activating and inhibitory FcyRs, whereas c¢cDCs
and pDCs primarily express mRNA for the inhibitory
FcyRIIB.

The relative expression of activating and inhibiting
FcyRs coexpressed on many immune cells determines
the activation threshold of immune cell responses [25].
FcyRIIb activation leads to receptor cross-linking, phos-
phorylation by SRC family kinases and phosphatase
recruitment to their ITIM structural domains [26, 27].
ITIM-recruited phosphatases (SHIP1 and SHP2) lead to
the hydrolysis of phosphatidylinositol 3,4,5-triphosphate
(PIP3) to phosphatidylinositol 4,5-biphosphate (PIP2),
inhibiting PLCy and the tyrosine kinase BTK [27-29].
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IgG mAbs tumor immunotherapy requires IgG Fc-
DC FcyR interaction

Therapeutic monoclonal antibodies (mAbs) interact with
innate and adaptive immunity in vivo [7]. Therapeu-
tic mAbs bind to cancer cell surface antigens, inhibiting
their proliferation and survival [30]. The IgG Fc—FcyR
interaction mediates ADCC, ADCP, and CDC functions
to block growth signals and angiogenesis and activate
the immune response [7, 31]. Despite the diverse mecha-
nisms of action of therapeutic mAbs, a common function
is their interaction with FcyRs expressed on the surface
of leukocytes through their Fc domain. FcyRIlIa signifi-
cantly improves the therapeutic efficacy of anti-CD20
monoclonal antibodies [32]. B-cell lymphoma, breast
cancer, and colorectal cancer patients carrying FcyRIla
and FcyRIIIa allelic variants are more responsive to anti-
tumor antibody therapy [33-36]. In HER2" breast can-
cer, mAbs have become the frontline standard of care,
outperforming HER2-specific small molecule inhibitors
and achieving excellent responses with modest toxici-
ties [37], which require I[gG—FcyR interaction [38]. Anti-
GITR antibodies were found to require activating FcyRs
[39]. Fc—FcyR interactions can promote innate immunity
via cellular differentiation and survival. Fc—FcyR interac-
tions promote antigen processing and presentation and
the maturation and activation of dendritic cells [4]. Last,
B cells are also regulated by Fc—FcyR interactions by their
type I FcyR, FcyRIIb and type II FcyR, CD23 [40]. These
results suggest that Fc—FcyR interactions are vital in can-
cer immunotherapy.

IgG Fc-DC FCyR interaction activates DCsand T
cells

DCs are the most effective antigen-presenting cells
(APCs) [41]. DCs include type 1 ¢cDCs (cDCls), type 2
¢DCs (cDC2s), and pDCs. DCs become activated upon
exposure to foreign antigens, which can occur through
the engagement of conserved bacterial or viral anti-
gens known as pathogen-associated molecular patterns
(PAMPs) via pattern recognition receptors (PRRs) [42].
Resting immature DCs (imDCs) express PRRs of Toll-like
receptors (TLRs), membrane-associated C-type lectin
receptors, and mannose receptors [43—45]. DC matura-
tion is regulated by activating and inhibitory type I FcyRs.
Steady-state DCs express both inhibitory FcyRIIb and
activating FcyRIla, which prevents inappropriate or
uncontrolled DC maturation [7]. Selective blockade of
FcyRIIB using monoclonal antibodies leads to human
DC maturation [46]. imnDCs become mature, losing their
endocytic capacity but increasing their antigen process-
ing and presentation capacity [47]. maDCs upregulate
chemokine receptors such as CCR7, driving their homing
to lymph nodes [48], where they present antigens to naive
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CD4* or CD8* T cells (Fig. 1a) [49, 50]. cDCls cross-
present antigens to cytotoxic CD8" T cells and promote
the activation of CD4* T helper type 1 (Th1) cells, while
cDC2s induce CD4" T-cell responses [51]. pDCs in the
blood and spleen express MHC class II and costimulatory
molecules [52]. Newly identified moDCs are present in
mouse and human tumors [53]. MoDCs in tissues have
a limited capacity to transport antigens to lymph nodes
and activate naive T cells in vitro, which distinguishes
them from Ly6C* or CD14hi monocytes [54, 55]. There-
fore, it is unclear to what extent moDCs contribute to the
initiation of new T-cell responses.

Activated FcyRs promote degradative antigen pro-
cessing and presentation, thereby activating T cells,
while internalization by FcyRIIB tends to preserve the
intact antigen for subsequent transfer to B cells. ICs are
bound to FcyRs on the surface of DCs, internalized and
subsequently bound to the neonatal Fc receptor (FcRn).
Since FcRn is predominantly intracellular and binds IgG
at acidic pH, it is well placed to engage IgG—ICs within
endolysosomal compartments and regulate IgG-IC traf-
ficking and MHC-mediated antigen presentation (Fig. 1b)
[56]. ICs are more effective in antigen-presenting func-
tions of DCs than free antigens [56, 57]. In mouse stud-
ies, DCs from splenic mice showed more efficient uptake
of ovalbumin (OVA) preincubated with anti-ovalbumin
IgG than “naked” OVA. Notably, OVA:IgG immune com-
plexes induced CD4" and CD8" T-cell proliferation more
effectively than “naked” OVA in mice transplanted with
OVA-specific CD8' or CD4" T cells [58]. Inactivated
Francisella tularensis immune complexes (mAb-iFt) are a
more protective vaccine against lethal tularemia than iFt
alone. Nelson et al. discovered that targeting iFt to FcyRs
via mAb-iFt leads to enhanced DC maturation, with FcyR
being needed for mAb-iFt-induced maturation of bone
marrow-derived DCs [59]. Fc-FcyR interactions hold
promise for DC-specific vaccination-based strategies [7,
60].

The activation of a T-cell depends on its interaction
with APCs and requires three signals (Fig. 1b—d). Signal
1 is the specific peptide recognized by the T-cell recep-
tor (TCR). Major histocompatibility complex (MHC)
molecules (either MHC-I for cytotoxic CD8" T cells or
MHC-II for CD4" T cells) are needed (Fig. 1c) [61]. The
intracellular pathways [1, 50] mediate antigen degrada-
tion and peptide loading onto MHC molecules. Antigen
presentation to CD4" T cells is enhanced only when
the antigen and IgG are present within the same phago-
some [24]. Signal 2 is the costimulatory molecules on T
cells (e.g., CD28) and their receptors on APCs, such as
CD80 and CD86 (B7.1 and B7.2). Signal 3 is the cytokines
needed to define the type of response. These three sig-
nals induce Ag-specific CD4" or CD8" T-cell responses
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Fig. 1 IC-FCyR interactions lead to DC antigen presentation and T-cell activation. a When exposed to foreign antigens, PRRS and FcyRs can mediate
the induction of dendritic cell maturation. During maturation, imDCs lose their endocytic capacity while increasing their capacity for antigen
processing and presentation, driving their homing to lymph nodes, where they present antigens to naive CD4+ or CD8+ T cells. b ICs bind

to FcyRs on the surface of DCs, are internalized and processed, and subsequently bind to neonatal FcRn, trafficking and MHC-mediated antigen
presentation. ¢ Matching of TCR with MHC molecules on DCs. d The activation of a T-cell depends on its interaction with APCs and requires three

signals

(Fig. 1d) [62]. DCs can ingest virus-infected or tumor
cells and present Ags to specific CD8" T cells via cross-
presentation through an MHC-I pathway [63].

Tumors are eradicated by allogeneic IgG via DCs

The combination of tumor-binding allolgG and DCs
has been shown to effectively eradicate both primary
and metastatic mouse tumors, including melanoma,
pancreatic, lung, colon, and breast cancer (Table 1)
[5]. In syngeneic C57BL/6 mice, B16 melanoma cells

proliferated, while they were rejected in allogeneic
129S1 mice, with all animals treated by other meth-
ods experiencing rapid tumor recurrence. Allogeneic
transplanted tumors had more mature myeloid DCs
that were more activated than syngeneic tumors. IgM
and IgG antibodies binding to allogeneic tumors ena-
bled tumor-infiltrating DCs to process and present
tumor antigens to CD4" T cells, and this response
was abrogated in FcyR-deficient mice. Only allo-
geneic immunoglobulin-IC could activate bone
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marrow-derived DCs (BMDCs) in vitro, and BMDC
activated by alloIlgG-IC induced significant T cell
proliferation [5]. However, only minor effects were
observed when allolgG was injected into tumors in
autologous mice in vivo. The possible explanation
of the limited effect could be the difference between
BMDCs and tumor-associated dendritic cells (TADCs)
as described below.

AllolgG combined with DC stimuli TNFa and CD40L
eradicated tumors

Unlike BMDCs, TADCs did not respond to allolgG
against tumor cells or lysate (allolgG-IC) (Fig. 2a, b).
However, Polyl:C, TNFa*CD40L, or IFNytCD40L
could activate TADCs to take up and present
alloIgG-IC. Intratumoral injection of allolgG com-
bined with TNFa*CD40L or Polyl:C eliminated B16
and LL/2 homologous tumors. In mouse models,
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allolgGTCD40*TNF« almost eliminated melanoma and
breast cancer metastases (Fig. 2c). Culturing malignant
pleural mesothelioma patients BMDCs with allogeneic
IgG activated and enhanced autologous CD4" T-cell
propagation. Finally, the authors found that allolgG iso-
lated from healthy donors could similarly induce TADC
activation in the presence of tumor necrosis factor alpha
(TNF-a) and CD40 when cultured with tumor cells, vali-
dating the clinical performance of this approach. These
results suggest that TADC unresponsiveness to IC is not
due to the suppressive nature of the tumor microenviron-
ment but rather a consequence of normal monocyte mat-
uration [5]. Analysis of the signaling pathways in MoDC,
TADCs, and BMDCs indicates that rapid Syk phospho-
rylation following ligation of FcyRs with ICs induces dra-
matic downstream protein activation in the MAPK (p38,
pINK, pERK) and PI3K/Akt (pAkt) pathways in BMDCs
(Fig. 3a) [64]. Although SHP-1 regulates DC activation

/Tumor antigen
_—AllolgG
@
4
a e .
@ =
Tumor cell > "
BMDC Dying tumor cell
b
FeyibR TADC
% anti-CD40
@
_ 4
C ‘ =) — 2) 7
0D @

Primary tumor

Dying tumor cell

TADC+TNFa+CD40L

Fig. 2 AllolgG combined with TNFa and CD40L induced complete elimination of tumor cells. a Syngeneic BMDCs loaded with AllolgG-IC
activate T cells and prevent tumor recurrence in mice. b When AllolgG was injected into tumors in autologous mice, TADC cannot transmit signals
through their Fcy receptor after contact with AllolgG-IC in a highly immunosuppressed tumor microenvironment. ¢ Combining tumor-binding
AllolgG with TNFa and CD40L enables TADC to internalize tumor antigens via the Fcy receptor. These antigens are then processed by DCs

and presented to T cells, which attack primary tumors and distant metastases
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Fig. 3 Mechanisms of DC-mediated signaling by allolgG action. a Stimulation of BMDCs with AllolgG-IC resulted in a significant increase
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[64]. as a perspective view for further discussion (Fig. 3). We
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believe the mechanistic study will provide a basis for its
future improvement. CD40, as a tumor necrosis factor,
primes DCs for effective and specific T-cell activation
[65]. Activation of DCs with CD40 agonists increased
survival and cytokine secretion of IL-1, IL-6, IL-8, IL-12,
TNF-a, and macrophage inflammatory protein-la and
upregulated costimulatory molecules of MHC class II,
LFA-3, CD80, and CD86, promoting antigen presenta-
tion, priming, and cross-priming of T helper cells and
cytotoxic T lymphocytes, respectively [66]. Based on
their study, Vidalain and colleagues propose a model of
CD40-mediated signaling in human DCs that includes
CD40-induced membrane raft reorganization and the
recruitment of TNFR-associated factors 2 and 3 (TRAFs)
and activation of Lyn and other Src family kinases. Lyn
activation leads to IL-la, IL-1PB, and IL-1Ra mRNA
expression through a MEK/ERK pathway. Activation
of p38 MAPK, which induces the expression of IL-12
mRNA, is likely stimulated through a TRAF-initiated
pathway and, to some extent, through a Src family kinase-
dependent pathway in the early phase of CD40 signaling
[67]. Additionally, TRAF activates the NF-kB, MAPK,
PI3K, and PLCy pathways [68].

The essential role of CD40L in the induction of pro-
tective tumor immunity led researchers to expect that
agonistic anti-CD40 antibodies would act as potent
adjuvants to promote tumor immunity. CD40-stimu-
lated DCs significantly induce T-cell proliferation and
cytokine production [69]. CD40 engagement provides
survival signals to DCs, making them resistant to Fas
ligand expressed by activated T cells [70, 71]. CD40 ago-
nistic antibodies generated CTL responses that eradi-
cated lymphoma tumors. CD40 ligation could overcome
peptide-induced peripheral CTL tolerance and increase
antitumor efficacy [72-74]. Evidence suggests that the
effect of anti-CD40 antibodies on CD40-expressing cells
critically depends on whether they interact with FcyR
and C1 [75]. Therefore, the CD40/CD40L interaction is
necessary for optimal antigen presentation by DCs. How-
ever, some studies suggest the opposite result, indicating
that CD40/CD40L may be closely associated with tumo-
rigenesis [76]. CD40 is expressed on the surface of nor-
mal cells and cancer cells of the bladder, lung, and ovary
[77-79] and is highly expressed in malignant hematologi-
cal tumors [80]. CD40L is highly expressed in many can-
cers, but its tumorigenic functions in neoplastic disease
remain controversial [81].

TNF-a is a potent anticancer cytokine that binds to
two receptors, TNFRSF1A (TNFR1) in all cell types and
TNFRSF1B (TNFR2) in immune cells. Activation of the
NE-«B, JNK, p38 MAPK, ERK, and PI3K pathways by
TNF-a binding to TNFR2 guides cell proliferation and
survival [82] (Fig. 3c). Despite its multiple functions,
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TNFa can have conflicting effects on cancer cells. As
demonstrated by Carswell, elevated levels of TNFa can
eliminate MCA-induced sarcomas, and approximately
28% of cancers are sensitive to STNFa [83]. Direct intra-
tumor injection of DCs into homologous mouse tumors
can reverse established tumor nodules in mice and
provide effective immunity against subsequent tumor
threats. This antitumor effect can be enhanced by prep-
riming DCs with recombinant TNF-« [84]. Cancer cell
secretion of TNFa can promote DC production, differ-
entiation, and maturation [85]. However, low levels of
TNFa expression may be protumorigenic, as reviewed
in detail by Balkwill [86].

AllolgG triggers systematicimmune responses
targeting multiple antigens

It has been found that allolgG binding specifically
to tumor cells, rather than the source of IgG or their
cross-linking with syngeneic IgG, induces strong
immune responses [5]. Syngeneic IgG bound only six
B16 membrane proteins, but allolgG preferentially
bound 16 cell membrane proteins, including trans-
membrane glycoprotein NMB (GP-NMB) [5]. GP-NMB
antibodies, aCD40 and TNFa together activate DCs
and induce FcyR-dependent tumor regression with
activated effector/memory T-cell infiltration, suggest-
ing that tumor-reactive T cells targeting tumor-associ-
ated antigens that are not widely expressed alloantigens
are needed [5].

It was shown that alloIgG triggers systematic immune
responses [5]. Systematic immune responses were
also reported in tumor-specific McAb IgG therapy.
Spitzer, Matthew et al. developed an intuitive model,
a computational method called scaffold maps. Scaffold
map analysis revealed that treatment of a spontane-
ous model of carcinom MMTV-PyMT triple-negative
breast cancer with anti-PD-1 antibodies triggered only
a transient immune response at the local tumor, but the
combination of tumor-binding antibodies and adju-
vants triggered both local and system-wide immune
responses in this model, including lymph nodes, bone
marrow and blood [87]. This could explain why the
triple-negative breast cancer model is refractory to
checkpoint blockade therapy, whereas the combination
of alloIgG-IC with IFNy and CD40 therapy is effective
[87]. Binbin et al. developed a multimodal recurrent
neural network called MARIA, which predicts the like-
lihood of antigen presentation for genes of interest in
the context of specific HLA class II alleles. We propose
that MARIA may be used to identify candidate anti-
gens more accurately from patient sequencing data to
improve allolgG immunotherapy [88].
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AllolgG immunotherapy may overcome current
immunotherapy limitations

Immunotherapy has made considerable progress, with
some patients achieving long-lasting responses through
IgG McAbs and cellular immunotherapies. Therapeutic
antibodies containing Fc domains promote antitumor
activity by activating DCs [89]. Fc—FcyR interactions
and uptake of ICs by DCs play a vital role in the in vivo
activity of APCs and T cells through various mechanisms
(Fig. 1) [90]. However, IgG McAD therapy often leads
to drug resistance and tumor recurrence in 6 months
via many different mechanisms [3]. We propose that
alloIgG immunotherapy may overcome the limitations of
IgG McADb therapy because it triggers robust systematic
immune responses targeting multiple antigens via differ-
ent signaling pathways (Figs. 2 and 3).

DC immunotherapy and vaccines have gained a crucial
position due to their unique ability to present MHC class
I and II molecule-restricted peptides and activate T cells
(Fig. 1) [1, 91]. DCs are usually from the bone marrow or
spleen and are rare. DC vaccines are feasible because DCs
can now be cultured in large numbers ex vivo by control-
ling DC maturation and homing to lymph nodes [92]. A
detailed protocol for isolating MoDCs from blood and
tumors and activating MoDCs with tumor ICs is available
[93]. There are two common methods to clinically pre-
pare DC vaccines: loading tumor antigens directly onto
DC cells or fusing DCs with tumor cells [94]. However, to
date, DC-based vaccines have not achieved the expected
therapeutic efficacy [95]. We propose that allolgG immu-
notherapy or antigen-allolgG complex-stimulated DC
vaccines may cause the missing piece of the DC vaccine
immunotherapy puzzle.

The efficacy and safety perspectives of allolgG
immunotherapy

One limitation of alloIgG immunotherapy is that it
works effectively only in tumors smaller than 20 mm? in
mouse models and becomes almost inert once the tumor
exceeds an average size of approximately 40 mm? due
to tumor-infiltrating MoDC apoptosis [96]. One poten-
tial reason for this resistance might be the formation
of cell-in-cell structures in large tumors [97]. Gutwillig
et al. investigated the combination of dendritic cell adju-
vants and tumor binding anti-TRP1 antibodies to treat a
mouse model of relapse and found that the tumor cells
remaining after immunotherapy form unique cell-in-
cell structures and generate a membrane architecture
that is impenetrable by immune-derived lytic granules,
cytotoxic compounds, and chemotherapies. While reac-
tive T cells can often kill the outer cells in this struc-
ture, the inner cells remain viable and intact, surviving
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for weeks in culture containing these T cells. Once the
T cells are removed, the inner tumor cells disseminate
back, suggesting that this biological process may be a
central mechanism through which tumor cells evade
T-cell immunity and give rise to relapsed tumors [97]. To
increase the antitumor effects of alloIgG, we propose that
alloIgG may be used in combination with other therapies,
such as chemotherapy, radiotherapy, immune checkpoint
inhibitors and CD4" T cells. Several studies have shown
that combining McAb IgG with conventional chemother-
apy and radiotherapy can improve efficacy. For example,
stereotactic body radiotherapy enhances the antitumor
effects of the anti-PD-L1 McAb durvalumab in patients
with early-stage NSCLC [98], and the combination of
McAb pembrolizumab and radiotherapy has shown
promising activity in patients with triple-negative breast
cancer [99]. In patients with recurrent nasopharyngeal
carcinoma, McAb toripalimab combined with intensity-
modulated radiotherapy showed tolerability and prom-
ising antitumor activity [100]. Rasoulouniriana et al
discovered that CD4" T cells isolated from tumors and
tumor-binding antibodies have a strong synergistic effect
to mediate tumor regression [101].

One of the safety concerns of allolgG immunotherapy
is whether it causes graft-versus-host disease (GVHD)
due to genetic variation or polymorphisms among indi-
vidual persons. AllolgG immunotherapy exhibits thera-
peutic efficacy and safety in mouse models, although its
promising therapeutic efficacy and safety in humans need
to be tested [5, 64, 87, 96, 97, 101, 102]. Its prospective
safety in humans may be further suggested by the safe
use of allogeneic CAR-T cells, allogeneic yO0T cells and
natural killer cells [102-109]. Allogeneic y3T cells from
haploidentical donors have been utilized to treat hema-
tological malignancies, resulting in complete remission
without signs of GVHD [105]. Furthermore, allogeneic
Vy9V82 T-cell immunotherapy has demonstrated clinical
safety and extended survival in patients with late-stage
lung or liver cancer [107]. One advantage of allolgG and
allogeneic cell immunotherapy is that it allows for the
preparation and storage of allolgG and allogeneic cells
in advance, thus reducing the waiting time and cost for
patients to receive treatment [109].

Review and view

The IgG Fc-DC FcyR interaction enables antigen recog-
nition, processing and presentation by DCs, which acti-
vates T-cell immunity. Allogeneic tumors are eradicated
by allogeneic IgG via DCs. AllolgG combined with DC
stimuli TNFa and CD40L induced tumor eradication via
the reported and prospective signaling pathways. AllolgG
triggers systematic immune responses targeting multi-
ple antigens, which was proposed to overcome current
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immunotherapy limitations. The promising efficacy and
safety perspectives of allolgG immunotherapy need to be
validated.

With more efforts and breakthroughs, we believe that
allolgG tumor immunotherapy has promising poten-
tial to demonstrate efficiency and safety in mouse mod-
els, enter clinical trials and benefit tumor patients in the
future. It has been 8 years since the first report of the
important allolgG tumor immunotherapy in Nature by
Stanford University; however, there are only 6 directly
related articles published mainly in mouse models
(Table 1) [5, 64, 87, 96, 97, 101]. Therefore, we hope this
perspective view of allolgG tumor immunotherapy will
provide an initiative to promote future discussion.
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