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Abstract 

Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can 
damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allow-
ing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They 
are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo 
extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act 
as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems 
to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest 
and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming 
resistance to conventional therapies.
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Background
Cancer is a leading cause of death globally. Based on 
the World Health Organization’s report, cancer is the 
first or second leading cause of death before the age of 
70 in 112 out of 183 countries, ranking third or fourth 
in an additional 23 countries [1]. This medical condition 
occurs when abnormal cells multiply uncontrollably and 
have the potential to spread to nearby or distant tissues. 
As cancer progresses, these cells acquire specific traits, 
including increased signaling for growth, resistance to 
cell death, unlimited replication ability, stimulation of 
new blood vessel formation, and activation of invasion 
and metastasis [2].

Early diagnosis and the implementation of appropri-
ate treatment modalities are essential for treating can-
cer patients [3]. Treatment options vary depending on 
the type and stage of cancer which may include surgery, 
chemotherapy, radiation therapy, targeted therapy, or 
immunotherapy [4].

Conventional cancer therapies such as chemotherapy 
are usually insufficient in advanced aggressive tumors. 
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Their lack of specificity leads to a high recurrence rate 
and high toxicity [5]. In targeted therapy, designed drugs 
interfere with a targeted protein which is responsible 
for tumor growth [6]. On the other hand, immunother-
apy takes the advantage of the patient’s immune system 
to destroy tumor cells [7]. Although this therapeutic 
approach has been promising in both hematologic and 
solid malignancies, intrinsic resistance of tumor cells and 
dose-limiting side effects cause transient responses to 
drugs [8, 9].

Over time, researchers have studied cancer cell behav-
ior, immune response, and microenvironment to improve 
individualized cancer treatment with traditional thera-
pies and drug delivery. Despite notable progress in 
cancer therapies, developing a productive treatment 
approach remains a considerable obstacle. Promoting 
cancer science by utilizing innovative therapeutic target-
ing and delivery methods that minimize adverse effects 
is essential. Continuously advancing in this direction will 
undoubtedly lead to better outcomes for cancer patients 
[9–11]. One promising avenue of investigation is the 
use of aptamers, a class of molecules with unique physi-
cal and chemical properties. Aptamers appear to have 
great potential for targeted tumor treatment and can be 
applied in different ways, including therapeutic aptamers, 
aptamer-drug conjugates (AptDC), aptamer-functional-
ized nanoparticles, and aptamer-mediated immunother-
apy [12].

In this review, we will discuss the synthesis and selec-
tion of aptamers for targeted cancer treatment to 
overcome resistance and reduce side effects from conven-
tional cancer therapy. Additionally, provides an overview 
of the advances and challenges in aptamer development 
for using aptamers in cancer treatment.

Structure and properties of aptamers
Aptamers are small molecules that possess the remark-
able potency to recognize and bind to their target with 
high affinity. Nucleic acid and peptide aptamers are 
two classifications based on their structures. The name 
aptamer is derived from the Latin word “aptus” (to fit) 
and the Greek word ‘‘meros’’, (particle) due to their ligand 
function [13, 14].

The flexible nature of aptamers gives them the ability 
to wrap around a small molecule target or fit into clefts 
and gaps within the surface of much larger target mol-
ecules. Aptamers have the ability to bind to a wide range 
of targets, including peptides, proteins, small molecules, 
organic compounds, metal ions, and biological targets 
such as viruses, bacteria, yeast, and mammalian cells. 
This ability is due to their unique three-dimensional fold-
ing which provides high specificity in binding. The inter-
action between aptamers and their targets creates strong 

conformational adjustments, and the binding is mediated 
via van der Waals forces, hydrogen bonding, electrostatic 
interactions, stacking of flat moieties, and shape comple-
mentarity [15, 16].

Nucleic Acid aptamers (NA-Apts) are short single-
stranded (20–100 bps) DNA or RNA (ssDNA or ssRNA) 
oligonucleotides that are folded into 3D conformations 
specified by stems, bulges, loops, hairpins, triplicates, 
pseudoknots, kissing stem-loop complexes, or G-quadru-
plex constructors [17]. Based on the final application, the 
main goal and DNA or RNA target the most appropriate 
aptamers can be selected. RNA-based aptamers have a 
relatively flexible structure compared with DNA-based, 
therefore RNA-based aptamers have a broader range of 
target molecules. However, RNA-based aptamers are 
more sensitive to chemical and enzymatic degradation. 
Moreover, the selection of RNA aptamers is more com-
plicated as its processing requires more enzymatic steps 
[18].

Peptide aptamers (P-Apts) developed after Nucleic 
Acid aptamers. P-Apts are polypeptides that consist of a 
short amino acid loop (5–20 residues), embedded in to 
the rigid protein structure. Due to the lower conforma-
tional entropy of the restricted peptide loop, the binding 
affinity of P-Apts could be as much as 1000 times higher 
than the free peptide [19].

Aptamers possess distinct characteristics that enable 
them to selectively attach to a particular target. As a 
result, they may present a promising alternative to anti-
bodies for targeted cancer treatment. Despite the suit-
ability of antibodies for numerous applications, there 
are certain scenarios where aptamers may prove to be a 
superior option [20]. They are smaller and steadier than 
antibodies, allowing for better transport and tissue pen-
etration. Aptamers are delivered through a basic and rea-
sonable process and the time required to create aptamers 
is comparatively brief. Not at all like antibodies, aptam-
ers don’t require animals or an immune reaction for their 
generation [20, 21].

Since aptamers are chemically synthesized, batch-
to-batch variety can be enormously diminished allow-
ing economical, high-accuracy large-scale generation 
of aptamers for clinical applications. Besides, aptamer’s 
partiality can be balanced by optimizing their acknowl-
edgment grouping and/or by controlling authoritative 
response conditions. Once chosen, the stability of the 
aptamers can be expanded by chemical alteration of the 
nucleotides as well as by changing their secondary struc-
tures. Since aptamers are chemically synthesized, chemi-
cal modifications can be presented into them at any 
wanted position within the nucleotide chain. In spite of 
the fact that antibodies can be chemically altered, site-
specific adjustments are extremely troublesome [22].
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Moreover, through built up solid-phase chemical syn-
thetic strategies and site-directed chemistries, labels for 
detection and linkers for conjugation can be effectively 
embedded at wanted destinations within the oligonu-
cleotide arrangement without compromising the bind-
ing affinity or selectivity [23]. The in vitro selection step 
permits aptamers to be produced against something 
else toxic compounds that would kill the animal in anti-
body generation. Moreover, aptamers are steadier at high 
temperature and they can be recovered effortlessly after 
denaturation and can be repeatedly utilized (Table 1).

Aptamer screen and applications bioinformatics 
for in‑silico aptamer design
Systematic Evolution of Ligands by Exponential Enrich-
ment (SELEX) is a popular technique that isolates single-
stranded DNAs or RNAs with high affinity from a large 
library of random sequences, which first was developed 
in 1990 [24, 25]. Since then, researchers have generated 
numerous aptamers targeting various entities, including 
amino acids, proteins, small metal ions, organic mole-
cules, bacteria, viruses, whole cells, and animals [26].

SELEX is an experimental method that determines 
nucleic acid aptamers capable of binding to a target mol-
ecule with high affinity and selectivity that is composed 
of in several steps of selection and enrichment processes 
[27]. First, the nucleic acid library, which consists of 
 1014–1015 random oligonucleotide strands, is incubated 
with a target molecule. Then, the target-bound oligonu-
cleotide strands are separated from the unbound strands. 
The target-bound DNA or RNA strands are eluted from 
the target molecule and amplified via a polymerase chain 
reaction to seed a new pool of nucleic acids. This selec-
tion process is continued for 6–18 rounds with increas-
ingly stringent conditions, which ensure that the nucleic 
acid obtained has the highest affinity to the target mol-
ecule (Fig. 1). During 6–18 rounds of selection, over 10 13 
different nucleic acid sequences were screened, and only 
a few were found to have specificity to the target. The 
SELEX method is versatile and can be adapted in various 
ways to enhance the aptamers’ specificity and the SELEX 
process’s efficiency [15]. Moreover, this method is able to 
produce aptamers for even unknown molecules, and this 
advantage has enabled the recognition of unknown sur-
face biomarkers [28]. Cell-SELEX has been developed to 
screen aptamers for many types of cancer cells by using 
whole live cells even without the previous information of 
their molecular signatures [29].

Despite the different types of SELEX methods, this 
work is time-consuming and laborious, resulting in a low 
yield rate. To address these issues, the SELEX method 
for constructing aptamers can be combined with high-
throughput sequencers. This process is commonly 

referred to as HT-SELEX or HTS and involves next-
generation sequencing (NGS) during SELEX [27]. HT-
SELEX allows screening aptamer candidates from a large 
number of oligonucleotide sequences within only a few 
days [29].

Since the inception of HT-SELEX, the use of com-
putational bioinformatics methods for aptamer design 
for various targets has been gradually developed [27, 
30]. Aptamer modeling and in silico design for aptamer 
identification and optimization may help to design bet-
ter in less time [30]. Computational methods utilized for 
in silico aptamer identification include sequence-based, 
motif-searching-based, and multi-dimensional scoring-
based algorithms, as well as supervised machine learn-
ing-based methods [30].

To understand the mechanisms of optimization 
aptamer-target interactions after obtaining aptamer 
candidates, aptamer structure prediction with compu-
tational methods is necessary. In this regard, 2D struc-
tures can be characterized based on their sequences, 
including junctions, protrusions, pseudoknots, G-quad-
ruplexes, and triplet structures. Next, 3D structure pre-
diction is usually done based on 2D structure. Finally, a 
combination of molecular docking (MD) and molecu-
lar dynamics simulation (MDS) is required to obtain 
an aptamer-target complex and binding sites with sta-
bility and the lowest binding energy G [27, 30, 31]. 
Sometimes, other methods such as the quantitative 
structure–activity relationship (QSAR) [32] hybrid quan-
tum mechanics/molecular mechanics (QM/MM) stud-
ies utilized in aptamer designed [27, 33]. The Table  2 
describes the prominent applications used in iden-
tification and optimization aptamer design [30, 34].

According to a review study, while there have been 
significant developments in artificial intelligence for 
predicting aptamer binding ability to targets, most com-
putational tools have low citation rates. Consequently, 
in silico aptamer design methods have not been widely 
adopted [30]. Our understanding indicates that tech-
niques like sequencing, and bioinformatic analysis are 
useful for aptamer screening. Additionally, technology 
platforms such as microfluidics, capillary electrophoresis, 
and flow cytometry can facilitate the isolation of aptamer 
candidate probes [28].

Registered clinical trials to assess the efficacy 
of aptamers in the treatment of cancer
A variety of aptamer applications have been developed 
to target a wide spectrum of human illnesses, such as 
Alzheimer’s disease and cancer. Despite their potential, 
most aptamers have not met the necessary safety and 
efficacy standards in human clinical trials. Various chal-
lenges hinder the widespread adoption of diagnostic 
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and therapeutic techniques using aptamers, such as the 
rapid degradation, especially of RNA aptamers, by nucle-
ases, clearance through renal filtration limiting their 
effectiveness, and complexities in targeting intracellular 
structures. Generating aptamers often requires purified 
target molecules, making the process time-consuming 
and labor-intensive. Additionally, aptamers designed to 
target specific molecules may also bind to structurally 
similar compounds, potentially leading to unintended 
effect [55].

For an extended period, only a single aptamer, Pegap-
tanib (Macugen), has demonstrated clinical efficacy. It 
was approved by the FDA in 2004 for treating age-related 
macular degeneration. Pegaptanib inhibits blood vessel 
development by targeting the glycosylated homodimeric 
VEGF isoform VEGF165. Despite its initial success, 
Pegaptanib was discontinued due to the emergence 
of more effective anti-VEGF drugs like bevacizumab, 
ranibizumab, and aflibercept, which are pan-blockers 
of VEGFAs capable of inhibiting all VEGFA isoforms. 

Furthermore, Pegaptanib’s administration through intra-
vitreal injections may lead to eye inflammation, pain, 
increased intraocular pressure, punctate keratitis, and 
vitreous opacity [56–58].

Recently, a second aptamer, Avacincaptad pegol 
(Izervay; Iveric Bio/Asetlla), brought positive news by 
receiving FDA approval for the treatment of geographic 
atrophy secondary to age-related macular degeneration 
in August 2023 [59].

Although there is currently no approved therapeutic 
application of aptamers for the treatment of cancer in 
a clinical setting. AS1411, a 26-nucleotide guanine-
rich DNA aptamer, represented as the first aptamer 
to progress into clinical trials for cancer therapy. The 
AS1411ptamer is made up of thymine and guanine 
and can form guanine-mediated quadruplex struc-
tures when dissolved. The structure of AS1411 not only 
decreases its immunogenicity and confers resistance 
to nucleases but also boosts cellular uptake. By spe-
cifically targeting nucleolin, a protein that is commonly 

Fig. 1 Schematic illustration of the SELEX process. Major steps involved in SELEX to identify individual aptamer



Page 6 of 22Mahmoudian et al. Cancer Cell International          (2024) 24:108 

Table 2 Computational techniques for in silico aptamer development

Bioinformatic tool System requirements Description and features Refs.

Aptamotif Linux/Mac OS Aptamotif is a computational method for the identification of sequence–
structure RNA binding motifs
in SELEX-derived aptamers

[35]

Galaxy Web/Linux/Mac OS Analysis of pre-processing and analyzing HTS-SELEX sequencing data using 
the Galaxy platform outcomes candidate aptamer sequences

[36, 37]

AptCompare Linux/Mac OS/Windows/Galaxy AptCompare is an automated tool designed for pre-processing and analyz-
ing HTS-SELEX sequencing data. The tool evaluates the performance of six 
commonly used aptamer motif discovery programs and utilizes a meta-rank 
metric to identify the most promising aptamer targets

[38]

PATTERNITY.seq© Linux/Mac OS/Windows PATTERNITY-Seq© manages millions of sequences from raw sequenc-
ing datas to identify better aptamers in a faster way, (this tool regroups 
sequences in families, monitors the evolution of each family and each indi-
vidual sequence, identifies enriched structure motifs, and studies the effect 
of selection pressure)

[39]

MEME/GLAM Linux/Mac OS/Web To design aptasensors by identifying motifs in aptamers through MEME 
analysis

[40]

MP Bind Linux/Mac OS MP Bind is a meta-motif-based statistical framework for predicting aptamers 
that bind to targets from SELEX-Seq data and proficiently managing biases 
caused by incomplete sequencing of aptamer pools or PCR

[41]

APTANI Linux/Mac OS APTANI is a computational tool to select aptamers through sequence-struc-
ture motif analysis of HT-SELEX data

[42]

APTANI2 Linux/Mac OS APTANI2 is an expanded and optimized version of APTANI. This tool includes 
modules for investigating sequence motifs and secondary structures, as well 
as a user-friendly graphical interface and coding solutions that improve 
performance

[43]

AptCompare Linux/Mac OS/Windows AptCompare is a program that combines six analytical approaches for identi-
fying RNA aptamer motifs across platforms

[38]

COMPAS (COMmon PAtternS) Unknown COMPAS (COMmon PAtternS) is a program that was developed to support 
the entire SELEX process can find motif combinations

[44]

RaptRankerr Linux/Mac OS RaptRanker as an RNA aptamer selection tool analyzes HT-SELEX data 
by evaluating the nucleotide sequence and secondary structure

[45]

FASTAptamer Linux/Mac OS/Windows FASTAptamer performs the simple tasks of counting, comparing sequences, 
clustering sequences, calculating fold enrichment, and searching degener-
ately for nucleotide sequence motifs

[46]

FASTAptameR Web tool FASTAptameR is an expanded set of interconnected modules such as Count, 
Distance, Cluster, Mutation network, Motif Discovery modules that can be 
used to interactively analyze and visualize HTS data

[47]

SMART-Aptamer Mac OS/Windows Based on multilevel structure analysis, SMART-Aptamer identifies high-
affinity aptamers with low false positive and negative rates from HTS data 
of SELEX libraries

[48]

FSBC Linux/Mac OS/Windows FSBC estimates clusters considering different lengths of over-represented 
strings as target binding regions for HT-SELEX data

[49]

AptaPLEX Linux/Mac OS/Windows AptaPLEX is a utility designed specifically for demultiplexing raw HT-SELEX 
data into corresponding selection cycles based on barcode information

[34]

AptaSIM Linux/Mac OS/Windows AptaSim aimed at realistically recreating the selection process during SELEX 
using error-prone PCR

[50]

AptaMUT Linux/Mac OS/Windows A new technique has been developed to identify polymerase errors 
that result in improved binding affinity compared to the original sequence

[50]

AptaCLUSTER Linux/Mac OS/Windows AptaCluster allows for an efficient clustering of whole HT-SELEX aptamer 
pools

[51]

AptaTRACE Linux/Mac OS/Windows AptaTRACE consists of three components: data preprocessing, secondary 
structure profile prediction, and motif extraction. These three components 
are controlled through a single configuration file

[52]

AptaGUI Linux/Mac OS/Windows AptaGUI is a valuable resource that facilitates the implementation 
of the AptaTools package. This program allows for visual inspection of HT-
SELEX experiments in a concise and efficient manner

[53]
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overexpressed in different tumor types, AS1411 has 
shown encouraging potential in combating cancer, dis-
playing anti-proliferative effects in diverse of tumor 
cells through multiple signaling pathways [60, 61]. 
During phase I trials, three AS1411-based agents were 
assessed for safety and efficacy in treating advanced 
solid tumors and acute myeloid leukemia (AML). 
AS1411 was found to be non-toxic and progressed to 
phase II clinical trials. However, it was later discontin-
ued from phase II trials for renal cell carcinoma (RCC) 
due to limited activity and low response rates in unse-
lected patients with metastatic RC. While early indi-
cations of effective anti-cancer activity were noted in 
phase I and II trials for AML, further evaluation against 
this type of cancer has been discontinued. Neverthe-
less, research focusing on optimizing the structure of 
AS1411 remains popular [61–63].

Spiegelmers are one type of aptamer molecule that 
has entered clinical trials for anticancer therapeutics 
that a modified SELEX drug-discovery platform utiliz-
ing non-natural L-nucleotides. The L-configuration of 
Spiegelmers grants them resistance against degrada-
tion by nucleases present in the bloodstream, and they 
further exhibit low immunogenicity. These two features 
are crucial for nucleic acid therapeutics. Currently, 
NOXXON Pharma is developing Spiegelmers proficient 
in neutralizing chemokines within the tumor microen-
vironment [64].

Ongoing studies are exploring aptamer design for 
cancer diagnosis and treatment. For instance, NOX-
E36 (emapticap pegol) is currently under investigation 
in clinical trials for Diabetes Mellitus and Albuminuria. 
The research is concentrated on their use in oncology, 
with preclinical data demonstrating efficacy in solid 
tumor models like pancreatic and liver cancer by TME 
Pharma (formerly NOXXON Pharma). According to 
Table 3, several studies registered on ClinicalTrials.gov 
are evaluating the use of aptamers in cancer therapy 
up to 2023. Given the vast number of aptamers cur-
rently being researched, additional clinical trials may be 
required to evaluate their effectiveness in treating can-
cer continuously [65].

Functionalizing aptamers for cancer therapy
Aptamer‑based cancer chemotherapy
Chemotherapy is still one of the main methods of can-
cer treatment [66]. Adequate drug delivery to tumor cells 
along with preservation of normal tissue is one of the fac-
tors of success and response to chemotherapy [67]. Short 
half-life, stimulation of immune response, non-specific 
delivery, and rapid distribution of chemotherapy drugs in 
healthy tissues may lead to side effects and severe com-
plications. Additionally, the response to treatment can 
vary greatly, ranging from low to high, and the type and 
severity of side effects can also differ significantly [68]. 
Typically, the drug approach targets fast-growing cells, 
which can include both healthy and cancerous cells [66].

In order to improve the delivery of cytotoxic drugs, 
antibody–drug conjugates (ADCs) are used as antican-
cer drugs that can deliver drugs directly to the tumor site, 
thus making chemotherapy a targeted therapy. Despite 
10 ADCs with approval from the FDA, but other studies 
indicated poorly in clinical trials [5].

Aptamer technology as a drug delivery agent has 
advantages over antibodies. Therefore, aptamers have 
been conjugated with chemotherapy drugs or other can-
cer treatment agents through physical or chemical. Due 
to the lower molecular weight of conjugation aptamer-
drug conjugates (AptDC), led to faster and deeper tissue 
penetration, compared to ADCs has been proposed for 
targeted cancer therapy [5].

As mentioned above, the combination of aptameric 
with chemotherapy drugs can be an innovative method 
for the selective delivery of chemotherapy agents to can-
cer cells in order to optimize the treatment in various 
studies that were investigated summarized in Table  4. 
Which not only increases the targeting ability but also 
enhances the delivery of multiple copies of drugs, by 
purposely engineering alterations of drug-intercalating 
sites on aptamers [5, 28]. Even, using this strategy may 
apply to highly toxic compounds that are not suitable for 
healthy tissues due to severe toxicity or have moderate 
therapeutic power, requiring a high dose of such drugs 
(Fig. 2A) [28].

There are currently FDA-approved bispecific antibod-
ies (bsAbs) available worldwide. These bsAbs have the 

Table 2 (continued)

Bioinformatic tool System requirements Description and features Refs.

AptaTools package Linux/Mac OS/Windows This package encompasses several algorithms, such as AptaMUT, AptaCLUS-
TER and AptaGUI, that are instrumental in analyzing HT-SELEX data. These 
algorithms enable the identification of any possible flaws in the selection 
protocol, the discovery of aptamer candidates, and the provision of compre-
hensive sequence and structure-based analysis

[53]

AptaSUITE Linux/Mac OS/Windows AptaSUITE incorporates a set of previously published algorithms, namely 
AptaPLEX, AptaSIM, AptaCLUSTER, and AptaTRACE

[54]
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unique ability to recognize two different targets. In can-
cer treatment, most bsAbs are developed to trigger and 
engage cytotoxic T cells against characteristic tumor 
targets present on the cancer cells. Other bsAb treat-
ments focus on targeting cytokines immune checkpoints, 
and oncogenic signaling pathways [28, 69, 70]. In these 
regard, combining aptamers allows for simultaneous rec-
ognition of two or more different cell surface receptors 
(bispecific aptamers (bsApts)) or multiple copies of the 
same receptor (dimers of monospecific aptamers) [71]. 
Bivalent aptamers targeting different biomarkers, linked 
by dsDNA to load drugs, can produce bispecific ApDCs 
as a simpler, more cost-effective alternative to bivalent 
antibodies [28] (Fig. 2B).

Aptamer‑based cancer radiotherapy
Radiotherapy, also referred to as radiation therapy (RT), 
is a common treatment method for primary non-metas-
tasis solid tumors. More than half of all cancer patients 

benefit from RT annually. This therapy employs high-
energy radiation to shrink tumors, destroy cancer cells, 
and alter the microenvironment in clinics [28, 98, 99].

One of the challenges in RT for cancer patients is the 
insufficient dose of radiotherapy at the tumor site, which 
cannot be tolerated by normal tissue and may cause the 
risk of normal tissue damage in the treatment area. This 
limits the amount of radiation dose that can be admin-
istered [98–100]. Despite the obstacles, the utilization 
of radiosensitizers and smart targeting is increasingly 
attracting attention because of their capacity to specifi-
cally boost radiation effects on cancer cells at the tumor 
location. This strategy overcomes radio resistance and 
minimizes side effects, thereby presenting a prospective 
resolution to this dilemma [98, 99, 101].

Radiosensitizers can be specifically delivered to tumor 
sites by conjugating them with antibodies or aptamers, 
thereby ensuring their selective uptake by cancerous cells 
[101, 102]. Due to their exceptional specificity for the 

Table 4 Aptamer-drug conjugations as cancer-targeted therapeutics

Aptamer names Aptamer Target Drug Type of cancer Refs.

sgc8c DNA CCRF-CEM cell Doxorubicin T-cell acute lymphoblastic leukemia, T-cell ALL [72]

TLS11a-GC DNA LH86 cell Doxorubicin Human hepatocellular carcinoma [73]

MA3 DNA MUC1 protein Doxorubicin Human breast, liver &lung cancer [74]

HB5 DNA HER2 protein Doxorubicin Breast cancer [75]

EpDT3 & Scr-EpDT3 RNA EpCAM protein Doxorubicin Retinoblastoma [76]

E07 & mE07 RNA EGFR protein Gemcitabine
5-fluorouracil

Pancreatic cancer [77, 78]

EpCAM aptamer RNA EpCAM protein Doxorubicin Colorectal cancer [79]

TLS11a-GC DNA HepG2 cell Doxorubicin Hepatocellular carcinoma [80]

AP-1-M DNA CD133 protein Doxorubicin Anaplastic thyroid cancer [81]

AS1411/NucA DNA Nucleolin Doxorubicin/Camptothecin Breast cancer [82]

XQ-P3 DNA PD-L1 protein Paclitaxel Treating Triple-Negative Breast Cancer [83]

AS1411 DNA Nucleolin Paclitaxel Ovarian cancer [84]

CD117-specific aptamer #1F DNA CD117 Methotrexate Acute myeloid leukemia [85]

E3 RNA PC3 (PC-3) cells Monomethyl auristatin E and F Prostate cancer [86]

XQ-2d DNA CD71 Monomethyl auristatin E Uveal melanoma [87]

P19 RNA PDAC cell lines Monomethyl auristatin E 
and derivative of maytansine 1/

Pancreatic Tumor Cell [88]

HER2 RNA aptamer RNA HER2 Mertansine Breast Cancer [89]

S30-T1 DNA CD33 Doxorubicin Acute myeloid leukemia [90]

SQ-2 RNA ALPPL-2 5-fluoro-2′-deoxyuridine Pancreatic ductal adenocarcinoma [91]

APTA12 (Gemcitabine 
incorporated G-quadruplex 
aptamer)

DNA Nucleolin Doxorubicin/ Gemcitabine Breast cancer [92]

APTA12 (Gemcitabine 
incorporated G-quadruplex 
aptamer)

DNA Nucleolin Gemcitabine Pancreatic cancer [93]

G12msi aptamer DNA GPC3 protein Gemcitabine Hepatocellular carcinoma [94]

PDGC21-T DNA MDA-MB-231 Gemcitabine Triple-negative breast cancer [95]

Modified type of AS1411 DNA Nucleolin Gemcitabine Pancreatic cancer [96]

ThioAp52 DNA MAGE-A3 Doxorubicin Breast, oral, pancreatic, and skin cancer [97]
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target and the wide range of previously mentioned prop-
erties, aptamers are highly adaptable and may be efficient 
in overcoming radio resistance. Several radiosensitizers, 
such as metal formulations, siRNAs, and nucleoside ana-
logs, can be coupled with aptamers for targeted delivery 
into cancer cells to sensitize radiotherapy [103]. Based 
on information studies, metal (nano) formulations of 
the AS1411 and anti-MUC1 aptamers could poten-
tially act as radiosensitizers in cancer treatment. This 
approach increases the levels of free radicals in tumor 
cells, thereby causing enforced DNA damage. In breast 
tumor-bearing mice, a gold nanocluster conjugate of 
the AS1411 aptamer demonstrated enhanced efficacy of 

radiation therapy. Furthermore, the anti-MUC1 aptamer 
was linked with the radiosensitizer 1,10 phenanthro-
line for in-vitro radiosensitization of breast cancer cells 
[103–105].

In addition to the mentioned strategy, aptamers can 
sensitize radiotherapy by binding to designated targets 
and interfering with radioresistance signaling, without 
any further conjugation. In this regard, a study conducted 
on glioblastoma has uncovered that the application of 
U2 aptamer, a DNA-aptamer that targets EGFRvIII, has 
the potential to restrain the growth, migration, and inva-
sion of GBM cells. Moreover, it has been observed that 
the U2 treatment may enhance the radiosensitivity of 

Fig. 2 Schematic illustration of the targeted delivery of drugs using a functionalized aptamer. A Aptamer-drug conjugates can be created 
by intercalating drugs and aptamers or by using a linker. B Bivalent aptamers, targeting different biomarkers, linked by dsDNA to load drugs. C 
Aptamer-functionalized nanoparticles are designed for targeted drug delivery
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EGFRvIII-expressing U87 cells. The researchers have 
speculated that the U2 treatment can hinder the DNA 
damage response and consequently boost the radiosensi-
tivity in GBM cells [103, 106]. In another study, a 2’-F-
RNA aptamer GL44 was used as a boron delivery agent 
for Boron Neutron Capture Therapy (BNCT) to target 
human glioblastoma U-87 malignant glioma cells, result-
ing in reduced tumor cell viability [107].

Aptamer‑based cancer immunotherapy
The aberrant growth, abnormal expression of membrane 
proteins, and escape from immune surveillance are the 
major hallmarks of cancer. Currently, several therapeu-
tic approaches have been developed for cancer treatment 
based on our information about the interactions between 
the immune system and tumor cells. In spite of the 
intrinsic immune system being well educated to generate 
specific antibodies but is weakened and dysfunctional in 
most of the cancer patients. Therefore, to overcome this 
shortcoming, the application of new immunotherapeutic 
strategies and immune-stimulating agents for instance 
the increment of cancer antigenicity as well as the usage 
of immune modulators, cytokines, or lymphocytes are 
indispensable to relapsed or refractory cancer treatment 
[108–110]. Therefore, cancer immunotherapy offers a 
range of treatments, including adoptive cell therapies, 
cancer vaccines, immunostimulatory cytokines, oncolytic 
virus therapies, and antibody therapies [111].

In 1997, FDA approved the use of rituximab, a mouse-
human chimeric monoclonal antibody targeting the 
B-cell lineage marker CD20, as a treatment for malig-
nancy. This marked the first time a monoclonal antibody 
had been approved for cancer immunotherapy. Since 
then, over a dozen monoclonal antibodies have been 
approved to treat a variety of cancers [112, 113].

Despite the potential of monoclonal antibody-based 
therapy, it is often hindered by its high manufacturing 
costs and the risk of immune-related adverse effects. 
In contrast, nucleic acid aptamers are a stable and non-
immunogenic alternative class of high affinity reagents 
that can be easily produced through solid-phase synthe-
sis [114, 115].

Nowadays, aptamers with high affinity and specificity 
are a very promising construct as immune-modulatory 
agents widely used directly in therapeutic applications 
and drug delivery system. The immunotherapeutic 
aptamers belong to three major groups according to their 
different targets, which are immune-checkpoint antago-
nists, immune receptor agonists with immunostimu-
latory function, and inhibitors of immunosuppressive 
cytokines (Table 5) (Fig. 3) [116–118].

The classic immune checkpoint receptors CTLA-
4, PD-1, PD-L1, TIM-3, and LAG-3, as well as novel 
ones, form a complex system of controlling the immune 
system, which is disrupted in cancer. The antagonis-
tic aptamers inhibit or block the interaction of these 
immune checkpoints molecule with its ligand that can 
dysregulate the downstream signaling. Currently, these 
category of aptamers commonly used in clinical trials 
and therapeutic purposes [18, 115].

In other hand, the efficient co-stimulation of antigen-
presenting cells or T cells, which is induced through the 
binding of a co-stimulatory receptor and its ligand, plays 
a crucial role in boosting antitumor immunity. Engineer-
ing multimeric versions of several RNA aptamers tar-
geting immune co-stimulatory receptors (4-1BB, OX40, 
CD40 and CD28) has enabled them to act as receptor 
agonists to improving cancer immunotherapy [18, 119]. 
The majority of co-stimulatory receptors expressed in 
leukocytes require crosslinking of their intracellular 
domains in order to initiate the activation signal. This 
necessitates the close proximity of the receptors in order 
to induce the activation signal. Founded on that concept, 
the first agonistic aptamer was constructed as a dimer 
[120].

Exploring strategies to counteract immune suppres-
sion may be a productive approach to immune therapy. 
Tumor-infiltrating lymphocytes in the tumor microen-
vironment produce multiple cytokines with immuno-
suppressive properties. Therefore, numerous studies 
have developed inhibitory aptamers to neutralize these 
cytokines with the goal of boosting the immune sys-
tem’s response and enhancing tumor cell elimination 
[121]. TGF-β is a multifaceted cytokine with a variety 
of immunosuppressive effects. These effects include the 
suppression of T-cell proliferation, hindering the T-cell 
stimulatory activities of antigen-presenting cells (APCs), 
and impeding T-cell differentiation into helper T cells 
and cytotoxic T lymphocytes (CTLs) [122]. Interleu-
kin-10 (IL-10) is another prominent immunosuppressive 
and anti-inflammatory cytokine that is a key mediator of 
immune regulation secreted in the tumor microenviron-
ment [123].

Aptamer‑functionalized nanoparticles in drug 
delivery systems
Nanoscale drugs and drug delivery systems at the 
nanoscale level have opened up a new path for enhanc-
ing the therapeutic effectiveness of various agents and 
bioactive molecules by leveraging the Enhanced Perme-
ability and Retention (EPR) effect. This effect allows for 
molecules or particles of a specific size to accumulate in 
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cancer tissues more than in normal tissues [12, 139]. In 
other hands, nanocarriers covers a wide range of chemi-
cal combinations and protect drugs from degradation 
that led to increase half-life, augment cytotoxic drug 
payload, reduce renal clearance, control anticancer drug 
release kinetics, and improve solubility. A variety of ther-
apeutic agents and biological imaging agents can be car-
ried by nanocarriers, allowing for greater cytotoxic drug 
payload [140]. The use of nano-based technologies for 
imaging, diagnostics, and radiation therapy has increased 
in clinical settings [141–143].

Aptamers’ in  vivo applications are limited due to 
their vulnerability to nuclease degradation and fast 
renal excretion. To overcome these limitations, several 
attempts have been made to modify aptamers to enhance 
their binding affinity with the target, improve their sta-
bility, and prevent degradation by in vivo nucleases [142, 
144]. In addition to adjusting the SELEX protocol, nano-
carriers can improve and modify aptamers for biological 
applications and enhance their stability and pharmacoki-
netics in vivo [142].

Combining aptamers with nanocarriers and nanopar-
ticles can significantly enhance drug delivery efficiency 
(Table 6) (Fig. 2C). Nanocarriers have a high drug-load-
ing capacity and can deliver drugs passively to specific 
areas, taking advantage of the enhanced EPR effect in 
tumors and inflamed tissues. Towards this end, aptamer-
nanocarrier conjugates have been extensively explored 
for targeted drug delivery, based on nanoplatforms such 
as liposomes, DNA/RNA origamis /nanostructures, and 
inorganic gold or silicon nanomaterials [28] (Fig.  4). 
There are primarily two methods to assemble DNA/RNA 
nanostructures. The first method is creating "DNA tiles" 
by using short synthetic DNA strands, which is similar 
to the functioning of Lego bricks. The second method 
is called "DNA origami" which is a bottom-up assembly 
process that involves folding a long single-stranded DNA 
scaffold of a few thousand nucleotides and using hun-
dreds of short staple strands to create complex 2D and 
3D structures [145, 146]. Moreover, radiosensitizers-
aptamers conjugated with nanoparticles radiotherapy 
efficiency is increased [142].

Fig. 3 Schematic representation of immunotherapeutic aptamers for targeted cancer therapy. The immunotherapeutic aptamers are classified 
based on different targets, including immune checkpoint antagonists, immune receptor agonists, and inhibitors of immunosuppressive cytokines
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Table 6 Aptamer-drug conjugations with nanocarriers/nanoparticles as cancer-targeted therapeutics

Chemotherapy

Aptamer names Type of aptamer Drug Nanocarriers/nanoparticles Type of cancer Refs.

MUC1(5TR1) DNA 5-fluorouracil Chitosan carbon quantum 
dot

Breast Cancer [147]

Epirubicin Poly (lactic-co-glycolic acid) Breast Cancer [148]

Epirubicin Super paramagnetic iron 
oxide nanoparticles

Colon cancer [149]

Doxorubicin PEGylated liposome Colon carcinoma [150]

SN-38 Chitosan nanoparticles Colon cancer [151]

SN-38 Camptothecin, conjugated 
to hyaluronic acid

Colon cancer [152]

5-fluorouracil Hyaluronan/chitosan nano-
particles

Colorectal adenocarcinoma [153]

Paclitaxel Chitosan-coated human 
serum albumin nanoparticles

Breast cancer [154]

5TR1 and NAS-24 DNA Epirubicin Selenium nanoparticles Breast and colon cancer [155]

MUC1 and ATP aptamer DNA Epirubicin DNA diamond nanostructure Colon carcinoma and breast 
cancer

[156]

AS1411 Methotrexate Chitosan-gold nanocluster Lung cancer [157]

Doxorubicin Fe3O4@UiO-66-NH2 Breast cancer [158]

Doxorubicin Polyamid-amin dendrimer 
grafted persistent lumines-
cence

[159]

5-fluorouracil Carboxymethyl chitosan Breast cancer [160]

Epigallocatechin gallate Chitosan-silica nanoparticles Ovarian cancer cell lines [161]

Erlotinib Chitosan nanoparticles Non-small cell lung cancer [162]

5-fluorouracil Hyaluronic acid sodium salt 
and alginic acid sodium salt

Skin cancer [163]

Paclitaxel Human serum albumin Breast cancer [164]

Docetaxel Albumin Colon Cancer [165]

Doxorubicin Albumin nanoparti-
cles loaded on iron oxide 
and gold nanoparticles

Breast cancer [166]

Ferrocene, and purpurin Bovine serum albumin Breast cancer [167]

Doxorubicin Bovine serum albumin Breast cancer [168]

AS1411 and FOXM1 Apt DNA Doxorubicin Chitosan (CS)-Gold nanoparti-
cles (AuNPs)

Lung cancer [169]

HPA aptamers (S1.5) DNA Paclitaxel PEGylated PLGA nanoparticles Triple-negative breast cancer [170]

Anti-PSMA RNA Doxorubicin Thermally cross-linked 
superparamagnetic iron oxide 
nanoparticles (TCL-SPIONs)

Prostate cancer [171]

Sgc8c-aptamer DNA Doxorubicin N-heterocyclic carbene 
(NHC)–gold(I) complexe

Leukemia [172]

Anti-EpCAM aptamer DNA Doxorubicin Mesoporous silica nanopar-
ticles

Colon cancer [173]

Radiotherapy

Aptamer names Type of aptamer Drug Nanocarriers/nanoparticles Type of cancer Refs.

AS1411 DNA - Gold nanoclusters using 
bovine serum albumin cap-
ping agent

Breast Cancer [104]

Verapamil Bovine serum albumin (BSA) 
coated silver nanoparticles 
(AgNPs)

Glioma [174]
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Conclusions
Cancer is a serious global threat to humanity, and medical 
researchers worldwide are prioritizing cancer research 
and therapy. The main challenge for cancer therapy is to 
deliver drugs to the tumor site in a way that minimizes 
toxicity to healthy organs. Aptamers are remarkable 
ligands that recognize and selectively bind to specific tar-
gets with unique properties that distinguish them from 
antibodies, making them ideal alternatives. They possess 
physicochemical properties that can be easily altered, 
allowing them to be functionalized with various types of 
drugs, such as chemotherapy, radiotherapy, and immuno-
therapy agents, as well as siRNA, polymers, and nanopar-
ticles, to overcome the limitations of cancer treatment. 
Although aptamers have certain drawbacks such as low 

pharmacokinetic profile, rapid filtration and distribu-
tion to tissues from the plasma, and high susceptibility 
to nucleases-mediated degradation, they are increasingly 
attractive for use in tumor-targeted therapies. With mod-
ern biotechnology and improved aptamer screening, 
they can now be designed for each tumor and individual, 
paving the way for more precise and personalized treat-
ments. It is important to note that this novel approach is 
still in its infancy, and many parameters require careful 
investigation. Recently, aptamers have shown promise 
in pre-clinical settings. We hope that clinical studies will 
lead to the development of therapeutic drugs for use in 
future medicine.

Table 6 (continued)

Radiotherapy

Aptamer names Type of aptamer Drug Nanocarriers/nanoparticles Type of cancer Refs.

GMT8 DNA - PEGylated Ag@Au core–shell 
nanoparticles (GSGNPs)

Malignant glioma [175]

Immunotherapy

Aptamer names Type of aptamer Drug/others ingredient Nanocarriers/nanoparticles Type of cancer Refs.

AS1411 DNA CRISPR/Cas9 plasmid Hyaluronic acid Non-small cell lung cancer [176]

α-PD1 (engineered monoclo-
nal antibodies against PD1)

PEG on nanomicelles Breast cancer and hepatocel-
lular carcinoma

[177]

Anti-CD16 and anti-MUC1 DNA – Amphipathic nanoparticles adenocarcinomas (lung can-
cer and breast cancer)

[178]

PD-L1 aptamer DNA Fexofenadine (FEXO) Albumin nanoparticles Colon cancer [179]

PD-L1 aptamer and AS1411 DNA – Prussian blue nanoparticles 
(PBs) coated with platelet 
membrane (PM)

Breast cancer [180]

sTN145 RNA PD-L1 siRNA PLGA-based polymeric nano-
particles

Triple-negative breast cancer [181]

APDL1(PD-L1 aptamer) DNA – Gold nanorods Non-small cell lung cancer [182]

CTLA-4 aptamer DNA Fexofenadine (FEXO) Albumin nanoparticle Colon cancer and breast 
cancer

[183]

IL-4Rα aptamer RNA CpG oligodeoxynucleotide 
(ODN)

Liposome Colon carcinoma [184]

Endoglin aptamer (ENG-Apt) DNA Interferon-inducible pro-
tein-10 (IP-10)

Liposome -based nanocap-
sules

Melanoma tumor [185]
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Abbreviations
SELEX  Systematic evolution of ligands by exponential enrichment
FDA  Food and Drug Administration
AMD  Age-related macular degeneration
PD-1  Programmed cell death protein 1
PD-L1  Programmed cell death ligand 1
CTLA-4  Cytotoxic T lymphocyte-associated antigen-4
CAR-T  Chimeric antigen receptor-T
NGS  Next-generation sequencing
2D  2 Dimensional
3D  3 Dimensional
MD  Molecular docking
MDS  Molecular dynamics simulation
QSAR  Quantitative structure–activity relationship
VEGF  Vascular endothelial growth factor
CLL  Chronic Lymphocytic Leukemia
MUC1  Mucin 1
HER2  Human epidermal growth factor receptor 2
EGFR  Epidermal growth factor receptor
PDAC  Pancreatic ductal adenocarcinoma
GPC3  Glypican 3
BNCT  Boron Neutron Capture Therapy
TGF-β  Transforming growth factor beta
APCs  Antigen-presenting cells
CTLs  Cytotoxic T lymphocytes
IL-10  Interleukin-10
TIM-3  T-cell immunoglobulin mucin 3
LAG3  Lymphocyte-activation gene 3

IFN-γ  Interferon-gamma
NMD  Nonsense-mediated mRNA decay
STAT-3  Signal transducer and activator of transcription 3
Tregs  Regulatory T cells
IL-2  Interleukin-2
TNF-α  Tumor necrosis factor alpha
EPR  Enhanced Permeability and Retention
AuNPs  Gold nanoparticles
BSA  Bovine serum albumin
AgNPs  Silver nanoparticles
ODN  Oligodeoxynucleotide
PEG  Polyethylene glycol
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