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Abstract
Background  Breast cancer (BC) is a heterogeneous disease, with the ductal subtype exhibiting significant cellular 
diversity that influences prognosis and response to treatment. Single-cell RNA sequencing data from the GEO 
database were utilized in this study to investigate the underlying mechanisms of cellular heterogeneity and to identify 
potential prognostic markers and therapeutic targets.

Methods  Bioinformatics analysis was conducted using R packages to analyze the single-cell sequencing data. The 
presence of highly variable genes and differences in malignant potency within the same BC samples were examined. 
Differential gene expression and biological function between Type 1 and Type 2 ductal epithelial cells were identified. 
Lasso regression and Cox proportional hazards regression analyses were employed to identify genes associated with 
patient prognosis. Experimental validation was performed in vitro and in vivo to confirm the functional relevance of 
the identified genes.

Results  The analysis revealed notable heterogeneity among BC cells, with the presence of highly variable genes and 
differences in malignant behavior within the same samples. Significant disparities in gene expression and biological 
function were identified between Type 1 and Type 2 ductal epithelial cells. Through regression analyses, CYP24A1 and 
TFPI2 were identified as pivotal genes associated with patient prognosis. Kaplan-Meier curves demonstrated their 
prognostic significance, and experimental validation confirmed their inhibitory effects on malignant behaviors of 
ductal BC cells.

Conclusion  This study highlights the cellular heterogeneity in ductal subtype breast cancer and delineates the 
differential gene expressions and biological functions between Type 1 and Type 2 ductal epithelial cells. The genes 
CYP24A1 and TFPI2 emerged as promising prognostic markers and therapeutic targets, exhibiting inhibitory effects 
on BC cell malignancy in vitro and in vivo. These findings offer the potential for improved BC management and the 
development of targeted treatment strategies.
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Background
Breast cancer persistently poses an extensive health 
dilemma globally, notably afflicting women, especially 
within developed countries [1]. The advancement in 
detecting and managing breast cancer has been notewor-
thy; however, patient survival remains jeopardized due 
to persistent challenges related to recurrence and meta-
static events [2]. The necessity to delve into breast can-
cer’s molecular and biological complexity is paramount, 
aiming to decode its multifaceted nature and subse-
quently ushering in specialized therapeutic strategies [1]. 
Tumor cell heterogeneity has emerged as a focal point 
in recent research due to its crucial role in influencing 
tumor growth, metastasis, and therapeutic response.

The heterogeneity among tumor cells signifies the exis-
tence of distinct molecular and biological characteristics 
within the same tumor, emanating from various factors 
such as genetic mutations, epigenetic modifications, and 
interactions with the tumor microenvironment [3, 4]. 
Ductal breast cancer, a prevalent subtype, has become 
a notable entity for exploring cellular heterogeneity and 
its implications for disease progression and management 
[5]. Traditional Bulk RNA-seq has been instrumental in 
mapping the genetic landscape of tumors, yet its capacity 
to delineate individual cellular variations is limited [6, 7]. 
Conversely, single-cell RNA-seq, a burgeoning technique, 
enables meticulous gene expression profiling at the sin-
gle-cell level, thereby providing a robust platform to navi-
gate through the complexity of tumor cell heterogeneity 
[8].

The application of single-cell RNA-seq enables a gran-
ular exploration of gene expression within diverse cel-
lular populations within breast cancer tissue, allowing 
for the illumination of pivotal genes that may modulate 
tumor behavior and patient prognosis [9]. The genes thus 
identified could serve as potential biomarkers for patient 
management and further research into prospective thera-
peutic interventions, propelling the development of more 
nuanced and individualized treatment plans for those 
affected by breast cancer [10].

This research venture, set within the aforementioned 
context, aspires to explore the molecular distinctions 
and heterogeneity within ductal breast cancer cells in 
a nuanced manner. Utilizing single-cell RNA-seq as a 
sophisticated screening modality, it aims to identify and 
validate prognostic molecular markers. The broader 
objective encompasses not merely enhancing our under-
standing of the mechanistic underpinnings of breast 
cancer but also translating such insights into clinically 
relevant interventions, aiming to uplift survival outcomes 

and enrich the quality of life for those navigating through 
the complexities of this disease.

Materials and methods
Data retrieval
Bulk RNA-seq data and clinical information for the BC 
(TCGA-BC) cohort were downloaded from the UCSC 
Xena browser (https://xenabrowser.net/). Single-cell 
RNA-seq data for BC (GSE118389) were downloaded 
from the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/); chip data samples 
for GSE118389 were obtained from tumor tissues of 6 BC 
patients, and the sequencing libraries were constructed 
using an optimized Smart-seq2 method, followed by 
sequencing on Illumina NextSeq 500. The raw single-cell 
expression matrix for 1534 cells provided by the GEO 
database was downloaded. All analyses in this study were 
conducted using R software, version v3.6.1.

Single-cell RNA-seq analysis
An integration of single-cell transcriptome Figure spec-
tra for downstream analysis was conducted. The R pack-
age Seurat (https://satijalab.org/seurat, version 2.2) [11] 
was employed for the analysis of single-cell RNA-seq 
and the mitigation of batch effects within the data. The 
t-SNE algorithm was utilized for non-linear dimension-
ality reduction of the single-cell sequencing data. Clus-
tering of individual cells, identification of marker genes 
for each cluster, and exportation of matrices with unique 
molecular identifier (UMI) values for each gene in indi-
vidual cells were accomplished using Cell Ranger. Marker 
genes for various cell clusters were identified through the 
Seurat package. The majority of the Seurat analyses were 
conducted using default parameters. For the FeaturePlot 
function, a max cutoff of 0.5 was employed. Annotation 
of cell clusters was achieved using the SingleR package 
[12]. The R package “inferCNV” (https://github.com/
broadinstitute/inferCNV) was utilized for the analysis of 
single-cell copy number variations).

GO enrichment analysis
The ClusterProfiler R package [13] was employed to con-
duct GO (Gene Ontology) enrichment analysis on dif-
ferentially expressed genes, with an adjustment made for 
gene length bias. GO terms were deemed significantly 
enriched by the differentially expressed genes if they 
exhibited an adjusted p-value below 0.05.

Survival analysis
The “Survival” R package (https://CRAN.R-project.org/
package=Survival) was utilized for survival analysis of 
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risk scores. Wald statistics, generated through univariate 
Cox proportional hazards regression, could be allocated 
to each gene as weights. Risk scores for each patient were 
computed using a linear combination of weighted gene 
expression (Hazard Ratio, HR) [14]. Overall survival was 
analyzed through the Kaplan-Meier method. Diagnostic 
ROC based on the breast cancer dataset from the TCGA 
database was performed using the “pROC” R package 
(https://cran.r-project.org/web/packages/pROC/index.
html), and visualization of figures was conducted using 
the “ggplot2” package. The statistical significance of sur-
vival differences was tested through the log-rank test. A 
P-value less than 0.05 was considered to indicate statisti-
cal significance.

Clinical sample collection
Biopsy specimens from 35 breast cancer (BC) patients 
were collected from our institution, with adjacent non-
cancerous tissue serving as the normal control. No 
patients had undergone radiation or chemotherapy prior 
to surgery. All samples were classified and graded accord-
ing to the WHO histological classification of breast can-
cer and confirmed by pathology. The study was approved 
by our institution’s ethical review committee. Informed 
consent was obtained from all patients, adhering to the 
Declaration of Helsinki.

Cell culture and transfection
Normal human mammary epithelial cells MCF-10  A 
and breast cancer (BC) cell lines T47D and MCF-7 were 
purchased from the ATCC collection. All the aforemen-
tioned cells were cultured in DMEM (10,569,044, Gibco, 
USA) supplemented with 10% FBS (100,099,141, Gibco, 
USA) and 1% penicillin-streptomycin (15,070,063, Gibco, 
USA) and were maintained in an incubator at 37 °C with 
5% CO2.

MCF-7 cells, when in the logarithmic phase, were 
digested with trypsin and then seeded in a 6-well plate 
at a density of 1 × 105 cells per well. Conventional culti-
vation was continued for 24 h, and once the cell conflu-
ence reached approximately 40%, the cells underwent 
lentivirus infection according to the lentivirus infection 
instructions. The cells were divided into three groups: 
oe-NC group (infected with empty vector control lenti-
virus, oe-NC), oe-CYP24A1 group (infected with lenti-
virus oe-CYP24A1), and oe-TFPI2 group (infected with 
lentivirus oe-TFPI2). Cells were harvested for subsequent 
experiments 72 h post-transfection.

RT-qPCR
Total RNA from tissues or cells was isolated utiliz-
ing Trizol (16,096,020, Thermo Fisher Scientific, New 
York, USA). For mRNA detection, reverse transcription 
was executed with a reverse transcription kit (RR047A, 

Takara, Japan) to produce cDNA. Utilizing the SYBR Pre-
mix Ex TaqTM II kit (DRR081, Takara, Japan), sample 
addition was performed, and qRT-PCR reactions were 
conducted using a real-time fluorescence quantitative 
PCR instrument (ABI 7500, ABI, Foster City, CA, USA). 
GAPDH served as the internal reference gene for coding 
genes. The PCR program was established as follows: 95 °C 
for 10 min, followed by 35 cycles of 95 °C for 15 s, 60 °C 
for 30 s, and 72 °C for 45 s. All qRT-PCR setups were con-
ducted in triplicate. The 2-ΔΔCt method was employed 
to illustrate the fold-change relationship between the 
expression of the target gene in the experimental and 
control groups, using the formula: ΔΔCT = ΔCt experi-
mental group - ΔCt control group, where ΔCt = Ct target 
gene - Ct reference gene. Ct represents the cycle thresh-
old, or the number of amplification cycles needed for the 
real-time fluorescence intensity of the reaction to reach 
a predetermined threshold during the logarithmic phase 
of amplification. The experiment was repeated thrice. 
Primer designs are provided in Table S1.

Western blot
Cellular total proteins were extracted using RIPA lysis 
buffer (P0013B, Beyotime, Shanghai), and the subse-
quent supernatant was harvested. The BCA kit (P0028, 
Beyotime, Shanghai) was employed to quantify the total 
protein concentration of each sample. Following protein 
denaturation, samples were stored at -80  °C for subse-
quent use. Depending on the size of the target protein 
bands, 8-12% SDS gels were prepared, and equal amounts 
of protein samples were loaded into each lane for electro-
phoretic separation. The proteins were then transferred 
onto a PVDF membrane (1,620,177, BIO-RAD, USA) and 
blocked with 5% BSA at room temperature for 1 h. The 
primary antibodies, rabbit anti-CYP24A1 (PA5-21704, 
1:1000, Thermo Fisher), TFPI2 (ab186747, 1:1000, abcam, 
UK), and GADPH (ab181602, 1:10000, abcam, UK) were 
applied and incubated overnight at 4 °C. Following three 
washes with 1×TBST for 5  min each at room tempera-
ture, HRP-labeled goat anti-rabbit IgG (ab6721, 1:5000, 
Abcam, UK) was added as a secondary antibody and 
incubated for 1  h at room temperature. After an addi-
tional three washes with 1×TBST for 5  min each, the 
membrane was immersed in ECL reagent (1,705,062, 
Bio-Rad, USA) for 1 min at room temperature. Excess liq-
uid was removed, and the membrane was enveloped with 
plastic wrap, followed by band exposure imaging on the 
Image Quant LAS 4000 C gel imager (GE, USA). GAPDH 
served as the internal reference for cellular total protein 
and cytoplasmic protein. The relative protein expression 
level was quantified by the ratio of the grey value of the 
target band to the reference band. The expression lev-
els of various proteins were evaluated, with each set of 
experiments being performed in triplicate.

https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html


Page 4 of 12Hou et al. Cancer Cell International          (2024) 24:266 

Immunohistochemistry (IHC)
Breast Cancer (BC) tissues, along with adjacent normal 
tissues, were fixed using 4% paraformaldehyde, followed 
by paraffin embedding and serial sectioning to a thick-
ness of 4  μm. Subsequently, the sections were baked at 
60  °C for 20  min and transitioned through two xylene 
baths for 15 min each. The tissues were rehydrated using 
two 5-minute anhydrous alcohol soaks, followed by 
immersion in 95%, 90%, 80%, and 70% alcohol solutions, 
each for 10 min. To block endogenous peroxidase, each 
section was immersed in 3% H2O2 for 10  min at room 
temperature. Citrate buffer was added, and sections were 
microwaved for 3 min for antigen retrieval, followed by 
a 10-minute room temperature pause. After washing 
thrice with PBS, the sections were blocked using a nor-
mal goat serum solution (Shanghai Bioengineering Co., 
Ltd., China) for 20  min at room temperature. Primary 
antibodies, rabbit anti-CYP24A1 (PA5-21704, 1:100, 
Thermo Fisher) and TFPI2 (ab186747, 1:200, abcam, 
UK), were applied and sections were incubated at 4  °C 
overnight. After three washes with PBS, sections were 
incubated with goat anti-rabbit IgG secondary antibody 
(ab6721, 1:5000, Abcam, UK) for 30  min. SABC (Vec-
tor, USA) was added, and the sections were incubated at 
37  °C for 30  min. Subsequent to the addition of a DAB 
coloring kit (P0203, Beyotime Biotechnology, Shanghai), 
and a 6-minute coloration period, sections were stained 
with hematoxylin for 30 s, and gently washed with a slow 
stream of water. The sections were dehydrated through a 
sequence of 70%, 80%, 90%, 95% ethanol, and anhydrous 
ethanol each for 2  min and then cleared in xylene for 
two 5-minute periods. After sealing with neutral resin, 
sections were visualized under an upright microscope 
(BX63, Olympus, Japan). The experiment was replicated 
three times. Positive staining was determined by the 
presence of brown or yellow in the cytoplasm, observed 
and counted across five representative high-power fields.

CCK-8 assay
The cell viability after lentiviral treatment was assessed 
using a CCK-8 assay kit (K1018, Apexbio, USA). 1 × 104 
cells per well were seeded in a 96-well plate (100 µL/well). 
Subsequently, 10 µL of CCK-8 solution was added at each 
time point (0 h, 24 h, 48 h, and 72 h), and incubation was 
performed at 37 °C for 2 h. The absorbance of each well at 
a wavelength of 480 nm was measured using a microplate 
reader (Bio-Rad, Hercules, CA, USA). Each experiment 
was repeated three times.

Flow cytometry
Cell apoptosis was detected using Annexin V-FITC/PI 
double staining. Cells were collected 48 h post-transfec-
tion, and the cell concentration was adjusted to 1 × 106 
cells/mL, followed by fixing with pre-cooled 70% ethanol 

solution at 4  °C overnight. After being washed twice 
with PBS, 100 µL of the cell suspension (containing no 
fewer than 106 cells/mL) was taken and, after two further 
washes with PBS and centrifugation, cells were resus-
pended in 200 µL of binding buffer. 10 µL of Annexin 
V-FITC and 5 µL of PI were gently mixed in, and the mix-
ture was left to react in the dark at room temperature for 
15 min. After adding 300 µL of binding buffer, cell apop-
tosis was assessed using a flow cytometer (Attune NxT, 
Thermo Fisher, USA) with an excitation wavelength of 
488 nm.

Transwell experiment
In vitro cell migration and invasion assays were conducted 
using 8 μm-pore sizes Transwell chambers from Corning 
Incorporated (USA) within a 24-well plate format. Within 
these 8  μm-pore polycarbonate membrane Transwell 
chambers, the lower chamber was pre-loaded with 600 
mL of DMEM medium containing 20% FBS and allowed 
to equilibrate at 37 °C for 1 h. MCF-7 cells, post 48-hour 
transfection, were resuspended in FBS-free DMEM 
medium and seeded in the upper chamber at a density of 
1 × 10^6/mL, followed by incubation at 37 °C, 5% CO2 for 
24 h. Subsequently, the Transwell chambers were washed 
twice with PBS, each time for 5 min, then fixed with 4% 
paraformaldehyde for 20  min, followed by three washes 
with PBS, each for 5  min. Afterward, cells were stained 
with 0.1% crystal violet for 10 min and washed three times 
with PBS, each time for 5 min. Surface cells were removed 
using a cotton swab, and the cells that had migrated 
through the Transwell chambers were observed under an 
inverted fluorescence microscope (Nikon TE2000, Japan), 
photographed in 5 random fields of view, and counted. 
The average cell number that migrated through the Tran-
swell chambers was recorded for each group. Each experi-
ment was repeated three times.

Nude mice tumor formation and metastasis experiment
Six-week-old BALB/c nude mice (Chinese Academy 
of Medical Sciences & Peking Union Medical College, 
Beijing, China) were caged and housed in an SPF-grade 
animal laboratory with a humidity of 60 − 65% and a 
temperature of 22–25  °C. They were provided with free 
access to food and water under a 12-hour light and dark 
cycle and allowed to adaptively feed for one week before 
the commencement of the experiment. The experimental 
procedures and animal usage plan have been approved by 
the Animal Ethics Committee.

A number of 2 × 105 MCF-7 cells/0.2 mL (including 
oe-NC, oe-CYP24A1, and oe-TFPI2 variations) were 
respectively injected subcutaneously into the left axilla 
of the nude mice, and prior to inoculation, the cells were 
premixed with Matrigel gel (Solebao YZ-356234-5 ml) to 
prepare the respective cell suspensions. The nude mice 
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were randomly divided into 3 groups (6 per group): (1) 
oe-NC group: injected with HCC70 cells transfected with 
oe-NC; (2) oe-CYP24A1 group: injected with MCF-7 
cells transfected with oe-CYP24A1; (3) oe-TFPI2 group: 
injected with MCF-7 cells transfected with oe-TFPI2. 
Tumor sizes were measured from day 5 post-injection, 
with measurements taken every 5 days to record tumor 
growth, and after 30 days, tumors from each group of 
nude mice were harvested for subsequent experiments.

For the metastasis nude mouse xenograft model, the 
mice were randomly assigned to 3 groups, each consist-
ing of 6 animals. Six weeks after being raised, a breast 
cancer lung metastasis model was established by inject-
ing cells (2 × 105 cells/0.2 mL) into the nude mice via tail 
vein injection. Upon completion of the breeding period, 
the mice were dissected via the cervical spine, and lung 
tissue was collected for H&E staining to assess lung 
metastasis.

H&E staining
Lung tissue samples from each group were first washed 
with saline, then fixed in 4% paraformaldehyde for 
30–50  min, followed by processes of washing, dehydra-
tion, clarification, wax immersion, embedding, and sec-
tioning. The tissue sections were flattened and adhered 
to glass slides, then dried in a 45  °C incubator, followed 
by deparaffinization and washing for 5 min with progres-
sively diluting alcohol concentrations and distilled water. 

Hematoxylin staining was performed for 5  min, after 
which the sections were rinsed under tap water for 3  s, 
followed by differentiation in 1% hydrochloric alcohol for 
3  s and eosin staining for approximately 3  min. Finally, 
the sections underwent dehydration, clarification, and 
cover-slipping processes. Tissue sections were observed 
under a microscope. A total of 18 nude mouse samples 
were used in this experiment.

Statistical analysis
Statistical data analysis in this study was conducted using 
SPSS 21.0 statistical software from IBM. Quantitative 
data were presented as mean ± standard deviation. Ini-
tially, data from cancer tissues and adjacent non-cancer-
ous tissues were tested for normality and homogeneity 
of variance; if they met the requirements of normal dis-
tribution and homogeneity of variance, paired t-tests 
were used for comparison; unpaired t-tests were used 
for comparison between the other two groups; one-way 
analysis of variance (ANOVA) was used for comparison 
among multiple groups. For comparisons of data at dif-
ferent time points, cell activity was analyzed using two-
way ANOVA, while tumor data were analyzed using 
variance analysis for repeated measures data. A P-value 
of less than 0.05 was considered to indicate a statistically 
significant difference.

Results
Single-cell RNA-seq analysis revealed the presence of a 
large number of highly variable genes in BC tissues
We downloaded BC single-cell RNA-seq data 
(GSE118389) from the Gene Expression Omnibus 
(GEO) database. The chip data samples of GSE118389 
are derived from tumor tissues of 6 BC patients. The 
sequencing libraries were constructed using the opti-
mized Smart-seq2 method and sequenced on Illumina 
NextSeq 500. Here, we have downloaded the raw single-
cell expression matrices of 1534 cells provided by the 
GEO database. The Seurat package in R software per-
formed quality control on the single-cell sequencing data, 
filtering out low-quality cells (Fig. 1A). By analyzing the 
filtered cells, we select the top 2000 genes with high vari-
ability in expression for subsequent analysis.

When exploring the primary sources of heterogeneity 
in the dataset, we use the function DimHeatmap and try 
to determine which principal components (PCs) to select 
for subsequent analysis. Both cells and genes are ranked 
based on their PCA scores, and here we show the top 6 
principal components (Fig.  1B). We have used the Jack-
Straw program to conduct heuristic resampling tests. 
More specifically, it involves randomly permuting a por-
tion of the data (default is 1%), re-running PCA to con-
struct “null distribution” feature scores, and repeating 
this process. We consider the PCs with low p-values as 

Fig. 1  Differential expression genes in BC tissue samples analyzed by 
single-cell RNA-seq. Note: (A) Quality control of 1534 cells from BC tissue 
samples; (B) Expression heat figure of the constituent genes in the first 6 
principal components before PCA analysis; (C) JackStraw plot, where dif-
ferent colored lines represent different principal components, and the an-
notation in the upper right corner represents the p-value of the principal 
components
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“important” PCs and use the JackStrawPlot function to 
visualize the first 20 PCs, comparing the positional differ-
ences between the p-value distribution and the mean dis-
tribution of each PC. Generally speaking, the p-value of 
a “significant” PC is small, i.e., above the dashed line but 
below the solid line (Fig. 1C). We can see that the top 20 
PCs we selected are all above the dashed line, indicating 
that they are all essential principal components and can 
fully reflect the information contained in the previous 
2000 highly variable genes. We can select these 20 PCs 
based on the results above for further analysis.

tSNE clustering analysis and cell annotation of BC 
organization’s single-cell RNA-seq data
t-SNE (t-Distributed Stochastic Neighbor Embedding) 
combines dimensionality reduction (e.g., PCA) with 

random walks on the nearest neighbor graph to map 
high-dimensional data into a two-dimensional space 
while preserving local distances between points. Com-
pared to PCA, t-SNE is a stochastic algorithm, which 
means that running the method multiple times on the 
same dataset will result in different figures. Therefore, 
we use the tSNE method to reduce further and visualize 
the data’s dimensionality. Using cluster analysis, we cat-
egorized all cells into 16 clusters (Fig. 2A). After adjust-
ing for batch effects, there were no significant differences 
between cells from different sample sources within the 
cell clusters, only differences in the proportions of cell 
clusters (Fig. 2B).

Known cluster marker genes include SLPI, PROM1, 
KRT19 (Luminal 1 type; [15]; ANKRD30A, SYTL2 
(Luminal 2 type; [15]; KRT14, KRT5, ACTA2, MYLK, 
TP63, ITGA6, KRT17, MME (basal epithelial cells; [15, 
16]; RGS5, ACTA2, PDGFRB, ADIRF (stellate cells; 
[17]; LUM, DCN, COL1A1 (fibroblasts; [17]; PECAM1, 
VWF, CDH5, SELE, PLVAP, CLDN5 (endothelial cells; 
[16, 17]; CD2, CD3D, CD3E, CD3G, CD8A, CD8B, 
CD4 (T cells; [16, 17]; MS4A1, CD79A, CD79B, BLNK, 
CD52 (B cells; [16, 17]; CD14, CD68, CD163, CSF1R, 
AIF1 (macrophages; [17]. We used the “SingleR” pack-
age from Bioconductor/R software to annotate these 16 
cell clusters, resulting in annotation into 11 cell types 
(Fig. 2C).

Furthermore, we generated an expression profile of 
BC cell-specific marker genes (Fig.  2D) and identified 
clustered cell populations based on the known marker 
genes of each cell type (Fig.  2E). We use known cell 
type marker genes to identify cell clusters: PROM1 is 
a specific marker gene for L1 cell clusters, ANKRD30A 
is a specific marker gene for L2 cell clusters, KRT14 is 
a specific marker gene for basal epithelial cells, CD14 is 
a specific marker gene for macrophage clusters, CDH5 
is a specific marker gene for endothelial cells, LUM is 
a specific marker gene for fibroblasts, RGS5 is a spe-
cific marker gene for stellate cells, CD79A is a specific 
marker gene for B cells, CD2 is a specific marker gene 
for T cells, and TNFRSF9 is a specific marker gene for 
adipocytes. Next, we examined the expression of spe-
cific marker genes (KRT8, KRT18, KRT19, and CD24) 
in cell clusters of BC tissue samples to confirm the 
suitability of our cell clustering based on known cell 
marker genes (Fig. 2F).

There are differences in the number of differentially 
expressed genes and biological functions in the luminal 
epithelial cells of 1/2-type luminal cells in BC tissue 
samples
It is worth noting that although we have identified two 
types of luminal epithelial cells in normal breast and BC 
tissue, they are not clustered in the Figure. To define 

Fig. 2  t-SNE clustering analysis and cell annotation of single-cell RNA-seq 
data from BC tissue samples. Note: (A) tSNE clustering analysis clusters cells 
into 16 cell clusters; (B) The sample sources of tSNE clustered cell clus-
ters; (C) 24 cell clusters annotated as 11 cell types; (D) Heatmap of marker 
gene expression in cell clusters; (E) Violin plots of marker gene expression 
in cell clusters; (F) Scatter plot of expression of luminal epithelial cells in 
cell clusters
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malignant cells in luminal epithelial cells, we performed 
copy number analysis using the “inferCNV” package in 
R software and clustered copy number variations using 
unsupervised clustering algorithms to identify copy num-
ber variation patterns in tumor cells derived from differ-
ent breast cancer samples. As shown in (Fig. 3A), we can 
see that tumor cells from the same BC tissue sample are 
dispersed into multiple distinct clusters, indicating the 
presence of differences in malignancy among tumor cells 
originating from the same BC sample.

Next, we analyzed the differential gene expression 
of type 1 luminal epithelial cells between BC tissue and 
normal breast tissue and identified 166 upregulated 
genes and 47 downregulated genes (Fig.  3B); for type 2 
luminal epithelial cells, we found 100 upregulated genes 
and 92 down-regulated genes in BC tissue compared to 
normal breast tissue (Fig.  3B). In further exploring the 
functional analysis of type 1 and type 2 luminal epithe-
lial cells, it was observed that the upregulated genes in 
BC tissue primarily involve the Type I interferon sig-
naling pathway, cellular response to Type I interferon, 
response to Type I interferon, and regulation of peptidase 
activity. On the other hand, the downregulated genes 
are mainly associated with granulocyte chemotaxis, 
granulocyte migration, cell chemotaxis, bone marrow 

leukocyte migration, neutrophil chemotaxis, and neutro-
phil migration (Fig. 3C). However, upregulated genes in 
type 2 tubular epithelial cells mainly involve extracellular 
structural organization, cytokine secretion, macrophage-
derived foam cell differentiation regulation, intracellular 
lipid transport, foam cell differentiation, and extracellular 
matrix organization. Downregulated genes mainly regu-
late innate immune response, negative regulation of natu-
ral killer cell-mediated cytotoxicity, immune suppression 
mediated by natural killer cells, Toll-like receptor sig-
naling pathway, and leukocyte-mediated cytotoxicity 
(Fig. 3D).

The above results indicate that there are differences 
despite tumor cells from the same BC sample source, and 
there are also differences in the expression levels of dif-
ferential genes and biological functions between type 1 
and type 2 luminal epithelial cells.

The risk assessment model based on the CYP24A1 and 
TFPI2 genes for predicting the prognosis of BC patients has 
good accuracy
First, we used the TCGA-BC dataset to select BC 
patient samples, filtering out samples without survival 
data, and performed Lasso regression. Seven genes 
related to the prognosis of BC patients were screened 

Fig. 3  The CNV analysis and GO enrichment analysis of single-cell RNA-seq sequencing data from BC tissues. Note: (A) Inference of copy number varia-
tions in single-cell RNA-seq sequencing data of BC tissue. (B) Scatterplot figure showing differentially expressed genes in BC tissue compared to normal 
breast tissue in luminal epithelial cells. (C) GO enrichment analysis of differentially expressed genes in type 1 luminal epithelial cells. (D) GO enrichment 
analysis of differentially expressed genes in type 2 luminal epithelial cells
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out from 405 differentially expressed genes (Fig.  4A-
B). Next, we conducted a univariate Cox regression 
analysis. To reveal the differentially expressed genes 
(DEGs) and clinical features (Fig.  4C) significantly 
associated with the prognosis of BC patients. For genes 
and clinical features with a log-rank P-value < 0.05, 
we further conducted multivariable Cox regression 
analysis to identify genes (CYP24A1 and TFPI2) that 
were associated with prognosis (Fig.  4C). Ultimately, 
we obtained two genes (CYP24A1 and TFPI2) associ-
ated with prognosis. Survival analysis was performed 
using Kaplan-Meier curves, and the results revealed a 

significant correlation between CYP24A1 and TFPI2 
with the prognosis survival time of breast cancer 
patients (Fig.  4D-E). Based on the results of above 
analysis, we have established a risk assessment model 
to predict the prognosis of BC patients: Risk Score = 
(-0.156 * CYP24A1) + (-0.115 * TFPI2). We used the 
model to calculate the risk score, survival analysis, 
and ROC curve analysis results from the TCGA-BRCA 
sample cohort. The results showed that patients with a 
low-risk score had significantly longer overall survival 
than those with a high-risk score.

Additionally, the AUC of the risk assessment model 
for predicting 10-year overall survival in BC patients was 
0.759 (Fig.  4F-G). We observed a significant difference 
in overall survival between the two groups by perform-
ing survival analysis using the KMplot website. Valida-
tion of the GEO dataset revealed a significant correlation 
between the expression of CYP24A1 and TFPI2 genes 
and the survival status of breast cancer patients (Fig. 4I-
J). The risk assessment model based on CYP24A1 and 
TFPI2 genes demonstrated good accuracy in predicting 
the prognosis of BC patients (Fig. 4H).

Overexpression of CYP24A1 or overexpression of TFPI2 can 
significantly inhibit the malignant biological behavior of 
BC cells
To validate the effects of two prognostic-related genes, 
CYP24A1 and TFPI2, obtained through differential gene 
expression analysis in BC luminal epithelial cells and 
TCGA database analysis on luminal breast cancer, we 
first detected the expression of CYP24A1 and TFPI2 in 
BC tumor tissues and adjacent normal tissues using RT-
qPCR and immunohistochemistry (IHC). The results 
showed that compared to the normal tissue surrounding 
cancer, CYP24A1 and TFPI2 were significantly decreased 
in BC cancer tissue (Fig.  5A-B). In addition, we further 
utilized RT-qPCR and Western blot to detect the expres-
sion of CYP24A1 and TFPI2 in normal human breast epi-
thelial cells (MCF-10  A) and luminal-type BC cell lines 
(MCF-7 and T47D). The results showed that compared 
to the MCF-10  A cell line, the expression of CYP24A1 
and TFPI2 in the two BC cell lines was significantly 
decreased, and in the MCF-7 cell line, the expression was 
lower. Therefore, we chose the MCF-7 cell line for further 
experiments (Fig. 5C-D).

We overexpressed CYP24A1 and TFPI2 in the MCF-7 
cell line and assessed the overexpression efficiency 
by RT-qPCR and Western blot analysis of lentivirus-
infected cells. The results showed that after overexpres-
sion of CYP24A1, the mRNA and protein expression of 
CYP24A1 in the cells significantly increased (Fig. 5E-F). 
Similarly, after overexpression of TFPI2, the mRNA and 
protein expression of TFPI2 in the cells also significantly 
increased (Fig. 5E-F).

Fig. 4  Univariate and multivariate Cox regression analysis for screening 
prognostic molecular markers and constructing a risk assessment model 
in breast cancer (BC). Note: (A) Lasso regression coefficient distribution; (B) 
Regression equation coefficients of 7 prognostic-related factors selected 
by Lasso regression; (C) Forest Figure visualizing univariate Cox analysis and 
multivariate Cox analysis of TCGA-BRCA cohort data; (D–E) Kaplan-Meier 
survival curves of CYP24A1 and TFPI2 genes; (F) Overall survival curve of 
TCGA-BRCA cohort patients grouped by Risk Score using Kaplan-Meier; (G) 
ROC curve depicting the predictive performance of the risk assessment 
model on TCGA-BRCA cohort; (H) ROC curve demonstrating the accuracy 
of the prognostic model constructed by gene expression of CYP24A1 and 
TFPI2 in predicting BC patients’ prognosis; (I) Kaplan-Meier survival curve 
of CYP24A1 gene; (J) Kaplan-Meier survival curve of TFPI2 gene
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Next, we used CCK-8 to detect cell proliferation, flow 
cytometry to detect cell apoptosis, and the Transwell 
assay to evaluate cell migration and invasion ability. Com-
pared to the oe-NC group, BC cells’ proliferation, migra-
tion, and invasion abilities were significantly reduced in 
the oe-CYP24A1 and oe-TFPI2 groups. Additionally, cell 
apoptosis was significantly increased (Fig. 5G-I).

Overexpression of CYP24A1 or TFPI2 can inhibit BC cells’ 
tumorigenic and metastatic abilities
To further investigate the effects of CYP24A1 and TFPI2 
on the tumorigenic capacity of breast cancer cells in vivo, 

we established a nude mouse xenograft animal model 
for breast cancer transplantation. After 30 days, we 
measured the volume of the tumor tissue and removed 
the tumor tissue for weighing. The results showed that 
compared with the oe-NC group, the tumor volume 
and weight in the oe-CYP24A1 group and the oe-TFPI2 
group were significantly reduced (Fig. 6A-C).

To investigate the effects of CYP24A1 and TFPI2 
on tumor metastasis, we stably transfected BC cells 
and injected them into nude mice via the tail vein. The 
metastasis of lung tumors in each group of nude mice 
was observed through H&E staining. The results showed 
that compared to the oe-NC group, the tumor metastatic 
nodules in the lungs of the oe-CYP24A1 and oe-TFPI2 
groups were significantly reduced (Fig. 6D-E).

These results indicate that overexpression of CYP24A1 
or TFPI2 can suppress BC cells’ tumorigenic and meta-
static capabilities in vivo.

Discussion
In light of burgeoning developments in bioinformat-
ics and molecular biology, models assessing risk based 
on gene expression have accrued mounting clinical per-
tinence, especially in the sphere of breast cancer, which 
stands as the most predominant malignancy impacting 
women globally [18]. This research aimed to elucidate the 
roles of CYP24A1 and TFPI2 genes in breast cancer and 
to formulate a predictive model for risk assessment with 
robust characteristics.

Preliminary research into CYP24A1 has subtly indi-
cated its linkage with several tumor types, though its 

Fig. 6  The effect of CYP24A1 or TFPI2 overexpression on tumorigenic and 
metastatic abilities in BC cells. Note: (A) Growth curves of tumor masses in 
nude mice in each group; (B) Representative Figures of tumor masses in 
nude mice in each group; (C) Comparison of tumor mass weights in nude 
mice in each group; (D) Observation of lung metastasis of tumor masses 
in nude mice in each group through H&E staining (10×, scale bar = 1 cm.); 
(E) Counting of lung metastatic nodules in nude mice in each group. The 
data in Figure are all metric data, represented by sample mean ± standard 
deviation. Single-factor analysis of variance is used for Comparison among 
multiple groups. Comparison of data between different groups at different 
time points is conducted using repeated measures analysis of variance. * 
represents the Comparison between two groups, with P < 0.05. N = 6

 

Fig. 5  The effects of overexpression of CYP24A1 or TFPI2 on the prolif-
eration, migration, invasion, and apoptosis of BC cells. Note: (A) Expres-
sion of CYP24A1 and TFPI2 in BC tumor tissue and adjacent normal tissue 
was detected by RT-qPCR (N = 35). (B) Expression of CYP24A1 and TFPI2 in 
BC tumor tissue and adjacent normal tissue was detected by IHC (400×, 
scale bar = 25  μm, N = 35). (C) mRNA expression levels of CYP24A1 and 
TFPI2 in regular human breast epithelial cell lines (MCF-10 A) and lumi-
nal BC cell lines (MCF-7 and T47D) were detected by RT-qPCR. (D) Protein 
expression of CYP24A1 and TFPI2 in regular human breast epithelial cell 
lines (MCF-10 A) and luminal BC cell lines (MCF-7 and T47D) was detected 
by Western blot. (E–F) RT-qPCR and Western blot detected the infection 
efficiency of overexpressed CYP24A1 and TFPI2 lentivirus in MCF-7 cells. 
(G) Cell proliferation of MCF-7 cells was assessed by CCK8 assay. (H) Cell 
apoptosis of MCF-7 cells was detected by flow cytometry. (I) Cell migration 
and invasion of MCF-7 cells were examined by Transwell assay. The data in 
Figure are all measurement data, represented by sample mean ± standard 
deviation; paired t-test is used for Comparison between cancer tissue and 
adjacent normal tissue, independent sample t-test is used for Comparison 
between two groups, and one-way analysis of variance is used for Com-
parison between multiple groups Comparison of inter-group data at dif-
ferent time points, cell viability was analyzed using a two-way analysis of 
variance. * represents the Comparison between two groups, with P < 0.05

 



Page 10 of 12Hou et al. Cancer Cell International          (2024) 24:266 

precise role and implications in breast cancer have 
lingered in a somewhat nebulous state [19]. Our 
work seeks to underscore the crucial involvement of 
CYP24A1 in breast cancer, providing novel insights 
into its probable therapeutic ramifications. Concur-
rently, while TFPI2 has previously been associated with 
tumor genesis and prognosis in various cancers, its 
exact role and prognostic value in breast cancer have 
largely remained underexplored [20, 21]. This study 
endeavors to shed light on this association, establishing 
a foundational platform for subsequent studies con-
cerning TFPI2 and breast cancer.

The predictive model introduced in our study pres-
ents several commendable merits in accuracy and 
applicability compared to extant prognostic models for 
breast cancer. The superior resolution and enhanced 
sensitivity afforded by single-cell RNA-seq technology 
substantively contribute to these merits [22–24]. None-
theless, it is paramount to acknowledge the intrin-
sic limitations of every model, as underscored by the 
fact that our model primarily hinges on samples from 
Chinese breast cancer patients, potentially limiting its 
generalizability across varied populations and ethnic 
groups [24]. Although our study utilized the scRNA-
seq data from the GSE118389 dataset of ductal breast 
cancer (BC) samples to investigate cellular heterogene-
ity, we acknowledge the existence of multiple scRNA-
seq datasets in the field of breast cancer research. We 
chose GSE118389 due to its direct relevance to ductal 
breast cancer and its importance in terms of cellu-
lar diversity and high-quality sequencing data, which 
are crucial for analyzing cellular heterogeneity, gene 
expression, and biological functions of breast can-
cer. However, this choice also has limitations. Specifi-
cally, regarding the prognostic markers CYP24A1 and 
TFPI2, our focus was solely on GSE118389, which 
raises concerns about the generalizability of our find-
ings. Although these markers have shown promise in 
analysis and experimental validation, their applicabil-
ity in a broader population and different breast cancer 
backgrounds needs further verification. To address this 
limitation, we plan to expand our analysis to include 
multiple scRNA-seq datasets encompassing different 

subtypes of breast cancer. This will help validate the 
prognostic relevance of CYP24A1 and TFPI2 in a more 
diverse range of breast cancer cases, thus enhanc-
ing the generalizability and clinical utility of our find-
ings. In conclusion, while our study provides valuable 
insights into cellular heterogeneity and potential ther-
apeutic targets for ductal breast cancer, the reliance 
on a single dataset underscores the need for further 
research using more diverse datasets to ensure broader 
applicability and validation of the prognostic markers 
we have identified.

Navigating through the complexity of breast can-
cer prognosis presents a formidable challenge, illus-
trating the difficulty in forging a singular model that 
accommodates the variegated needs of all patient 
demographics [25]. Prospectively, integrating several 
models or biomarkers, which might encompass pro-
teins and metabolites, could potentially construct a 
more exhaustive and clinically applicable prognostic 
framework [26]. This advancement will likely demand 
an intensification of interdisciplinary collaboration 
and an augmentation of validation research initiatives 
[27].

Further scientific exploration into the biological 
mechanics regulated by CYP24A1 and TFPI2 is impera-
tive, focusing particularly on their impact on breast 
cancer cell proliferation, metastasis, and therapeutic 
responsiveness [19, 28]. Furthermore, probing into the 
potential for deploying these two genes as innovative 
therapeutic targets, modulating their expression or activ-
ity via specific drugs or approaches, beckons significant 
promise in amplifying the efficacy of breast cancer thera-
peutic strategies [29–31].

Conclusion
In conclusion, this research has adeptly uncovered piv-
otal roles that CYP24A1 and TFPI2 undertake in breast 
cancer, and has established a predictively precise risk 
assessment model. This not only carves out new path-
ways for subsequent research and treatment in breast 
cancer but also proffers pragmatic value to clinical appli-
cations, thereby enhancing the potential for improved 
patient outcomes (Fig. 7).
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