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Abstract 

Background  Hepatocellular carcinoma (HCC) is a highly prevalent and deadly cancer, with limited treatment options 
for advanced-stage patients. Disulfidptosis is a recently identified mechanism of programmed cell death that occurs 
in SLC7A11 high-expressing cells due to glucose starvation-induced disintegration of the cellular disulfide skeleton. 
We aimed to explore the potential of disulfidptosis, as a prognostic and therapeutic marker in HCC.

Methods  We classified HCC patients into two disulfidptosis subtypes (C1 and C2) based on the transcriptional pro-
files of 31 disulfrgs using a non-negative matrix factorization (NMF) algorithm. Further, five genes (NEIL3, MMP1, STC2, 
ADH4 and CFHR3) were screened by Cox regression analysis and machine learning algorithm to construct a disulfidp-
tosis scoring system (disulfS). Cell proliferation assay, F-actin staining and PBMC co-culture model were used to vali-
date that disulfidptosis occurs in HCC and correlates with immunotherapy response.

Results  Our results suggests that the low disulfidptosis subtype (C2) demonstrated better overall survival (OS) 
and progression-free survival (PFS) prognosis, along with lower levels of immunosuppressive cell infiltration and acti-
vation of the glycine/serine/threonine metabolic pathway. Additionally, the low disulfidptosis group showed better 
responses to immunotherapy and potential antagonism with sorafenib treatment. As a total survival risk factor, disulfS 
demonstrated high predictive efficacy in multiple validation cohorts. We demonstrated the presence of disulfidptosis 
in HCC cells and its possible relevance to immunotherapeutic sensitization.

Conclusion  The present study indicates that novel biomarkers related to disulfidptosis may serve as useful clinical 
diagnostic indicators for liver cancer, enabling the prediction of prognosis and identification of potential treatment 
targets.
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Introduction
Liver cancer, characterized by a high mortality rate, is 
among the most prevalent gastrointestinal malignancies 
worldwide. According to a global epidemiological study 
on tumors, hepatocellular carcinoma (HCC), the primary 
type of liver cancer, ranks fifth in terms of incidence and 
third in terms of mortality [1]. The poor prognosis of 
HCC is attributed to its significant heterogeneity, pro-
pensity for metastasis, and overall physical deterioration 
[2]. While chronic hepatitis B virus infection is the pri-
mary cause of HCC development in Asia, chronic hepa-
titis C virus, alcoholic hepatic steatosis, and nonalcoholic 
steatohepatitis are the primary causes in Western coun-
tries. Unfortunately, patients often seek medical attention 
only when they exhibit significant symptoms, by which 
time the disease has usually reached advanced stages 
[3, 4]. Despite the development of various therapeutic 
modalities for HCC treatment over the past decades, the 
five-year survival rate remains dismally low at 14.1% [5, 
6].

The tumor microenvironment (TME) in HCC is 
complex, and the interplay between multiple immune 
cells and stromal cells creates an immunosuppressive 
microenvironment, leading to unfavorable outcomes in 
immunotherapy for HCC [7]. In recent years, immuno-
therapy based on immune checkpoint inhibitors (ICIs) 
has emerged as a highly promising approach for treating 
various cancers. ICIs restore the activity of immune cells, 
effectively eliminating tumors [7]. Several studies have 
demonstrated the clinical efficacy of ICIs in advanced 
HCC [8, 9]. However, due to the genetic, metabolic, and 
immune heterogeneity of HCC, conventional molecu-
lar typing has limitations in identifying populations that 
would benefit from ICI therapy. Hence, understand-
ing the genomic profile of HCC and developing more 
effective and reliable prognostic markers are crucial for 
enhancing current treatment strategies and prolonging 
patient survival.

Tumor cells undergo metabolic reprogramming, ren-
dering them highly dependent on specific nutrients 
such as glucose and glutamine [10]. The main glucose 
metabolic pathways in tumor cells include glycolysis, 
the pentose phosphate pathway, and the tricarboxylic 
acid cycle. Through these pathways, tumor cells gener-
ate ATP for growth and development and obtain precur-
sor molecules for biomolecule synthesis. Upregulation 
of glucose transporter protein expression, especially 
SLC2A1 and SLC2A3, is a hallmark of tumor metabolic 
reprogramming [11]. Most cancer cells uptake extracel-
lular cystine via the cystine transporter protein system 
Xc- (composed of the catalytic subunit SLC7A11 and 
the chaperone subunit SLC3A2) and subsequently uti-
lize intracellular NADPH to reduce cystine to cysteine 

for cellular utilization [12]. However, in cancer cells with 
high SLC7A11 expression, the low solubility and poten-
tial toxicity of intracellular cystine lead to accelerated 
reduction to the more soluble cysteine, consuming sig-
nificant amounts of intracellular NADPH [13]. Under 
glucose starvation conditions, high SLC7A11-expressing 
cancer cells experience depletion of the intracellular 
NADPH pool, resulting in the accumulation of intra-
cellular cystine and other disulfides, leading to rapid 
cell death [14]. Recent research elucidated the detailed 
mechanism of this type of cell death, which is referred to 
as disulfidptosis. In this mode of cell death, inhibitors of 
iron death, apoptosis, necrosis, and autophagy pathways 
failed to rescue glucose starvation-induced tumor cell 
death in SLC7A11 overexpressing cells. It was found that 
NADPH depletion caused aberrant disulfide bonding in 
actin cytoskeletal proteins, leading to actin network col-
lapse and subsequent cell death [15]. In HCC, the study 
of disulfidptosis, a regulated form of cell death, remains 
limited. Only a few studies have utilized machine learn-
ing techniques to construct tumor prognostic signatures 
based on disulfidptosis-related genes (disulfrg) for clini-
cal treatment guidance and risk stratification [16–19]. 
Consequently, there is an urgent need to develop a novel 
prognostic signature for disulfidptosis in HCC and vali-
date it through molecular biology experiments and 
analysis of clinical cohorts. Such efforts aim to identify a 
practical biomarker that can effectively guide treatment 
strategies for patients with HCC in a clinical setting.

In this study, we conducted a series of investigations 
based on disulfrg and employed multiple algorithms 
to construct a novel HCC prognostic marker called the 
disulfS. This score effectively reflects the disulfidpto-
sis status and survival of patients. We comprehensively 
validated the score and found it reliable in predicting 
clinical prognosis, microsatellite instability (MSI), tumor 
stemness index, immune infiltration, and immunother-
apy response. Moreover, we investigated the occurrence 
of disulfidptosis in HCC cells through rigorous molecu-
lar biology experiments. To validate the effectiveness of 
disulfS, clinical samples from our institution were utilized 
for comprehensive analysis and evaluation. Our study 
successfully developed a novel disulfS, enabling effec-
tive staging of disulfidptosis in HCC patients and aiding 
in the planning of immunotherapy regimens and patient 
management for improved individualized treatment.

Materials and methods
Data collection and cleaning
We collected 31 disulfrgs from a previous article [15], 
including SLC7A11, SLC3A2, RPN1, NCKAP1, RAC1, 
WASF-2, CYFIP1, ABI2, BRK1, SLC2A1, GYS1, OXSM, 
NDUFS1, NDUFA11, NUBPL, LRPPRC, PRDX1, FLNA, 
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FLNB, MYH9, MYH10, TLN1, ACTB, CD2AP, INF2, 
ACTN4, PDLIM1, IQGAP1, DSTN, CAPZB, and MYL6. 
We obtained the “TCGA-LIHC” liver cancer cohort data 
from the GDC database (https://​portal.​gdc.​cancer.​gov/), 
containing expression profiles of 371 tumor samples and 
50 normal samples. We selected 365 liver cancer sam-
ples with complete expression profiles and clinical sur-
vival data and randomly divided them into training and 
internal validation sets in a 6:4 ratio. We converted the 
expression profile data from FPKM to TPM and col-
lated it into log2 (TPM + 1) format. We used 216 sam-
ples from GSE15654 as the external validation set and 
27 samples from the GSE78220 melanoma PD-1 inhibi-
tor treatment cohort for immunotherapy efficacy valida-
tion. Immunophenoscore (IPS) for ICIs were obtained 
from the TCIA database (https://​tcia.​at). We obtained 
simple nucleotide variation data in mutation annotation 
maf format from the GDC database and calculated TMB 
values for each sample based on the definition of tumor 
mutation load (TMB). Copy number variation (CNV) 
data for the TCGA-LIHC cohort were downloaded from 
UCSC Xena (https://​xenab​rowser.​net/​datap​ages/), and 
we downloaded gene set data “c2.cp.kegg.v7.5.1.symbols.
gmt”, “c2.cp.reactome.v7.5.1.symbols.gmt”, and “h.all.
v7.5.1.symbols.gmt” from MsigDB database. Pathologic 
sections from 18 patients diagnosed with HCC between 
January 2016 and August 2019 were obtained from the 
Third Xiangya Hospital of Central South University. 
Among these patients, 9 had concurrent HBV infection, 
while the other 9 were non-HBV-infected individuals. 
Detailed clinical information of the patients can be found 
in Supplementary Table 1.

Genetics and prognostic landscape construction for 31 
disulfrgs
We used the “limma” R package to perform differential 
analysis between HCC and paraneoplastic samples in the 
“TCGA-LIHC” cohort, comparing mRNA expression dif-
ferences between 31 disulfrgs in HCC and normal tissue. 
We used the “maftools” R package to analyze maf files 
and construct a mutational landscape of 31 disulfrgs in 
the TCGA-LIHC cohort in the form of waterfall plots. 
We analyzed the gain or loss of each gene based on the 
CNV data of the 31 disulfrgs. We divided the TCGA-
LIHC cohort into high and low expression groups using 
the optimal cutoff value of the gene expression profile, 
and compared OS between the two groups using the 
“log-rank” method and the “Univariate Cox regression” 
method.

The NMF clustering based on 31 disulfrgs
We clustered the TCGA-LIHC cohort by NMF based 
on the expression profiles of 31 disulfrgs [20], using the 

“brunet” method with 10 iterations. We chose the top 
point with the fastest cophenetic decline as the best clas-
sifier and classified all samples into different molecular 
subtypes. We used t-Distributed Stochastic Neighbor 
Embedding (t-SNE) to downscale and visualize the dis-
tribution of the 31 disulfrgs’ expressions among different 
disulfidptosis subtypes. We used Kaplan–Meier (KM) 
survival analysis to compare differences in OS and PFS 
among patients of different disulfidptosis subtypes, and 
used box line plots and feature heat maps to visualize the 
distribution of differential expression of 31 disulfrgs and 
clinical features among different disulfidptosis subtypes.

Gene set variation analysis
We used the “GSVA” R package to perform gene set vari-
ation analysis (GSVA) between subtypes, using the gene 
set “c2.cp.kegg.v7.5.1.symbols.gmt”. The GSVA analysis 
was used to compare the variation of potential biological 
processes among different disulfidptosis subtypes.

Differential analysis of the tumor microenvironment 
among different disulfidptosis subtypes
To assess the relative infiltration level of each immune 
cell, we employed the ssGSEA algorithm from the “GSVA” 
R package, which calculated the infiltration scores of 23 
immune cells in the TME [21]. This analysis allowed us 
to evaluate the varying levels of immune cell infiltration 
among different disulfidptosis subtypes. Furthermore, 
we utilized the "ESTIMATE" R package to calculate the 
StromalScore, ImmuneScore, and ESTIMATEScore for 
each liver cancer sample. The StromalScore represents 
the stromal infiltration, the ImmuneScore represents the 
immune infiltration, and the ESTIMATEScore is the sum 
of the two, reflecting the overall infiltration abundance of 
stromal and immune components in the TME. To com-
pare the infiltration levels of the 23 immune cell types 
between subtypes, as well as the StromalScore, Immune-
Score, and ESTIMATEScore, we conducted a differential 
analysis.

Differential analysis and enrichment analysis 
between disulfidptosis subtypes
Using the “limma” R package, we performed differential 
analysis between different disulfidptosis subtypes, result-
ing in the identification of 1006 differential genes (DEGs). 
The screening criteria for DEGs were an FDR value less 
than 0.05 and a logFoldChange (logFC) greater than 1. 
Subsequently, we utilized the “clusterProfiler” R package 
to perform Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) functional enrich-
ment analysis for the DEGs. This analysis helped identify 
significantly enriched biological processes (BP), cellular 
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components (CC), molecular functions (MF), and signal-
ing pathways [22].

Random forest‑based screening of subtype‑specific genes
To identify subtype-specific genes, we employed the ran-
dom forest (RF) algorithm using the “randomForest” R 
package. The default number of iterations is 100, consid-
ering the model robust enough when the RF algorithm 
built 500 decision trees. The Gini coefficient method was 
used to score the importance of the characteristic genes, 
and genes with a score greater than 4 were selected as the 
subtype-specific genes for further analysis and the con-
struction of an artificial neural network (ANN) model.

Construction of subtype differentiation ANN model
The subtype-specific genes were utilized to train an 
ANN model. These genes served as the input layer of 
the model. We employed the “0/1” assignment method 
to assign corresponding weight information and scores 
to the subtype genes. The “neuralnet” R package and 
“NeuralNetTools” R package were used to build the arti-
ficial neural network model. The model outputted sub-
type predictions, and the classification performance was 
assessed by plotting receiver operating characteristic 
(ROC) curves and calculating the area under the curve 
(AUC) using the "pROC" R package.

Construction of weighted gene co‑expression network 
analysis (WGCNA) and identification of key modules
To construct a co-expression network, we first selected 
DEGs among disulfidptosis subtypes and removed free 
individuals to obtain the input gene expression matrix. 
This matrix was then combined with the results of 
immune infiltration levels obtained using CIBERSORT 
to construct the WGCNA. Pearson correlation analysis 
was utilized to construct a weighted matrix, and power 
scatter plots were drawn to determine the best soft power 
(β) value. The weighted adjacency matrix was then con-
structed using the selected β value. The dynamic tree cut-
ting method divided genes with similar expression levels 
into different modules, and gene trees were generated by 
hierarchical clustering based on the topological overlap 
matrix (TOM). Genes with similar expression profiles 
were grouped into modules, with each module contain-
ing at least 60 genes. By setting the threshold for mod-
ule similarity at 0.25, we merged similar modules and 
identified the blue module as the key module related to 
immunosuppression.

Construction and validation of disulfidptosis scoring 
system
By intersecting the 744 genes in the blue module with 
the 588 protein-coding genes among the 699 DEPGs, we 

obtained 503 significant genes (Siggs). These Siggs were 
further subjected to Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression using the “glmnet” R 
package for feature selection. LASSO regression com-
pressed the regression coefficients and selected genes 
with non-zero coefficients for the next step of analysis. 
We performed multifactorial Cox regression to screen 
modeled genes and construct the disulfS. The modeled 
genes were named disulfidptosis potentially related genes 
(DPRGs). The disulfS was calculated using the formula: 
disulfS = h0(t) * exp (β1X1 + β2X2 + … + βnXn), where β 
represents the regression coefficient and h0(t) is the base-
line risk function. Patients in the TCGA-LIHC cohort 
were divided into high and low disulfS groups based on 
the median. The correspondence between disulfrg clus-
ters, gene clusters, disulfS grouping, and the survival of 
liver cancer patients in the TCGA cohort was visual-
ized using sankey plots generated with the “ggalluvial” R 
package. We compared the differences in disulfS across 
disulfrg clusters and gene clusters using differential anal-
ysis. Additionally, KM survival analysis was conducted 
to compare the differences in OS between patients in the 
high and low disulfS groups in the TCGA training set, 
internal validation set, and external validation set. The 
predictive effect on PFS was also explored. ROC curves 
and calibration curves were used to assess the predictive 
accuracy of disulfS for 1-year, 3-year, and 5-year OS.

Clinical subgroup analysis
Considering the importance of “Stage” and “Grade” as 
clinical subgroup characteristics in patients with HCC, 
we counted and compared the proportional distribution 
of these characteristics between the high and low disulfS 
groups. The results were visualized using stacked bar-
plots. Furthermore, differential analysis was conducted to 
compare the differences in disulfS between subgroups of 
patients based on stage and grade. The impact of disulfS 
grouping on OS in these subgroups of patients was 
explored using KM survival analysis.

DisulfS‑based analysis of mutation, tumor stemness, 
and MSI
We employed the "Maftools" package to construct sepa-
rate mutation landscapes for the high and low disulfS 
groups. Corresponding tumor mutation burden (TMB) 
values were calculated based on each TCGA liver cancer 
sample cohort [23]. Differential analysis was performed 
to compare the TMB differences between patients in 
the high and low disulfS groups, and correlation analysis 
was used to explore the relationship between disulfS and 
TMB. The tumor stemness index, mRNAsi, which rep-
resents the stemness level of tumor cells, was obtained 
from a previous study [24] based on mRNA expression 
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profiles. Correlation analysis was used to investigate the 
association between disulfS and mRNAsi. Addition-
ally, MSI analysis was conducted based on a previous 
study [23] to represent the level of microsatellite length 
change caused by mismatch repair mechanism (MMR) 
failure during DNA replication. Correlation analysis was 
employed to explore the association between disulfS and 
MSI.

Disulf‑based analysis of tumor immune microenvironment 
and immunotherapy efficacy
To evaluate the immune infiltration level in the tumor 
immune microenvironment (TIME) of LIHC, seven algo-
rithms including “CIBERSORT,” “CIBERSORT-ABS,” 
“EPIC” [25], “MCPCOUNTER,” “QUANTISEQ” [26], 
“TIMER” [27], and “XCELL” [28] were used. Spearman 
correlation analysis was performed to explore the corre-
lation between immune cell infiltration levels and disulfS 
obtained using the different algorithms. We compared 
the predicted immunotherapy responsiveness between 
patients in the high and low disulfS groups using dif-
ferential analysis based on the IPS of two ICIs obtained 
from the TCIA database [29]. The IPS included ctla4_
pos_pd1_pos, ctla4_neg_pd1_pos, ctla4_pos_pd1_neg, 
and ctla4_neg_pd1_neg. Higher IPS indicated greater 
responsiveness to the respective ICIs. Additionally, 
immune rejection (exclusion) scoring was obtained from 
the TIDE database (http://​tide.​dfci.​harva​rd.​edu/), and 
differential analysis was used to compare the difference 
in exclusion between patients in the high and low disulfS 
groups. We employed the GSE15654 immunotherapy 
cohort to investigate the predictive significance of disulfS 
for the PD-1 monoclonal antibody treatment population. 
Differential OS was compared across disulfS subgroups 
using KM survival analysis.

Sorafenib sensitivity analysis
To predict the sensitivity of patients to sorafenib, the 
“pRRophetic” R package [30] was used to calculate the 
predicted half-inhibitory concentration (IC50) based on 
the Genomics of Drug Sensitivity in Cancer (GDSC) drug 
data source and gene expression profile data. Lower IC50 
values indicated higher sensitivity to sorafenib. Differ-
ential analysis was performed to compare the predicted 
IC50 values for sorafenib between patients in the high 
and low disulfS groups, and correlation analysis was con-
ducted to demonstrate the relationship between disulfS 
and the predicted IC50 values for sorafenib.

Cell culture and real‑time quantitative PCR (RT‑qPCR)
Human normal hepatocytes (LX2) and hepatoma cells 
(MHCC97H, LM3) were obtained from Nanke Biotech-
nology Co. The cells were cultured in DMEM medium 

supplemented with penicillin G (100  mg/mL), strepto-
mycin (100  mg/mL), and 10% fetal bovine serum (FBS; 
Gibco; USA) at 37  °C with 5% CO2. Logarithmically 
grown cells were used for subsequent experiments.

For RNA extraction, total RNA was isolated from 
the cells using the Fastern reagent (Invitrogen) accord-
ing to the manufacturer’s instructions. The purity of the 
extracted RNA was assessed spectrophotometrically 
(A260/A280 > 1.8). Subsequently, reverse transcrip-
tion followed RT-qPCR was performed using an SYBR 
Green PCR Master Mix. The PrimeScript RT Reagent 
Kit (TaKaRa, Shiga, Japan) was used to reverse transcribe 
1 μg of total RNA into cDNA. The relative RNA expres-
sion was determined using the 2-△△Ct method, with 
GAPDH serving as the internal loading control for nor-
malization. The following primer sequences were used in 
this study: SLC7A11 (f: GCG​TGG​GCA​TGT​CTC​TGA​C, 
r: GCT​GGT​AAT​GGA​CCA​AAG​ACTTC) and SLC2A1 
(f: ATT​GGC​TCC​GGT​ATC​GTC​AAC, r: GCT​CAG​ATA​
GGA​CAT​CCA​GGGT).

Cell viability assay and reagents
A cell viability assay was performed using the following 
reagents: 5  μM Necrostatin-1 (Nec-1), 5  μM Necrosta-
tin-2 (Nec-2), 25 μM chloroquine (CQ), 10 μM Z-VAD-
FMK, and 100 μM Deferoxamine mesylate (DFOM) [15]. 
The control group was treated with an equal volume of 
DMSO. After 8 h of treatment, the old culture medium 
was discarded and replaced with complete medium 
DMEM containing 10% CCK8 reagent (Biosharp, 
BS350B). The absorbance at 450  nm was measured 
using a BIOTEK ELX800 plate reader. The following 
reagents were obtained from MedChemExpress: Ferr-
1(HY-100579), Nec-1(HY-15760), Nec-2(HY-14622), 
CQ(HY-17589A), Z-VAD-FMK(HY-16658B), 
DFOM(HY-B0988).

Fluorescence staining of actin filaments
2 × 105 MHCC97H and LM3 cells in logarithmic growth 
phase were inoculated into 6-well plates with cell crawl-
ers (Biosharp, BS-24-RC) and allowed to crawl for 24 h. 
After cell crawling, the cells were treated with either 
DMSO or BAY-876 in different wells for 8  h. The old 
medium was discarded, and the cells were washed with 
PBS and fixed with 4% paraformaldehyde at room tem-
perature. The fixed cells were permeabilized with osmotic 
buffer (PBS containing 0.5% Triton X-100), washed with 
PBS, and incubated with 100  μM actin staining [Phal-
loidin-iFluor 555 (ab176756)] in the dark at room tem-
perature for 30  min. After washing with PBS, the cells 
were incubated with DAPI working solution in the dark 
at room temperature for 10  min. The cells were then 

http://tide.dfci.harvard.edu/
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washed with PBS and imaged using a Zeiss inverted fluo-
rescence microscope (Vert A1).

Immunohistochemical staining and integrated optical 
density (IOD) analysis
Paraffin sections were incubated at 60 ℃ for a minimum 
of 60 min. Subsequently, the sections were deparaffinized 
using xylene and hydrated with varying concentrations of 
ethanol (10 min in 100% ethanol, followed by another 10 
min in 100% ethanol, 5 min each in 95%, 90%, and 85% 
ethanol, and finally, 5 min in 70% ethanol). The sections 
were thoroughly rinsed with phosphate-buffered saline 
(PBS). After washing with PBS, endogenous catalase was 
used to block non-specific staining. Following blocking, 
the sections were washed with PBS three times before 
overnight incubation for four days with the respective 
primary antibodies. Afterward, the sections were washed 
with PBS three times and subsequently incubated at 
room temperature for 60 min with HRP-labeled second-
ary antibodies specific to the corresponding genus. Next, 
an appropriate amount of biotin substrate was added, 
and the reaction was carried out at room temperature for 
30  min, followed by three additional washes with PBS.
Upon completion of the reaction, 1 × DAB chromogenic 
solution was added to the sections. Hematoxylin re-
staining was performed after the chromogenic develop-
ment was completed. Finally, the tissues were dehydrated 
and sealed using a transparent agent. Photomicrographs 
were captured at a magnification of 200 × using a Zeiss 
inverted fluorescence microscope (Vert A1). IOD analy-
sis was conducted using Image J software. The immuno-
histochemistry score was calculated as IOD divided by 
the collection area.The following reagents were obtained 
from Abiowell Biotechnology: ADH4 (AWA48164), 
NEIL3 (AWA52502), and STC2 (AWA48163). Addition-
ally, CFHR3 (16583-1-AP) and MMP1 (10371-2-AP) 
were sourced from Proteintech.

PBMC were obtained and co‑cultured with HCC cell lines
PBMC cells (CP-H182) supplied by Prosperity Life Sci-
ences Co. were co-cultured with HCC cell lines. The 
co-culture conditions included RPMI-1640 culture 
medium containing 10% FBS and 1% penicillin/strepto-
mycin (100  U/mL and 100  μg/mL, respectively). 2 × 105 
LM3 or MHCC97H cells (effector cells, E) in logarithmic 
growth phase were inoculated into the lower chamber 
of a 12-well Transwell system with a pore size of 0.4 μm. 
After 24  h of culture, PBMC cells (target cells, T) at a 
concentration of 2 × 106 cells/mL were inoculated into 
the corresponding upper chamber. The co-culture sys-
tem was divided into three groups: a blank group with 
only E cells in the lower chamber and RPMI-1640 com-
plete medium in the upper chamber; a control group 

with E cells in the lower chamber and T cells in the upper 
chamber; and an experimental group with E cells in the 
lower chamber treated with 5 μM BAY-876 and T cells in 
the upper chamber. After 48 h of co-culture, the culture 
medium from the upper chamber of each group was col-
lected, centrifuged, and stored at – 80 ℃ for subsequent 
cytokine detection.

Enzyme‑linked immunosorbent assay (ELISA)
Concentrations of TNF-α, IL-6, and IL-1β were meas-
ured in the culture supernatant as indicators of PBMC 
cell activation. Cytokine concentrations were meas-
ured using commercially available ELISA kits targeting 
human cytokines. The concentrations of cytokines in the 
supernatants were assayed according to the guidelines 
provided by the manufacturers: IL-1β and IL-6 (Service-
bio, Wuhan, CHINA), and TNF-α (Elabscience, Wuhan, 
CHINA). Each kit targeted an individual cytokine, 
and the detection level for all cytokines was 30  pg/mL. 
The coefficients of variation for the ELISA assays for 
cytokines were 2% or less of the median.

Statistical analysis
All statistical and bioinformatics analyses were per-
formed using the R language (version 4.2.1) and the 
perl language. The perl language was primarily used for 
data batch cleaning. Differential analysis was conducted 
using the "limma" R package, unless otherwise speci-
fied. In the bioinformatics section, comparisons between 
two groups were assessed using the Wilcoxon test, while 
the Kruskal–Wallis test was employed for comparisons 
involving more than two groups. Kaplan–Meier survival 
analysis and log-rank test were used to compare the prog-
nosis of patients in different groups. Statistical signifi-
cance was defined as a two-tailed p < 0.05 for all analyses.

Results
Differential expression of disulfrgs, genetic alterations, 
and prognostic significance
The study’s flow chart is depicted in Graphical abstract. 
Initially, we identified 31 disulfrgs (SLC7A11, SLC3A2, 
RPN1, NCKAP1, RAC1, WASF-2, CYFIP1, ABI2, BRK1, 
SLC2A1, GYS1, OXSM, NDUFS1, NDUFA11, NUBPL, 
LRPPRC, PRDX1, FLNA, FLNB, MYH9, MYH10, TLN1, 
ACTB, CD2AP, INF2, ACTN4, PDLIM1, IQGAP1, 
DSTN, CAPZB, and MYL6) for further analysis. Sub-
sequently, 371 samples from the TCGA database were 
included in the analysis, and their basic information is 
provided in Supplementary Table  2. Differential expres-
sion analysis of disulfrg in cancer and paraneoplastic 
tissues was conducted using the TCGA-LIHC database. 
The results demonstrated that all 27 disulfrgs, except 
for NDUFS1, NUBPL, MYH10, and IQGAP1 genes, 
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exhibited significantly higher expression in tumor tis-
sues (Supplementary Fig. 1A). Mutation status and copy 
number variation frequencies of disulfrgs were also 
examined. We observed that 54 samples (14.56%) out of 
the 371 samples had disulfrg mutations. Notably, TLN1, 
FLNB, and IQGAP1 showed a high mutation frequency 
of 2% (Supplementary Fig.  1B). Furthermore, we found 
that the copy number deletion frequencies of SLC2A1, 
CAPZB, PRDX1, NDUFA11, PDLIM1, WASF2, INF2, and 
MYH10 were significantly higher compared to the fre-
quencies of copy number increase. Interestingly, GYS1, 
RPN1, and DSTN exclusively exhibited copy number 
deletion variants (Supplementary Fig. 1C). Moreover, we 
investigated the chromosomal localization of copy num-
ber variants in HCC patients. The results revealed that 
copy number variants of CAPZB, WASF2, and SLC2A1 
were localized on chromosome 1, LRPPRC, NCKAP1, 
ABI2, and BDUFS1 on chromosome 2, and BRK1, OXSM, 
FLNB, and RPN1 on chromosome 3. The copy number 
variants of other disulfrgs were scattered (Supplementary 
Fig. 1D).

Subsequently, we assessed the prognostic significance 
of disulfrgs in HCC patients using univariate Cox regres-
sion. The results indicated that all remaining 19 genes 
in the disulfrgs set were significantly associated with 
OS, except for CYFIP1, NDUFS1, NDUFA11, NUBPL, 
FLNA, FLNB, MYH9, MYH10, TLN1, PDLIM1, IQGAP, 
and MYL6 (Supplementary Fig.  2A). We selected the 9 
disulfrgs most associated with disulfidptosis, as described 
in the article [16], for Kaplan–Meier curve plotting and 
presentation (Supplementary Fig.  2B). The outcomes 
revealed that patients with high expression levels of these 
nine genes exhibited worse prognosis. Thus, all of them 
were considered prognostic risk factors, which coincided 
with the differential expression pattern of genes in cancer 
versus paracancer. In other words, genes highly expressed 
in tumor tissues relative to normal tissues were associ-
ated with a worse prognosis when analyzing survival in 
tumor tissues.

Differentiation of molecular typing based on NMF 
and comparison between different subtypes
NMF typing of HCC patients was performed based on 
the expression levels of 31 disulfrgs. The optimal rank 
value was determined based on the fastest decrease in 
cophenetic points, and for this study, a rank = 2 was cho-
sen to classify HCC patients into two disulfrg clusters, 
C1 and C2 (Fig. 1A). The analysis of disulfrgs expression 
levels in the two disulfidptosis subtypes revealed that all 
30 disulfrgs exhibited significant differential expression, 
except for PDLIM1. Moreover, except for NDUFA11, 
all 29 disulfrgs were found to be lowly expressed in sub-
population C2 (Fig.  1B). Subsequently, a t-distributed 

Stochastic Neighbor Embedding (tSNE) analysis was 
conducted between C1 and C2 subgroups, followed by 
a comparison of the differences in disulfrgs expression 
levels, survival, clinical characteristics, immune cell infil-
tration levels, and TME scores between the two clus-
ters. The tSNE plot demonstrated clear discrimination 
between the two subgroups (Fig. 1C). Kaplan–Meier sur-
vival analysis demonstrated significant differences in OS 
and PFS between the different disulfidptosis subtypes. 
Patients with HCC in the C2 subpopulation exhibited 
a better prognosis (Fig. 1D, E). Additionally, a heat map 
illustrating the differential expression of clinical charac-
teristics among different subgroups after NMF clustering 
was constructed based on the age, gender, clinical stage, 
histological grade, and alpha-fetoprotein (AFP) level of 
HCC patients in TCGA (Fig. 1F).

To gain further insights into the reasons for the 
prognostic differences between different disulfidpto-
sis subtypes, we compared the infiltration levels of 23 
immune cells between the clusters using the single-
sample Gene Set Enrichment Analysis (ssGSEA) algo-
rithm. The analysis revealed that the infiltration levels 
of immunosuppressive cells such as regulatory T cells 
(Tregs), T follicular helper (Tfh) cells, and myeloid-
derived suppressor cells (MDSC) were lower in the 
C2 subpopulation (Fig.  1G). Moreover, we compared 
the TME scores between different subpopulations and 
estimated the ratio of immune stromal components 
in the TME for each sample using the ESTIMATE 
algorithm. The results indicated that the ESTIMATE 
score was significantly lower in the C2 subpopulation 
compared to the C1 subpopulation (Fig.  1H). Addi-
tionally, GSVA was performed to compare between 
disulfidptosis subtypes. The results revealed upregu-
lation of linoleic acid metabolism and glycine/serine/
threonine metabolic pathways in the C2 subpopula-
tion, as determined by the KEGG reference gene set. 
In the Reactome reference gene set, pathways related 
to plasma lipoprotein and cholinesterase remodeling, 
liposome assembly, and protein amine terminal clear-
ance and transport were upregulated in the C2 sub-
population. Furthermore, the hallmark reference gene 
set indicated upregulation of xenobiotic metabolism 
and bile acid metabolism pathways in the C2 sub-
group (Supplementary Fig. 3). These findings suggest 
that patients with HCC in the C2 subgroup exhibit a 
better clinical prognosis, which may be closely asso-
ciated with the lower levels of immunosuppressive 
cell infiltration, lower ESTIMATE score, and upregu-
lation of metabolism-related pathways. Moreover, 
patients in the C2 subgroup may be more responsive 
to immunotherapy.
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Enrichment analysis of DEGs and construction of RF 
and ANN model
To further explore the underlying biological behavior 
associated with different prognoses between C1 and C2 
subgroups, differential analysis of gene expression pro-
files was performed on patients from the two disulfidp-
tosis subtypes. This analysis identified 1006 differentially 

expressed genes (DEGs) between the subgroups. A vol-
cano plot was constructed to visualize the DEGs (Sup-
plementary Fig.  4A). Subsequently, GO and KEGG 
enrichment analyses were conducted to determine the 
potential functions and pathways associated with the 
DEGs. The GO analysis revealed that the DEGs were 
mainly involved in the regulation of intracellular immune 

Fig.1  Identification and exploration in survival, clinical features, immune cell infiltration and TME scores of two disulfidptosis subtypes. A NMF 
clustering divides HCC samples into two clusters (k = 2) based on 31 disulfrgs. B Differential expression of disulfrgs between the two subtypes. 
C tSNE descending dimension analysis of the two subtypes. D, E OS and PFS curves for the two subtypes of patients with HCC. F Difference 
distribution of clinicopathological features and disulfrgs expression among the two subtypes. G Difference analysis of 23 immune infiltrating 
cells levels between the two subtypes. H Analysis of differences in TME scores between the two subtypes. *p < 0.05, **p < 0.01, ***p < 0.001; ns: 
not statistically different
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effector processes in terms of biological processes (BP). 
In terms of cellular components (CC), the DEGs were 
mainly associated with collagen-containing extracellular 
matrix and cytoplasmic vesicle components. The molec-
ular function (MF) analysis suggested that the DEGs 
were involved in protein binding and catalytic activity. 
The KEGG enrichment analysis indicated upregulation 
of complement and coagulation cascades, drug metabo-
lism-cytochrome P450, ECM-receptor interactions, and 
glycolysis/gluconeogenesis pathways in the C2 subpopu-
lation (Supplementary Fig. 4B–D).

Next, the 1006 DEGs were used in a RF classification 
to identify key genes that distinguish the two disulfidpto-
sis subtypes. The RF model employed 500 decision trees 
as parameters based on the correlation plot between the 
number of RF branches and the model error. The analysis 
identified SLC7A11 as the most significant gene, followed 
by SLC2A1, ADAM9, ITGAV, and PFKP (Supplementary 
Fig.  5A, B). Subsequently, an artificial neural network 
model was constructed based on the expression matrix of 
these five genes and the two subgroups. The ANN model 
consisted of five input layers, four hidden layers, and 
two output layers (Supplementary Fig.  5C). Cross-val-
idation results were represented by ROC curves, which 
demonstrated that SLC7A11, SLC2A1, ADAM9, ITGAV, 
and PFKP were the most characteristic genes for distin-
guishing between C1 and C2 subgroups. The model con-
structed based on these genes exhibited reliability, with 
an AUC value of 0.951 (95%CI 0.923–0.972) (Supplemen-
tary Fig. 5D).

Taken together, the clustering and typing of HCC 
patients into two disulfrg clusters using NMF based on 
the expression levels of 31 disulfrgs is highly reliable and 
distinguishable. The phenotypic differences between the 
two disulfrg clusters are primarily attributed to the dif-
ferential enrichment of immune and metabolic pathways.

WGCNA analysis and prediction scoring system 
construction
To gain deeper insights into the potential association 
between different disulfidptosis statuses and immune 
effects in HCC patients, we constructed a WGCNA 
network. This network integrated the gene expression 
matrix of the 1006 DEGs with the results of immune infil-
tration levels obtained from CIBERSORT. The selection 
of the best-fit power value, softpower (β) = 7, was based 
on fit index and average connectivity (Fig. 2A). We sub-
sequently constructed a hierarchical clustering tree using 
the correlation TOM matrix between genes, where differ-
ent branches and colors represented distinct gene mod-
ules (Fig. 2B). After merging similar modules, we plotted 
a module-immune cell correlation heat map, focusing on 
the blue module (Fig.  2C). We conducted an univariate 

Cox analysis on the 1006 differentially expressed genes 
(DEGs) obtained earlier, identifying 619 differential prog-
nostic genes (DEPGs) at a significance level of p < 0.05. 
Intersection analysis between this module and the 588 
protein-coding genes among the 619 DEPGs yielded 503 
Siggs. Further, we divided the TCGA liver cancer patients 
into a training group (n = 221) and an internal valida-
tion group (n = 143) at a ratio of 6:4. The training group 
included the 503 Siggs for lasso regression and multi-
factorial Cox regression analysis, leading to the identifi-
cation of five DPRGs: NEIL3, MMP1, STC2, ADH4, and 
CFHR3. Based on these five genes, we constructed the 
disulfS to evaluate the disulfidptosis status of each patient 
(Supplementary Table 3 and Fig. 2D, E). The disulfS was 
calculated as follows: disulfS = 1.006 * exp [NEIL3 × (0.
346) + MMP1 × (0.147) + STC2 × (0.189) + ADH4 × (−  0
.056) + CFHR3 × (−  0.112)], gene symbol represents the 
expression level of the gene. By using disulfS, we calcu-
lated the risk score for patients with HCC and divided 
them into low- and high-risk groups based on the median 
score. Comparison of disulfS revealed significantly lower 
scores in groups C2 compared to groups C1 in terms of 
disulfrgcluster (Fig. 2F). The Sankey diagram provided a 
visual representation of the prediction model construc-
tion process, reflecting the correspondence between 
disulfrgcluster, disulfS grouping, and survival in patients 
with HCC (Fig. 2G).

Predictive value validation of the disulfidptosis scoring 
system
To assess the predictive power of the disulfS model, we 
generated differential expression heatmaps and disulfS 
risk curves for the five DPRGs in the TCGA-train, 
TCGA-test, and TCGA-all cohorts (Supplementary 
Fig.  6A–C). These results revealed that NEIL3, MMP1, 
and STC2 were highly expressed in the high-risk group, 
while ADH4 and CFHR3 showed low expression. Moreo-
ver, as the disulfS increased, the number of patient deaths 
also increased. These findings indicate that the con-
structed disulfS model effectively stratifies HCC patients 
into high- and low-risk groups, with NEIL3, MMP1, and 
STC2 serving as prognostic risk factors. Univariate analy-
sis demonstrated a significant association between OS in 
HCC patients and both stage and the disulfS model (Sup-
plementary Fig. 6D, p < 0.001). Multivariate analysis fur-
ther confirmed that both stage (HR = 1.559, p < 0.001) and 
the disulfS model (HR = 1.223, p < 0.001) independently 
predicted OS in HCC patients (Supplementary Fig. 6E).

To evaluate the ability of the disulfS model to guide 
prognosis in HCC patients, we performed KM curve 
analysis for OS in the high- and low-risk disulfS groups in 
the TCGA-all, TCGA-train, TCGA-test, and GSE15654 
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cohorts. Additionally, we validated the accuracy of the 
disulfS model using ROC curves, calibration curves, and 
accuracy assessments (Fig.  3A–D). The results demon-
strated that the disulfS model effectively differentiated 
the OS prognosis of HCC patients, with worse outcomes 
observed in the high-risk disulfS group. Encouragingly, 
the ROC curves, calibration curves, and accuracy assess-
ments indicated excellent performance and consistency 
of the disulfS model in predicting 1-, 3-, and 5-year OS 
in HCC patients across internal and external validation 
cohorts. Furthermore, we assessed the predictive ability 
of the disulfS model for PFS in HCC patients, revealing 
similarly efficient results as observed for OS prediction 
(Fig. 3E).

Given the importance of stage and grade as clinical sub-
group characteristics in HCC patients, we investigated 
the ability of the disulfS model to guide the prognosis 
in different clinical subgroups. We compared the pro-
portional distribution of disulfS among different grade 
and stage subgroups and analyzed the predictive capac-
ity of high and low disulfS for OS in these subgroups. 
The results showed that the differences in disulfS were 
also significant between grade G1/G2 and grade G3/G4 
patients (Supplementary Fig. 7A, B) and between stage I/
II and stage III/IV patients (Supplementary Fig.  7C, D). 
Importantly, the disulfS exhibited excellent predictive 
ability for OS in various clinical subgroups (Supplemen-
tary Fig. 7E–H).

In summary, our construction of the disulfS model 
serves as an independent prognostic factor for OS in 
HCC patients. It effectively stratifies patients into high- 
and low-risk groups, with higher-risk patients exhibiting 
higher grade, later stage, and worse prognosis.

Correlation of disulfS with MSI, tumor stemness index 
(mRNAsi), TIME, and gene mutation frequency (GMF)
To investigate the factors underlying the differentia-
tion of HCC patients based on disulfS, we analyzed its 
relationship with MSI, mRNAsi, TIME, and GMF. 
Our findings revealed significant positive correla-
tions between disulfS and four mismatch repair genes 
(Fig. 4A), patients with high disulfS had higher expres-
sion of mismatch repair genes and lower MSI (Fig. 4B, 
C). Furthermore, disulfS showed a significant posi-
tive correlation with mRNAsi (Fig.  4D). We also used 

seven common immune infiltration analysis algorithms 
(CIBERSORT, CIBERSORT-ABS, EPIC, MCPCOUN-
TER, QUANTISEQ, TIMER, and XCELL) to assess the 
association between disulfS and immune cells in TIME 
(Fig.  4E). Notably, the four DPRGs (NEIL3, MMP1, 
STC2, and CFHR3) in the disulfS model were positively 
correlated with the levels of most immune infiltrat-
ing cells, except for ADH4 (Fig.  4F). Additionally, we 
compared the GMF between the high and low disulfS 
groups, revealing a higher frequency of mutations 
in the common driver gene TP53 of HCC in the high 
disulfS group (Fig. 4G).

Role of disulfS in predicting the efficacy of immunotherapy 
and Sorafenib
To assess whether disulfS can guide immunotherapy 
and drug therapy in clinical HCC patients, we ana-
lyzed the IPS of two ICIs, anti PD-1 and anti CTLA-4, 
using TCIA data. We compared the differences in IPS 
between the high and low disulfS groups across immu-
notherapy groups. The results demonstrated signifi-
cantly higher IPS in the low disulfS group compared to 
the high disulfS group (Fig. 5A–D). We further utilized 
the TIDE database to score patients in the high and low 
disulfS groups for "Exclusion" and found higher Exclu-
sion scores in the high disulfS group (Fig. 5E). Moreo-
ver, we validated the efficacy of immunotherapy in the 
GSE15654 cohort, consisting of 27 samples treated with 
anti PD-1. The results indicated that the disulfS model 
served as a reliable predictor of patient OS, patients 
who responded to immunotherapy had lower disulfS 
(Fig.  5F–H). These findings suggest that the disulfS 
model holds potential for predicting the effectiveness 
of immunotherapy in patients. Lastly, we compared 
the drug sensitivity of the high and low disulfS groups 
to sorafenib, a first-line treatment for clinical HCC 
patients. The results revealed a significant negative cor-
relation between the disulfS model and the IC50 value 
of sorafenib, indicating that the high disulfS group had 
a better treatment response to sorafenib. Therefore, in 
clinical settings, immunotherapy might be a preferable 
option for patients with a low disulfS rather than tar-
geted therapy with sorafenib.

(See figure on next page.)
Fig. 3  Prediction effect validation of disulfS in different cohorts. A KM plots of OS differences between high and low disulfS groups in the TCGA-all 
cohort, ROC curves, and calibration curves. B KM plots of OS differences between high and low disulfS groups in the TCGA-test cohort, ROC curves, 
and calibration curves. C KM plots of OS differences between high and low disulfS groups in the TCGA-train cohort, ROC curves, and calibration 
curves. D KM plots of OS differences between high and low disulfS groups in the GSE15654 cohort, ROC curves, and calibration curves. E KM plots 
of PFS differences between high and low disulfS groups in the TCGA-all cohort, ROC curves, and calibration curves
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Confirmation of disulfidptosis in HCC and its association 
with immune response
Based on the results obtained from RF and ANN mod-
eling, we identified five characterized genes (SLC7A11, 
SLC2A1, ADAM9, ITGAV, and PFKP) that distinguish 
HCC patients into different subgroups of disulfide clus-
ters (Supplementary Fig.  5). Notably, SLC7A11 and 
SLC2A1 were identified as key genes for disulfide metab-
olism disorders in tumor cells [16] and exhibited a high 

predictive value for OS (Supplementary Fig. 2B). There-
fore, we focused our investigation on these two genes. 
Firstly, we compared the differential expression levels 
of 31 disulfides between the high and low disulfidptosis 
subtype, particularly emphasizing the significant upregu-
lation of SLC7A11 and SLC2A1 in the high disulfidpto-
sis subtype (Fig.  6A). Subsequently, correlation analysis 
revealed a significant positive correlation between the 
expression of SLC7A11 and SLC2A1 (Fig. 6B). To validate 
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the expression levels of these two signature genes at the 
cellular level, we performed qPCR experiments. The 
results confirmed higher expression of SLC7A11 and 
SLC2A1 in HCC cells (MHCC97H, LM3) compared to 
human normal hepatocytes (LX2) (Fig.  6C), consistent 
with the findings in Fig. 2A.

Next, to corroborate the presence of disulfide death 
within HCC, we followed a previous study’s methodol-
ogy and employed various known cell death inhibitors 
in combination with the GULT1 inhibitor BAY-876 to 
treat the SLC7A11 highly expressed MHCC97H and 
LM3 HCC cell lines under glucose starvation conditions. 
Interestingly, the known cell death inhibitors, includ-
ing iron death inhibitors (Ferr-1 and DFOM), apoptosis 

inhibitor (Z-VAD-FMK), necrosis inhibitors (NEC-1 and 
-2), and autophagy inhibitor (CQ), were unable to reverse 
cell death compared to the DMSO group (Fig.  6E, F). 
Thus, we tentatively concluded that disulfide death may 
exist in HCC. Additionally, we stained actin filaments of 
MHCC97H and LM3 cells treated with BAY-876 for 8 h 
to determine whether this mode of cell death was associ-
ated with cytoskeletal dynamics. It was noteworthy that 
glucose starvation induced significant changes in cellu-
lar morphology, characterized by cytoconstriction and 
F-actin contraction (Fig. 6G). Our previous biosignature 
analysis suggested that disulfide death might be asso-
ciated with the immunotherapeutic response of HCC 
patients. To demonstrate this, we stimulated PBMC cells 
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with HCC cells undergoing disulfide death in a co-culture 
system, aiming to observe the secretion of immunomod-
ulatory factors such as TNF-α, IL-1β, and IL-6. Excit-
ingly, ELISA analysis revealed significantly higher levels 
of these cytokines in the experimental group’s superna-
tant serum compared to the control group (Fig.  6H, I). 
Thus, we determined that disulfide death can occur in 
HCC cells highly expressing SLC7A11 under glucose 
starvation conditions and may play a potential role in 
immunosensitization.

Confirmation of disulfS effect in clinical cohort
We were particularly interested in examining whether 
the pre-constructed disulfS signature could be applied 
in a clinical setting and whether it exhibited differential 
prognostic effects in HBV ( +) and HBV (−) patients. To 
investigate this, we collected 18 pathologic sections from 
patients diagnosed with HCC at Xiangya Third Hospi-
tal of Central South University. Among these samples, 
9 were HBV ( +) and 9 were HBV (−). We performed 
immunohistochemical staining for the five key disulfS 
construct genes (NEIL3, MMP1, STC2, ADH4, CFHR3) 
in the 18 samples and conducted IOD analysis to rela-
tively quantify the expression levels of these five genes 
among different patients.Subsequently, we categorized 
the 18 patients into high disulfS and low disulfS groups. 
Kaplan–Meier curve analysis revealed that patients with 
high disulfS had lower progression-free survival (PFS) 
and inferior treatment efficacy (Fig. 6K–M). Importantly, 
we observed no significant difference in the distribution 
of disulfS between HCC patients with HBV ( +) and HBV 
(−) (Fig.  6N, O). Finally, we selected the immunohisto-
chemical results of four patients for presentation.

Discussion
In recent years, the incidence of HCC has been increas-
ing, and it is projected to exceed 1 million cases by 2025 
[31]. While advancements in diagnostics and treatments 
have improved outcomes for early-stage HCC patients, 
the overall prognosis for HCC remains poor [32]. 

Conventional therapies such as surgical resection, radiof-
requency ablation, and transarterial chemoembolization 
(TACE) are commonly used for early-stage HCC patients 
[33–35]. However, treatment options for patients with 
advanced stages have been limited to palliative care. The 
emergence of immunotherapy has significantly improved 
the prognosis of advanced HCC patients, with studies 
demonstrating the close relationship between immune 
cell composition and treatment response in HCC 
[36–38].

Disulfidptosis, a novel form of cell death, holds great 
potential in tumor development and immunotherapy. 
Previous studies have shown that disulfide bond polym-
erization in mitochondria can alter tumor progression 
[39]. The use of disulfide-bonded polymers as drug car-
riers has shown promise in enhancing the effectiveness 
of tumor chemotherapy by modulating redox levels [40]. 
Additionally, molybdenum disulfide (MoS2) combined 
with a metal–organic backbone has been explored for 
targeted cancer therapeutic diagnostics [41]. Liu et  al. 
proposed that the accumulation of disulfide in tumor 
cells with high expression of SLC7A11 could induce 
disulfide stress, leading to cell disintegration and death, 
opening up new avenues for tumor treatment [15].

Traditionally, HCC classification has been based on 
the pathological characteristics of cancer cells. However, 
several studies have suggested that HCC subtypes based 
on distinct characteristics can provide valuable clini-
cal insights and prognostic information [42, 43]. In this 
study, we classified HCC patients into two disulfidptosis 
subtypes (C1 and C2) based on the expression profiles 
of 31 disulfrgs using the NMF algorithm. These subtypes 
exhibited different biological and clinical features. Nota-
bly, the C2 subtype, characterized by low expression of 
most disulfrgs, demonstrated better OS and PFS prog-
nosis. The low disulfidptosis subtype was associated with 
improved outcomes. Further analysis revealed that the 
low disulfidptosis subtype had lower levels of immuno-
suppressive cell infiltration, including Treg, Tfh, MDSC, 
and ESTIMATE score. Treg and Tfh cells have been 

Fig. 6  Confirmation of the presence of disulfidptosis in HCC and its association with immune response and the effect of disulfS in a clinical cohort. 
A Box line plot of differential expression of 31 disulfrgs between high and low disulfS groups. B Scatter plot of correlation between SLC7A11 
and SLC2A1 gene expression. C, D RT-qPCR validation of mRNA expression of SLC7A11 and SLC2A1 in three cell lines, LX2, MHCC97H and LM-3. 
SLC7A11 highly expressed MHCC97H cells (E) and LM3 cells (F) were cultured in glucose-normal and glucose-suppressed medium with or without 
FERR-1, Z-VAD, NEC-1, NEC-2, CQ, and DFOM for 8 h. The dashed red line represents the proliferative viability of cells under glucose-normal 
conditions, serving as the reference line for other treatments. G Fluorescence staining of F-actin was performed using oncolytic ethidium 
in MHCC97H and LM3 cells cultured for 8 h under glucose-normal and glucose-suppressed conditions. Levels of cytokines TGF-α (H), IL-1β (I), 
and IL-6 (J) were assayed in the cell supernatants of the co-culture model involving HCC cells and PBMCs. K Kaplan–Meier (KM) curves were 
analyzed to assess progression-free survival (PFS) in 18 patients. The proportional distribution of disulfS among different treatment responses (L) 
and HBV expression (N). Boxplots depict the differences in treatment response (M) and HBV expression (O) between the high and low disulfS 
groups. P Immunohistochemical results from four patients are presented. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001

(See figure on next page.)
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implicated in maintaining an immunosuppressive tumor 
microenvironment that inhibits the therapeutic effects of 
PD-1 [44]. MDSCs suppress T cell responses and possess 
immunosuppressive effects [45]. The ESTIMATE score 
represents tumor purity, and lower tumor purity gener-
ally correlates with better prognosis [46]. Moreover, the 
low disulfidptosis subtype showed activation of the gly-
cine/serine/threonine metabolic pathway, which pro-
motes glutathione synthesis and tumor cell killing [47]. In 
contrast, pathways related to intracellular immune effects 
and the PI3K/AKT signaling pathway were significantly 
downregulated in the low disulfidptosis subtype. Aber-
rant activation of PI3K/AKT signaling promotes tumor 
development, and PI3K/AKT inhibitors have shown 
promising results in suppressing tumors in clinical trials 
[48–51].

To establish a reliable model for typing HCC patients, 
we identified five key signature genes (SLC7A11, SLC2A1, 
ADAM9, ITGAV, and PFKP) that distinguished between 
the C1 and C2 subgroups. The constructed model based 
on these genes exhibited high accuracy, with an AUC 
value of 0.951 (95%CI 0.923–0.972) in the ROC analy-
sis. This finding confirms the successful differentiation 
of HCC patients into two disulfidptosis subtypes, with 
the low disulfidptosis subtype associated with better 
prognosis.

To further explore the link between disulfrgs and 
immune effects, we constructed a WGCNA network 
integrating the expression matrix of 1006 DEGs and 
immune infiltration levels obtained using CIBERSORT. 
The BLUE module, characterized by infiltration levels 
of M1 and M2 macrophages, was selected from the net-
work. Intersection analysis between the 744 genes in 
this module and the 588 protein-coding genes in the 619 
DEPGs resulted in 503Siggs. To evaluate the disulfidpto-
sis status of each patient, we identified five disulfidptosis-
related genes (NEIL3, MMP1, STC2, ADH4, and CFHR3) 
from different disulfidptosis subtypes. Comparison of 
disulfS among patients in different disulfrg revealed sig-
nificantly lower disulfS in groups C2 compared to groups 
C1, consistent with the previous findings of better prog-
nosis in groups C2.

We conducted comprehensive validation of the accu-
racy and validity of disulfS as an independent predictor 
for HCC patients, demonstrating its precise and effective 
prediction of OS and PFS in HCC patients. The inter-
nal and external cohorts showed good agreement, fur-
ther solidifying the significance of our disulfS construct. 
Moreover, we observed a strong association between 
high disulfS groups and advanced tumor grade and stage, 
highlighting the important implications of our findings.

We further investigated the role of high and low-risk 
disulfS groups in assessing MSI, mRNAsi, TIME, and 

GMF in HCC patients. Notably, the disulfS model exhib-
ited a significant positive correlation with the expression 
levels of mismatch repair genes (MLH1, MSH2, MSH6, 
and PMS2). The clinical value of MSI in guiding diagno-
sis and treatment has been established in various tumors, 
including colorectal cancer [52], gastric cancer [53], and 
endometrial cancer [54]. High MSI often indicates poor 
immunotherapeutic outcomes and prognosis. Further-
more, we found a significant positive correlation between 
the disulfS model and mRNAsi, a measure closely related 
to tumor dedifferentiation. A higher mRNAsi score sig-
nifies increased tumor dedifferentiation and suggests 
a poorer prognosis [24]. Surprisingly, we also discov-
ered a higher frequency of TP53 mutations, a common 
driver gene in HCC, among the high disulfS group. TP53 
mutations are associated with worse clinical stage and 
prognosis in patients with HCC, particularly in Western 
countries [55].

Immunotherapies targeting immune checkpoints 
such as PD-1/PD-L1 and CTLA-4 have shown posi-
tive responses in HCC patients [56, 57]. However, the 
limited response rate can primarily be attributed to the 
constraints of tumor immune status [58]. To uncover the 
practical implications of disulfS in guiding clinical treat-
ment, we analyzed IPS and immune exclusion scores of 
two immune checkpoint inhibitors from the TCIA data-
base. Remarkably, the low disulfS group exhibited higher 
IPS and lower exclusion scores. IPS and exclusion scores 
serve as immune reference indicators for assessing the 
extent of checkpoint inhibitor benefit [59]. Additionally, 
we evaluated the predictive value of disulfS for immuno-
therapy in a PD-1-treated melanoma cohort, demonstrat-
ing its efficacy in predicting patient OS. Notably, the low 
disulfS group exhibited better response rates. Further-
more, our analysis of sorafenib drug sensitivity revealed 
an intriguing phenomenon: patients in the low disulfS 
group showed an antagonistic trend between the effects 
of sorafenib-targeted therapy and immunotherapy. This 
observation supports a preference for immunotherapy 
over sorafenib treatment in advanced HCC patients, 
aligning with the results of a phase III clinical trial com-
paring Atezolizumab plus bevacizumab to sorafenib [60].

Next, we demonstrated the occurrence of disulfidp-
tosis in HCC cells and identified SLC7A11 and SLC2A1 
as key genes through cell proliferation assays and phal-
loidin staining. Furthermore, our co-culture modeling 
indicated a potential association between disulfidptosis 
and immunotherapeutic response in HCC. Lastly, we 
validated the clinical application value of the constructed 
disulfS signature in our own cohort. Although several 
studies have attempted to establish a prognostic signa-
ture for disulfide death-related genes in HCC [16–19, 
61, 62], they have primarily focused on bioinformatics 



Page 19 of 22Chen et al. Cancer Cell International          (2024) 24:194 	

analysis without conducting further molecular biology 
experiments to confirm the existence of disulfide death 
in hepatocellular carcinoma. Additionally, some of these 
studies constructed prognostic models with inadequate 
AUC values for ROC curves in validation cohorts, failing 
to validate the predictive effects of these models in real-
world settings. To overcome these limitations, our study 
sought to address these gaps by carrying out cell biology 
experiments and collecting clinical samples from hospi-
tals. This approach allowed us to explore the phenom-
enon of disulfide death in HCC more comprehensively 
and provided a solid foundation for our findings. In sum-
mary, our study identified two key genes, SLC7A11 and 
SLC2A1, crucial for the molecular typing of disulfidp-
tosis in HCC patients. These genes exhibited excellent 
predictive power for patient survival. SLC7A11 serves as 
an important importer of cysteine for glutathione bio-
synthesis and antioxidant defense, and its overexpression 
is observed in various human cancers [63]. Increased 
SLC7A11 expression promotes tumor growth by sup-
pressing ferroptosis levels [64]. Moreover, SLC7A11 
overexpression synergizes with ferroptosis inducers to 
enhance sensitivity to PARP inhibitors in BRCA-positive 
ovarian cancer patients [65]. The SLC7A11-associated 
high-rate cysteine metabolism in tumor cells relies on 
the pentose phosphate pathway to generate substantial 
amounts of NAPDH, establishing a link to metabolic vul-
nerabilities that could guide therapies targeting cancers 
with high SLC7A11 expression [14]. On the other hand, 
SLC2A1 promotes immune evasion and liver metastasis 
in colon cancer by inducing regulatory T cells [66]. Dele-
tion of SLC2A1 in tumor-associated neutrophils hampers 
lung tumor growth and enhances radiotherapy efficacy 
[67]. CDK6-mediated transcriptional downregulation 
of SLC2A1 induces autophagy in HCC cells through the 
AMPK-ULK1 pathway [68].

However, our study has certain limitations. Firstly, fur-
ther validation of the accuracy and efficacy of disulfS in 
large multicenter prospective cohorts is necessary. Sec-
ondly, ongoing exploration of the specific mechanisms 
of action of SLC7A11 and SLC2A1 through basic experi-
ments is a direction for future research efforts.

In conclusion, our study introduces a well-defined 
molecular typing of HCC patients based on disulfrg, 
integrating different typing methods with immune infil-
tration. We quantitatively constructed disulfS as a novel 
prognostic and therapeutic biomarker, accurately pre-
dicting prognosis and immunotherapy response in tumor 
patients. Furthermore, we identified key prognostic 
genes associated with HCC development and validated 
their expression in HCC, providing new insights into 
prognosis and treatment strategies. The disulfS scor-
ing method can aid clinicians in developing accurate 

and personalized treatment plans, potentially improving 
patient outcomes and tailoring individualized therapies.
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