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Integration of mult-omics and nucleotide 
metabolism reprogramming signature 
analysis reveals gastric cancer immunological 
and prognostic features
Shaofei Chen1 and Zhiyong Wang1* 

Abstract 

Background Gastric cancer is a frequent and lethal solid tumor that has a poor prognosis and treatment result. 
Reprogramming of nucleotide metabolism is a characteristic of cancer development and progression.

Methods We used a variety of machine learning techniques to create a novel nucleotide metabolism-related index 
(NMRI) using gastric cancer sample data obtained from the TCGA and GEO databases. This index is based on genes 
associated to nucleotide metabolism. Gastric cancer patients were categorized into high and low NMRI groups based 
on NMRI results. The clinical features, tumor immune microenvironment, response to chemotherapy, and response 
to immunotherapy were then thoroughly examined. In vitro experiments were then used to confirm the biological 
role of SERPINE1 in gastric cancer.

Results The four nucleotide metabolism-related genes that make up NMRI (GAMT, ORC1, CNGB3, and SERPINE1) 
were verified in an external dataset and are a valid predictor of prognosis for patients with gastric cancer. The high 
NMRI group was more responsive to immunotherapy and had greater levels of immune cell infiltration than the low 
NMRI group. The proliferation and migration of stomach cancer was shown to be decreased by SERPINE1 knockdown 
in vitro.

Conclusions This study’s NMRI can reliably predict a patient’s prognosis for stomach cancer and pinpoint the patient 
group that will benefit from immunotherapy, offering important new information on the clinical treatment of stom-
ach cancer.
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Background
The second most prevalent cancer killer globally, gastric 
cancer (GC) is a malignant tumor that often affects the 
digestive tract [1, 2]. Gastric cancer risk factors include 

a history of Helicobacter pylori infection, a family history 
of the disease, and a diet high in nitrates and nitrites [3]. 
Current treatments have made great strides in slowing 
the growth of gastric cancer, but patients with advanced 
gastric cancer still have poor long-term survival rates [4]. 
According to recent research, immunotherapy can extend 
a patient’s survival time if they have advanced stom-
ach cancer, however this is not always the case for these 
individuals [5]. As a result, developing novel strategies 
for clinical first-line therapy for patients with stomach 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cancer Cell International

*Correspondence:
Zhiyong Wang
wangzhiyong12345@126.com
1 Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan 430022, Hubei, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-024-03396-0&domain=pdf


Page 2 of 13Chen and Wang  Cancer Cell International          (2024) 24:212 

cancer is critically needed. Changes in metabolism are a 
fundamental characteristic of cancer cells, and increased 
nucleotide production and utilization are essential and 
common in all forms of cancer cells [6]. Nucleotide meta-
bolic reprogramming plays a major role in the course of 
cancer, including unchecked proliferation, resistance to 
apoptosis, prolonged angiogenesis, immunological eva-
sion, and metastasis [7].

It has been demonstrated that nucleotide metabolism 
is crucial for the development of tumors and the con-
trol of the immunological milieu [8, 9]. Nevertheless, a 
thorough synopsis of the connection between nucleotide 
metabolism and stomach cancer is still lacking. In order 
to predict the prognosis of patients with gastric cancer 
and the efficacy of treatment interventions, we gathered 
nucleotide metabolism-related genes in this study and 
used machine learning techniques to create a new indi-
cator, the nucleotide metabolism-related index (NMRI). 
Finally, using in  vitro tests, we assessed SERPINE1’s 
involvement in gastric cancer.

Materials and methods
Data source
We extracted transcriptomic data and clinical data data 
of gastric cancer patients from the The Cancer Genome 
Atlas (TCGA) database (https:// portal. gdc. cancer. gov/) 
[10]. From the GeneCards database and review publica-
tions, we gathered expressed genes linked to nucleotide 
metabolism as NM-related genes (Table  S1). Further-
more, as a validation cohort, expression and clinical data 
related to stomach cancer were retrieved from the GEO 
database (ID: GSE84437). All gene sets were processed 
by homogenization. The Human Protein Atlas database 
(https:// www. prote inatl as. org/) [11] was also searched to 
obtain histological validation of GAMT, ORC1, CNGB3, 
and SERPINE1 at the protein level between gastric can-
cer tumor tissues and gastric normal tissues.

Construction and validation of nucleotide 
metabolism‑related index (NMRI)
Following differential (LogFc > 1; fdr < 0.05) and prog-
nostic (p < 0.05) analyses of the expression data from the 
training dataset (TCGA samples), the four NM-related 
genes were identified by univariate and multivariate 
Cox regression analyses and built as NMRI. The follow-
ing formula was used to determine each stomach can-
cer sample’s NMRI score: Coef(Gene 1) × Expr(Gene 
1) + Coef(Gene 2) × Expr(Gene 2) + …… + Coef(Gene 
n) × Expr(Gene n) is the NMRI (univariate cox regression 
analysis was used to screen for prognostically relevant 
genes, and multivariate cox regression analysis allowed 
simultaneous analysis of the effects of multiple predic-
tors on the occurrence of survival events.). Expr(Gene) 

denotes the expression of Gene and Coef(Gene) denotes 
the risk regression coefficient of Gene. We divided gas-
tric cancer patients into two groups: patients with high 
NMRI and patients with low NMRI, based on the median 
value of NMRI.

Unsupervised clustering of NMRI‑related genes
In order to discover nucleotide metabolism-associated 
gastric cancer subtypes, we used consensus clustering 
using the R package "ConsensusClusterPlus" based on the 
intersection of NMRI-associated genes and gastric can-
cer and normal tissue differential genes [12].

Immune microenvironment analysis
Tumor purity, ESTIMATE score, immune cell score, and 
stroma score were computed for every sample using the 
R package "ESTIMATE" [13]. The relative percentage of 
immune cell infiltration was measured using the Single 
Sample Gene Set Enrichment Analysis (ssGSEA) tech-
nique. Additionally, seven software systems, including 
XCELL, carried out immune cell correlation analysis.

Chemotherapy response and immunotherapy response
By using the ProPhetic method to determine the IC50 
values for various chemotherapeutic and targeted thera-
peutic medicines, we were able to evaluate the respon-
siveness of patients to medication. Patients’ responses 
to immunotherapy can be predicted using the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm; 
higher TIDE scores are frequently linked to worse treat-
ment responses and more immune escape potential [14]. 
Additionally, we used the TCIA database (https:// tcia. at/ 
home) to download IPS score data for gastric cancer in 
order to evaluate patient response to immune checkpoint 
inhibitors such as anti-PD-1 and anti-CTLA4 [15]. The 
Real World Immunotherapy dataset (Imvigor210 dataset) 
was used to validate immunotherapy effects.

Molecular dock
Using Schrödinger software, we screened and ran molec-
ular docking simulations. The PDB database was used to 
obtain the target target’s protein structure (SERPINE1-
7AQG), and the PubChem database (https:// pubch em. 
ncbi. nlm. nih. gov/) was used to obtain the structure of 
the natural small molecule medication. The molecular 
docking module of Schrödinger program was utilized 
to mimic the binding positions of SERPINE1 with small 
molecule medicines.

Small interfering RNA (siRNA) transfection
MKN45 and HGC27 cells were inoculated in cell cul-
ture plates and SERPINE1 was knocked down using 

https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
https://tcia.at/home
https://tcia.at/home
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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small interfering RNA (siRNA) according to the kit 
instructions.

CCK8 experiment
MKN45 and HGC27 cells were spread into 96-well plates, 
and 100 μL of CCK-8 solution was added to each well at 
24, 48, 72, and 96  h. The plates were then incubated in 
an incubator, and the absorbance values of each well were 
determined using an enzyme meter 2 h later.

Wound‑healing and transwell experiments
The next day, MKN45 and HGC27 cells were resus-
pended and arranged on the plate. Next, scratches were 
made with a straightedge, and the floating cells were 
removed and examined under a microscope after 48  h. 
Serum-free media was used to starve transfected MKN45 
and HGC27 cells for a duration of 4 h. Trypsin was used 
to break down the cells and resuscitate them in incom-
plete media without serum. The cells were then incu-
bated for 48 h in two different halves of the Transwell: the 
top chamber, which contained the cell suspension, and 
the lower chamber, which contained complete medium 
with fetal bovine serum. After cleaning the Transwell, the 
cells were stained with crystalline violet and preserved 
with 4% paraformaldehyde. After being cleaned and pre-
served with 4% paraformaldehyde, the cells were stained 
with crystal violet.

Statistical analysis
The "limma" R program was used to assess the differences 
between the surrounding normal tissue and stomach 
cancer. The Kaplan–Meier technique was utilized to plot 
survival curves and examine the variations in survival 
between the two groups. Spearman correlation analysis 
was used to evaluate correlation. A p-value of less than 
0.05 was deemed statistically significant. R conducted all 
statistical analyses.

Results
Identification of nucleotide metabolism‑related 
clusters and differences in immune microenvironment 
and immunotherapeutic response among different clusters
Using nucleotide metabolism-related genes (Table  S1) 
gathered from the GeneCards database and review 
articles, we conducted cluster analysis on gastric can-
cer patients. The results demonstrated that the patients 
could be well classified into two Clusters, with the two 
Clusters having superior internal stability and consist-
ency (Fig.  1A). According to the Kaplan–Meier curves 
(Fig. 1B), patients in the Cluster 1 group had a consider-
ably better prognosis than those in the Cluster 2 group 
(p < 0.05). Compared to the Cluster2 group, they had a 
considerably better prognosis (p < 0.05) (Fig.  1B). When 

the immune microenvironment differences between 
the two Clusters were examined using the ESITIMATE 
method, Cluster 2 outperformed Cluster 1 in terms of 
immune scores, stromal scores, ESITIMATE scores, and 
tumor purity (Fig.  1C). According to Fig.  1D, the CIB-
ERSORT algorithm revealed a substantial difference in 
immune cell infiltration between the two clusters, with 
the weight of CD8 T cells in Cluster 2 being consider-
ably larger than in Cluster 1 (p < 0.05). The majority of the 
immunostimulatory genes, immunosuppressive genes, 
and MHC molecules were found to be significantly more 
expressed in Cluster 2 than in Cluster 1 when we also 
compared the expression of common immunostimula-
tory, immunosuppressive, and MHC molecule genes 
between the two Clusters (Fig.  1E–G). Additionally, we 
discovered that, compared to Cluster 1, Cluster 2 had 
much greater TIDE score and dysfunction, whereas Clus-
ter 1 had significantly higher MSI and exclusion (Fig. 1H). 
Lastly, we examined the IPS scores against the effects of 
anti-PD-1 and anti-CTLA-4 treatment. The results indi-
cated that the scores for CTLA-4(-)PD-1( +), CTLA-4( +)
PD-1(−), and CTLA-4( +)PD-1( +) were significantly 
higher in Cluster 2 than in Cluster 1, indicating that the 
effects of anti-CTLA-4 or anti-PDLA-4 treatment were 
significantly higher in Cluster 2 than in Cluster 1, indi-
cating that the effects of anti-CTLA-4 or anti-PD-1 treat-
ment were significantly lower in Cluster 2 than in Cluster 
1. The more successful immune checkpoint inhibitors 
were CTLA4 or anti-PD-1 (Fig. 1I).

Construction and validation of NMRI
We collected expressed nucleotide metabolism-related 
genes (Table  S1) from the GeneCards database and 
review articles for variance analysis (LogFc > 1; fdr < 0.05) 
and prognostic analysis (p < 0.05), after which, in order to 
construct the nucleotide metabolism-related risk model 
and its derived Nucleotide Metabolism-Related Index 
(NMRI), we screened out, by using one-way Cox analy-
sis, the four genes with independent prognostic value 
to construct NMRI, which were GAMT (HR = 1.058, 
95% CI 1.021–1.096, p = 0.002), ORC1 (HR = 0.896, 95% 
CI 0.810–0.991, p = 0.033), CNGB3 (HR = 2.800, 95% 
CI 1.137–6.896, P = 0.025) and SERPINE1 (HR = 1.032, 
95% CI 1.017–1.047, P = 0.001).The coefficients obtained 
from multifactorial Cox analysis of the four genes in 
the NMRI, the GAMT coefficient was 0.051, the ORC1 
coefficient was -0.094, the CNGB3 coefficient was 1.234 
and the coefficient of SERPINE1 was 0.030. After that, 
we compared the differences in the expression levels of 
GAMT, ORC1, CNGB3, and SERPINE1 in unpaired 
and paired gastric cancer tissues and normal gastric tis-
sues from the TCGA database, and the results showed 
that the expression of the GAMT gene was significantly 
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down-regulated in the gastric cancer tissues, and that the 
expression of ORC1, CNGB3, and SERPINE1 was signifi-
cantly up-regulated in the tumor tissues with significantly 
up-regulated expression (Fig.  2A−B). We also obtained 
immunohistochemical staining results of GAMT, ORC1, 
CNGB3 and SERPINE1 in normal gastric tissues and gas-
tric cancer tissues from the HPA database showed that 
GAMT was decreased in IHC staining in gastric cancer 
tissues, whereas ORC1, CNGB3 and SERPINE1 were all 
increased in IHC staining in tumor tissues (Fig. 2C).

Nucleotide metabolism‑related index predicts 
prognosis in gastric cancer patients
We first analyzed NMRI to predict the prognosis of gas-
tric cancer patients by comparing the differences in sur-
vival between high and low NMRI in overall survival 
(OS), disease-specific survival (DSS), disease-free inter-
val (DFI), and progression-free interval (PFI), respec-
tively, and the results of the survival curves showed 
that, compared with low NMRI, the high NMRI group 

had a OS, DSS, DFI, and PFI poorer prognosis (p < 0.05) 
(Fig. 3A−D). Using the GSE84437 cohort as a validation 
cohort, we assessed the prognostic predictive validity of 
NMRI. The findings also indicated that patients in the 
high NMRI group had a significantly worse prognosis 
than those in the low NMRI group (p < 0.05), indicating 
that NMRI may be a more reliable predictor of patient 
prognosis for gastric cancer (Fig. 3E). NMRI was found to 
be a risk factor regardless of other clinical features based 
on the outcomes of univariate and multivariate regres-
sion analysis (Fig.  3F−G). Additionally, we calculated 
the differences in NMRI scores for other common clini-
cal features. The results indicated substantial differences 
(p < 0.05) in T, N, M, and grade differences (Fig. 3H).

The validity of NMRI prognostic prediction was 
assessed using the area under the ROC curve (AUC). 
The 1-year, 3-year, and 5-year AUCs of NMRI prog-
nostic prediction were 0.636, 0.701, and 0.732, respec-
tively. The AUC values of 1-year, 3-year, and 5-year 
were superior to the other clinical traits for predicting 
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the survival status of patients, indicating that NMRI is 
a more accurate predictor of the survival status of both 
short- and long-term gastric cancer patients (Fig.  3I–
J). Ultimately, we created column line plots utiliz-
ing NMRI and additional clinical characteristics (age, 
clinical stage, T, N, and M), with NMRI accounting 
for the majority of the column line plots’ overall score 
(Fig. 3K). When compared to the reference line, the 1-, 
3-, and 5-year column line plots demonstrated accept-
able prediction accuracy, according to the calibration 
curves of the column line plots (Fig. 3L). These findings 
imply that NMRI is a valid and trustworthy method 
for predicting patients’ chances of surviving stomach 
cancer.

Gene set enrichment analysis and correlation study 
of NMRI with tumor microenvironment
To explore the cancer signature pathways associated with 
NMRI, we performed GSEA analysis in the high and low 
NMRI groups, which showed that the high NMRI group 
was significantly enriched in ANGIOGENESIS, EPITHE-
LIAL MESENCHYMAL TRANSITION and HYPOXIA 
signaling pathways, and the low NMRI group was signifi-
cantly enriched in the DNA REPAIR and OXIDATIVE 
PHOSPHORYLATION signaling pathways (Fig.  3B). 
In addition, GO enrichment analysis of the high NMRI 
group revealed that high NMRI was enriched on multi-
ple immune cell infiltration signaling pathways, such as 
B CELL MEDIATED IMMUNITY, T CELL MEDIATED 
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IMMUNITY, REGULATION OF B CELL ACTIVATION, 
REGULATION OF T CELL ACTIVATION and T CELL 
RECEPTOR COMPLEX signaling pathways (Fig. 3B).

The TME scores (ESTIMATE score, immune score, and 
stroma score) of the patients in the high-NMRI group 
were significantly higher than those in the low-NMRI 

Fig. 3 Association of nucleotide metabolism-related indices with clinical traits and constructed column line graphs. survival curves of the TCGA 
cohort for overall survival (OS) (A), disease-specific survival (DSS) (B), disease-free interval (DFI) (C) and progression-free interval (PFI) (D). E Survival 
curves for the GSE84437 cohort. F‑G Univariate and multivariate regression analysis. H Differences in NMRI scores between different clinical features 
(T, M, N and grading). I NMRI ROC curves at 1, 3 and 5 years. J AUC comparisons of 1-, 3-, and 5-year NMRI with other clinical traits. K Column line 
graphs on NMRI constructs. L Calibration curves for 1-, 3-, and 5-year column line plots. Note * p < 0.05, **p < 0.01, ***p < 0.001
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group, while the tumor purity scores were significantly 
lower than those in the low-NMRI group, indicating that 
the high-NMRI group had a higher level of immune infil-
tration (Fig.  4C). We used the ESTIMATE algorithm to 
assess the immune cell infiltration of the tumor micro-
environment in gastric cancer patients. Using seven 
software programs, including XCELL, we examined the 
relationship between NMRI and immune cell infiltra-
tion. The results showed that NMRI and the major-
ity of immune cells had a positive connection (Fig. 4D). 
The CIBERSORT algorithm’s results demonstrated that 
while the amount of immunosuppressive M2-type mac-
rophages was much lower in the high NMRI group, the 
level of immunostimulated CD8 T cells was significantly 
greater in the high NMRI group than in the low NMRI 
group (Fig. 4E). Furthermore, patients in the high-NMRI 
group had higher immune cell infiltration and immune-
related activities than those in the low-NMRI group, 
according to the results of the ssGSEA algorithm used to 
assess these data (Fig.  4F). Taken together, the findings 
imply that patients with high NMRI values could also 
have significant levels of immune infiltration in stomach 
cancer.

Association of NMRI with immunotherapy efficacy 
and patient response
We compared the expression levels of common immune 
checkpoints (immunosuppressive and immunostimula-
tory genes), MHC molecules, cytokines, and cytokine 
receptors between the high and low NMRI groups in 
order to investigate the relationship between NMRI 
and the immune microenvironment further. The results 
indicated that the expression levels of the majority of 
the aforementioned genes were significantly higher 
in the high NMRI group than in the low NMRI group 
(Fig.  5A−E). The association between NMRI and genes 
that stimulate the immune system, genes that repress 
the immune system, MHC molecules, cytokines, and 
cytokine receptors was next examined. The findings indi-
cated that the majority of the genes had a substantial and 
positive connection with NMRI (p < 0.05, Fig. 5F). These 
findings imply that immunotherapy was more effectively 
received by patients in the high NMRI group.

According to the present study, patients with 
lower TIDE scores are more likely to benefit from 

immunotherapy, and TIDE and IPS scores can be used 
to evaluate a patient’s response to immunotherapy [14]. 
The study revealed that the high NMRI group’s TIDE 
scores were considerably higher than the low NMRI 
group’s, indicating that the immune checkpoint inhibitor 
medication was more effective in the high NMRI group 
(Fig. 5G). Further investigation revealed that the immu-
nophenotypic core (IPS) scores of the high NMRI group 
were significantly higher (p < 0.05) than those of the low 
NMRI group, indicating that the patients in the high 
NMRI group may be more responsive to immunotherapy 
(Fig.  5H−J). Additionally, we examined the relationship 
between the NMRI group and immunogenicity to predict 
patients’ response to immune checkpoint blockade (anti-
PD1 and/or anti-CTLA4). In order to verify the NMRI 
prediction of immunotherapy effect, we lastly gathered 
an external real immunotherapy dataset (Imvigor210). 
The outcomes demonstrated that the patients’ NMRI 
scores in the group responding to anti-PD-L1 immu-
notherapy were significantly higher than those of the 
patients in the non-responding group (Fig.  5K). The 
findings demonstrated that NMRI may predict how well 
stomach cancer patients will respond to immunotherapy, 
with higher NMRI patients seeing better immunotherapy 
outcomes.

NMRI correlation and molecular docking with common 
drug sensitivity
We examined the reactions of the high/low NMRI group 
to both standard gastric cancer chemotherapeutic treat-
ments and targeted therapeutic pharmaceuticals in 
order to inform the clinical usage of medications in these 
patients. The IC50 of the drugs was shown to be inversely 
correlated with the patients’ sensitivity to the drugs. The 
outcomes demonstrated that patients with low NMRI 
had better drug sensitivity, i.e., better therapeutic out-
come, to Cisplatin, Gemcitabine, Methotrexate, Met-
formin, and Gefitinib, while patients with high NMRI 
had higher drug sensitivity to Pazopanib, Bexarotene, 
Dasatinib, Imatinib, and Sunitinib (Fig. 6A).

For chemical screening, a computer technique based 
on structure is called molecular docking. Using the 
PDB database, we were able to retrieve the protein 
structure of SERPINE1 (ID: 7AQG) for the purpose 
of molecular docking with small natural molecules. 

(See figure on next page.)
Fig. 4 Correlation analysis of GSEA and tumor microenvironment. A‑B GSEA analysis of patients in the high NMRI group. C Comparison of tumor 
purity, ESTIMATE score, immune score and stromal score of patients in the high/low NMRI group. D Seven software analyses of NMRI correlating 
with various immune cell infiltration levels. E The CIBERSORT algorithm compares the differences in immune cell infiltration levels between high/
low NMRI groups. F The ssGSEA algorithm analyzes differences in immune cell infiltration and immune-related functions between high/low NMRI 
groups
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Figure 6C−H displays the top six small molecules (Fen-
ugreekine, Portulacaxanthin II, Leucovorin, Kuwanon 
J, Blumeatin, and Schizotenuin F) that have the highest 
affinity for binding to the SERPINE1 binding pocket. 
As an illustration, Portulacaxanthin II forms hydro-
gen bonds with residues Gln-123, Thr-120, Met-110, 
Gly-108, and Leu-105 of the amino acid sequences 
of SERPINE1, where Gln-123 acts as an acceptor and 
Thr-120, Met-110, Gly-108, and Leu-105 as donors. 
Asp-96, His-143, and Arg-118 of the SERPINE1 amino 
acid residues establish hydrogen bonds with Blumea-
tin; Asp-96 is a hydrogen bond donor whereas Arg-118 
and His-143 are hydrogen bond acceptors.

Effects of SERPINE1 knockdown on proliferation 
and migration of gastric cancer cells
We created two siRNAs (SERPINE1-1, SERPINE1-2) to 
mute SERPINE1 expression in MKN45 and HGC27 cells 
in order to study the function of SERPINE1 in gastric 
cancer cells. We transfected MKN45 and HGC27 cells 
with si-SERPINE1 (Figure S1 A-B), respectively, and used 
those cells for CCK8, EdU, wound healing, and Transwell 
experiments. The proliferative ability of MKN45 and 
HGC27 cells in both si-SERPINE1 groups was much less 
than that of the NC group at 24, 48, 72, and 96 h, accord-
ing to cCK8 findings (Fig. 7A−B). The proliferation abil-
ity of MKN45 and HGC27 cells was much lower in the 
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knockdown of the SERPINE1 gene than in the NC group, 
according to the findings of the EdU staining experiment 
(Fig.  7C−D). The findings of the Transwell test and the 
wound healing experiment showed a substantial reduc-
tion in the migratory capacity of MKN45 and HGC27 
cells that had SERPINE1 knocked down (Fig.  7E–H). 
According to the aforementioned findings, reducing 
SERPINE1 expression may prevent stomach cancer cells 
from proliferating and migrating. In addition, we found 
that the proliferative capacity of MKN45 and HGC27 was 

significantly reduced by knocking down ORC1(Figure S1 
C-D).

Discussion
When stomach cancer is locally progressed or meta-
static, it is an aggressive malignant tumor with a ter-
rible prognosis [16]. Certain individuals with advanced 
gastric cancer have recently demonstrated success with 
immunocheckpoint inhibitors that target PD-1 or PD-L1 
[3, 17]. Thus, in order to forecast the survival status and 
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immunotherapy response in patients with gastric can-
cer, we require trustworthy markers. Using nucleotide 
metabolism-related genes derived from four nucleotide 
metabolism-related genes (GAMT, ORC1, CNGB3, and 
SERPINE1), we developed a nucleotide metabolism-
related index (NMRI) in this work. We discovered that 
NMRI is able to predict not only the prognosis of patients 
with stomach cancer but also the effectiveness of immu-
notherapy in these patients, which might result in treat-
ment approaches to enhance the prognosis of patients. 
Further investigation using in  vitro tests and early vir-
tual screening revealed SERPINE1’s oncobiological role 

and possible druggability in gastric cancer. The derived 
nucleotide metabolism-related index can be used as a 
new indicator for predicting the prognosis of gastric can-
cer and the benefit of immunotherapy, and it may offer 
important insights into the hunt for novel therapeutic 
strategies for gastric cancer. As a result, the nucleotide 
metabolism-related model we constructed can predict 
the prognostic risk and immunotherapy response in gas-
tric cancer.

This study’s exploration of the oncological therapeu-
tic potential of gastric cancer from the novel viewpoint 
of nucleotide metabolic reprogramming is a significant 
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Fig. 7 Knockdown of SERP INE1 inhibits gastric cancer cell proliferation and migration. CCK8 viability assay (A-B), EdU cell proliferation ability assay 
(C‑D), wound healing ability assay (E–F) and Transwell cell migration ability (G‑H) of MKN45 and HGC27 cells transfected with two si-SERPINE1, 
respectively. Note * p < 0.05, **p < 0.01, ***p < 0.001
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result. We compared the expression levels of common 
immune checkpoints and HLA molecules between the 
high and low NMRI groups to see if NMRI could predict 
the effectiveness of anticancer immunotherapy in gastric 
cancer patients. We discovered that the vast majority 
were significantly upregulated in the high NMRI group. 
It is possible that ICI immunotherapy is more success-
ful in treating the high NMRI population since the TIDE 
scores in the high NMRI group were considerably lower 
than those in the low NMRI group. In keeping with these 
findings, the IMvigor 210 cohort’s anti-PD-L1 treatment-
responsive and non-responsive groups differed sig-
nificantly in their NMRI scores, with the former having 
higher NMRI scores. On the other hand, using the IC50 
values of both chemotherapeutic and targeted therapeu-
tic drugs, we were able to anticipate how stomach can-
cer patients will react to these conventional treatments. 
These findings imply that our development of NMRI is 
a useful indicator for evaluating how well patients with 
gastric cancer respond to immunologic and pharmaco-
logical therapies. It can also precisely determine which 
patients are most likely to benefit from immunotherapy 
and provide a prognosis for gastric cancer patients.

The nucleotide metabolism-related index eventu-
ally contained four genes: GAMT, ORC1, CNGB3, and 
SERPINE1. The expression of GAMT was considerably 
down-regulated in gastric cancer tissues when compared 
to normal gastric tissues, while the expression of ORC1, 
CNGB3, and SERPINE1 was significantly up-regulated 
in gastric cancer tissues. Guanidinoacetate N-Methyl-
transferase (GAMT) encodes a methyltransferase that 
uses S-adenosylmethionine as a methyl donor to con-
vert guanidinoacetate to creatine. This process causes 
creatine deficiency syndrome in the brain [18, 19]. The 
main component of the DNA replication complex pre-
origin recognition complex, origin recognition com-
plex subunit 1 (ORC1), can enhance DNA replication by 
enlisting the help of CDC6 and cell cycle protein E [20]. 
The beta subunit of the cyclic nucleotide-gated ion chan-
nel, which is involved in controlling channel function in 
cone photoreceptors, is encoded by the Cyclic Nucleo-
tide Gated Channel Subunit Beta 3 (CNGB3) gene. 
Mutations in CNGB3 have been linked to a number of 
disorders, including color blindness and macular degen-
eration in teenagers [21, 22]. Serpin Family E Member 
1 (SERPINE1) encodes a member of the serine protease 
inhibitor (serpin) superfamily, which plays an important 
role in the fibrinolytic system, and current studies have 
shown that SERPINE1 plays a role in the prognosis, drug 
resistance, and metastasis of a variety of tumors [23, 24]. 
According to the aforementioned findings, gastric cancer 
biological processes and tumor immunity are strongly 
linked to nucleotide metabolism-related genes (GAMT, 

ORC1, CNGB3, and SERPINE1) and their derived nucle-
otide metabolism-related indices (NMRIs).

We also showed the viability of a structure-based strat-
egy to identify small molecule therapeutic candidates 
that can target core proteins. This demonstrates another 
application of NMRI for predicting therapeutic efficacy. 
In order to screen possible small-molecule medications 
by molecular docking using Schrödinger software, we 
employed SERPINE1 as a small-molecule drug target 
and downloaded natural small-molecule pharmaceuticals 
from the PubChem database. Leucovorin is one of the top 
six small molecule medications with the highest affinity 
to SERPINE1, and it is now utilized as a first-line therapy 
for advanced gastric and colorectal cancers together with 
fluorouracil and oxaliplatin [25, 26]. Blumeatin is isolated 
from the traditional Chinese medicine Blumea balsamif-
era, which has been demonstrated to have anti-inflam-
matory activity [27]. Although our molecular docking 
results indicate that these natural small molecules can 
bind to SERPINE1, the specific binding mechanism has 
yet to be deeply investigated.

Conclusion
To summarize, our thorough examination of several fac-
ets of gastric cancer using NMRI, which is derived from 
genes associated with nucleotide metabolism, revealed 
that NMRI is a reliable tool for predicting a patient’s 
prognosis and response to immunotherapy. From the 
standpoint of nucleotide metabolism, this study discov-
ered novel combinations of prognostic and therapeutic 
biomarkers as well as possible therapeutic targets. These 
findings will be helpful for future studies on therapeutic 
approaches for gastric cancer. Investigating nucleotide 
metabolism reprogramming and its potential in cancer 
immunotherapy provides new insights for clinical diag-
nostics, personalized care, and translational research in 
gastric cancer.
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