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splicing process of pre-RNA by recognizing and splicing 
it [1].

The process of splicing is highly controlled and regu-
lated by several components referred to as splicing regu-
latory elements (SREs), including cis-acting factors and 
trans-acting factors [1]. Cis-acting factors include exonic 
splicing enhancers (ESEs), exonic splicing silencers 
(ESSs), intronic splicing enhancers (ISEs), and intronic 
splicing silencers (ISSs), which are located within the 
pre-RNA sequence [2]. Trans-acting factors can bind to 
cis-acting factors and regulate spliceosome assembly and 
splice site recognition. The serine/arginine-rich splic-
ing factors (SRSFs), consisting of 12 members (SRSF1-
SRSF12) in mammals, were reported to be important 
trans-acting factors. SRSFs primarily bind to the cis-
acting element ESEs and facilitate the binding of snRNPs 
to the splicing sites, thereby regulating pre-RNA splicing 
[3].

Introduction
Gene expression is a complex process involving various 
steps, including transcription, translation, post-tran-
scription and post-translation. Among these steps, the 
splicing of precursor RNA (pre-RNA) was important in 
the post-transcription step. In the process of splicing, the 
introns are removed from the pre-RNA, while the exons 
are accurately joined together to produce mature mRNA. 
The spliceosome complex, composed mainly of five small 
nuclear ribonucleoprotein particles (snRNPs), aids in the 
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Apart from their role in pre-RNA splicing, SRSF fam-
ily members also play important roles in DNA replica-
tion, transcription, and translation, thereby involves in 
hematopoiesis, development, and other biological pro-
cess [4–7]. They are also associated with the develop-
ment of several diseases, particularly cancers. While the 
physiological functions of SRSFs and their involvement in 
solid cancer development have been extensively reviewed 
[8–12], a comprehensive summary of their significant 
functions in normal hematopoiesis and hematopoietic 
malignancies is currently absent. Hence, the review seeks 
to present a summary of their roles in normal hemato-
poiesis and hematopoietic malignancies.

Structures of SRSF family members
With the exception of SRSF12, which is predominantly 
expressed in the brain and testis, the other members of 
the SRSF families exhibit wide expression across vari-
ous tissues [13]. While most SRSFs are localized exclu-
sively in the nucleus, certain members, such as SRSF1, 
SRSF3, and SRSF7, have the ability to shuttle between the 
nucleus and cytoplasm [10].

SRSF proteins exhibit a remarkably conserved struc-
ture, usually comprising one or two RNA recognition 
domains (RRMs) positioned at the N-terminal region. At 
the carboxyl terminus, there is a highly phosphorylated 
serine/arginine-rich domain (RS) [10]. The RRM domain 
is responsible for recognizing specific RNA sequences 
and determining the binding sites of SRSFs on RNA. The 
RS domain facilitates interactions between SRSFs and 
other proteins as well as RNA, and its activity can be reg-
ulated through phosphorylation modifications [12].

Molecular functions of SRSFs
SRSFs are associated with alternative splicing of pre-RNA
SRSFs play crucial roles in alternative splicing of pre-
mRNA [9]. During gene expression, pre-mRNA, which 
contains multiple introns, is processed by the spliceo-
some complex to generate mature RNA and produce dif-
ferent transcript variants. Splice sites can be categorized 
into three types: 5’ splice sites (5’ss), 3’ splice sites (3’ss), 
and branch point sites (BPSs) located 18–40 nucleotides 
upstream of the 3’ss [15]. Additionally, there is a polypy-
rimidine region following the BPSs. The spliceosome, 
assembled by five types of small nuclear ribonucleopro-
teins (snRNPs) (U1, U2, U4, U5, and U6), can recognize 
the splice sites and cleave the RNA chain to remove 
introns [16, 17] (Fig. 1).

The splicing process begins with U1 snRNP recogniz-
ing the 5’ss through complementary base pairing [18]. 
Simultaneously, U2AF65 binds to the polypyrimidine 
region and attaches to splicing factor 1 (SF1) to facilitate 
its binding to the BPSs. Additionally, U2AF35 attaches to 
the 3’ss, resulting in the formation of the E complex. Sub-
sequently, with the assistance of U2AF, U2 snRNP takes 
the place of SF1 and attaches to the BPSs through base 
complementary matching, resulting in the formation of 
complex A. The triple snRNP particles (U4, U6, and U5) 
induce rearrangement of complex A, bringing the three 
splice sites together. By undergoing a series of structural 
changes, U1 snRNP separates and U6 snRNP attaches to 
the 5’ss, enabling the formation of a base-paired complex 
between U6 snRNP and U2 snRNP. Following this rear-
rangement, complex B, which possesses catalytic activity, 
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is formed and can splice the pre-mRNA through two 
transesterification reactions [18, 19].

SRSF proteins facilitate splice site recognition, medi-
ate spliceosome assembly, and participate in alternative 
splicing [20]. Alternative splicing events regulated by 
SRSFs include alternative 5’ss, alternative 3’ss, skipped 
exons, retained introns, and mutually exclusive exons 
[21]. SRSFs possess distinct binding motifs within pre-
mRNA. For example, SRSF1 preferentially binds to the 
consensus sequence GGAGA within exonic regions [22]. 
The binding motifs of SRSF3 are mainly CCAGC(G)
C and A(G)CAGCA, while SRSF9 binds to pre-mRNA 
motifs rich in GA, typically located in the coding 
sequence (CDS) region and 5’ untranslated region (UTR) 
of the coding exon [23]. Notably, the proportion of bound 
RNA molecules in pre-mRNA is correlated with the 
number of cis-acting elements [24].

Moreover, SRSFs assist in spliceosome assembly. For 
example, the RNA recognition motifs (RRMs) of SRSF1 
act as a bridge between pre-mRNA and the RRM of the 
U1-70 K component of U1 snRNP [25] (Fig. 1). SRSFs can 
also interact with other proteins and recognize specific 
sequences within pre-mRNA, leading to changes in sig-
nal intensity of splicing at splice sites. SRSFs can compete 
or cooperate in a dose-dependent manner to regulate 

alternative splicing. For instance, as negative regulators 
of poison exon inclusion in TRA2β, SRSF1 and SRSF3 
synergistically increase protein levels of TRA2β by a 
log25-fold, which is greater than the effect of either pro-
tein alone, indicating a synergistic effect [26].

SRSFs regulate mRNA stability and nuclear export
SRSF proteins can influence mRNA stability through 
various mechanisms. Firstly, SRSFs can directly bind to 
mRNA and affect its stability (Fig. 1). For instance, SRSF2 
and SRSF3 are primarily involved in mRNA stabilization, 
whereas SRSF1 facilitates mRNA degradation through 
its interaction with the 3’ untranslated region (3’UTR) of 
mRNA [27]. Secondly, alternative splicing can lead to the 
formation of a premature termination codon (PTC) in the 
mRNA transcript, which can cause a reduction in mRNA 
stability and degradation via the nonsense-mediated 
mRNA decay (NMD) pathway [28, 26] (Fig.  1). SRSF3 
stabilizes the mRNA of TAR DNA-binding protein-43 
(TDP43) by inhibiting the NMD pathway in triple-neg-
ative breast cancer, thereby maintaining the stemness of 
breast cancer stem cells [28]. Deletion of SRSF3 expres-
sion leads to the generation of a PTC in TDP43 mRNA 
during alternative splicing, resulting in consistent mRNA 

Fig. 1 The molecular functions of SRSFs. ① SRSF proteins are primarily located in nuclear speckles, where DNA replicate and transcript. ② SRSFs can in-
teract with the RNA polymerase II and involve in transcription. ③ Splice sites include 5’ splice sites (5’ss), 3’ splice sites (3’ss), and branch point sites (BPSs), 
which can be recognized and spliced by small nuclear ribonucleoproteins (snRNPs) (U1, U2, U4, U5, and U6). The splicing process begins with U1 snRNP 
recognizing the 5’ss, simultaneously, U2AF65 interacts with splicing factor 1 (SF1) to facilitate its binding to the BPSs. Additionally, U2AF35 binds to the 
3’ss. SRSFs can act as a bridge between pre-mRNA and U1 snRNP. In addition, SRSFs can also interact with other proteins and recognize specific sequences 
within pre-mRNA. ④ SRSFs can directly bind to mRNA and affect its stability; in addition, alternative splicing events mediated by SRSFs can introduce 
a premature termination codon (PTC) in the mRNA transcript, resulting in decreased mRNA stability and degradation through the nonsense-mediated 
mRNA decay (NMD) pathway in the cytoplasm. ⑤ Reduced binding of phosphorylated SRSF1 to target mRNA promotes the binding of RNA to the nuclear 
export adaptor ALYREF and the nuclear export receptor Nxf1, facilitating the export of mRNA from the nucleus to the cytoplasm. ⑥ SRSFs can inhibit the 
translation binding to the UTR region of specific target
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levels in the nucleus and subsequent degradation of 
mRNA in the cytoplasm via the NMD pathway [29].

Furthermore, SRSFs are involved in the regulation of 
mRNA nuclear export. Reduced binding of phosphory-
lated SRSF1 to target mRNA enhances the attachment 
of RNA to the nuclear export adaptor ALYREF and the 
nuclear export receptor Nxf1, facilitating the transporta-
tion of mRNA from nucleus to cytoplasm [30] (Fig.  1). 
Additionally, SRSF3 can interact with the nuclear m6A 
reader YTHDC1 to mediate the nuclear export of 
N6-methylated mRNA [31].

SRSFs maintain DNA replication and transcription
SRSF proteins are primarily located in nuclear speckles, 
which are substructures within the nucleus that lack a 
membrane. During adenovirus infection, SRSF2 assists 
in viral DNA replication and transcription within the 
nuclear speckle region [6] (Fig.  1). Additionally, SRSFs 
have the ability to interact with the carboxyl terminus of 
RNA polymerase II, suggesting their involvement in tran-
scription (Fig. 1). Further studies have shown that SRSF2 
can enhance the dynamic binding of positive transcrip-
tion elongation factor b (P-TEFb) to RNA polymerase II, 
thereby facilitating phosphorylation of the carboxyl ter-
minus of RNA polymerase II and promoting transcrip-
tional elongation [32].

SRSFs are involved in protein translation
SRSFs proteins are involved in the regulation of protein 
translation through direct binding to target mRNA and 
modulation of the activity of translation repressor 4E-BP 
[33, 34]. SRSF1 inhibits the translation of PTEN by sup-
pressing the activity of the PTEN mRNA’s 3’-UTR34 
(Fig.  1). Similarly, SRSF3 binds to the 5’-UTR region of 
specific target mRNAs, leading to the inhibition of trans-
lation of programmed cell death 4 (PDCD4) mRNA [35]. 
Moreover, SRSF1 can promote the translation of target 
mRNAs by regulating phosphorylation of the translation 
repressor 4E-BP, thus activating the translation-initiation 
factor eIF4E [33].

The regulatory mechanisms of SRSFs
The expression and functions of SRSF family members 
are tightly regulated at both the transcriptional and post-
transcriptional levels. First, SRSF family members can 
regulate each other’s transcription and alternative splic-
ing. For example, SRSF1 can control the transcription of 
SRSF3, while SRSF3 can influence the alternative splicing 
of SRSF1 pre-mRNA [36]. Second, the m6A modification 
level of SRSF mRNA can affect its stability and degrada-
tion through the YTHDC1-dependent NMD pathway, 
leading to changes in SRSF protein expression [37, 38]. 
Third, microRNAs can regulate SRSF1 expression by 
modulating the activity of mRNA’s 3’-UTR, thereby 

controlling its translation and protein levels [35]. Forth, 
SRSF2 can interact with its own mRNA through a dis-
ordered amino acid sequence at its carboxyl terminus, 
leading to the inhibition of its own translation [39]. In 
addition, SRSF3 controls its own expression by increasing 
the incorporation of a different exon 4 containing a stop 
codon [40]. Fifth, arginine methylases can modulate the 
methylation level of SRSF proteins, affecting their affin-
ity for target mRNA and subsequent regulatory functions 
[41]. Sixth, various protein kinases, including AMPK, 
CDC like kinase (CLK), and SR protein kinases (SRPK), 
can regulate the activity and nucleoplasmic distribution 
of SRSF proteins through phosphorylation [42–44]. Sev-
enth, protein hydroxylases and deubiquitination enzyme 
USP7 can impact the stability of SRSF proteins, influenc-
ing their abundance and activity [45, 46]. All these reg-
ulatory mechanisms ensure the precise control of SRSF 
expression and functions, allowing for dynamic regula-
tion of RNA processing and gene expression.

Important roles of SRSFs in development
SRSFs play crucial roles in promoting embryonic devel-
opment and maintaining physiological functions. Srsf3 
exhibits high expression levels in oocytes and during 
early embryonic development. Its deletion can result 
in the failure of blastocyst formation and embryonic 
death during the morula stage [21]. Mice lacking Srsf3 in 
embryonic hearts display impaired cardiomyocyte prolif-
eration and perish in utero [27, 47]. Srsf3 is also essen-
tial for the maturation and metabolic function of mouse 
livers [48]. Specific deletion of Srsf3 in the liver impairs 
hepatocyte maturation and metabolism, leading to spon-
taneous hepatocellular carcinoma in mice [49].

SRSF2 promotes epidermal differentiation by regulat-
ing m5C modification of VTRNA1.1 mRNA. Deletion 
of SRSF2 in epidermal progenitors can cause cell cycle 
arrest and cell death [50]. SRSF1 directly regulates the 
alternative splicing of IRF7 and IL27ra mRNA, ensur-
ing T cell maturation in the thymus and promoting thy-
mus development [4]. T cell-specific Srsf1 null mice can 
develop systemic autoimmune diseases and lupus nephri-
tis due to excessive T cell activation and production of 
proinflammatory cytokines [35].

Multiple SRSFs are involved in the alternative splic-
ing of the proinflammatory molecule Tissue Factor (TF). 
SRSF1 and SRSF6 promote exon 5 inclusion, while SRSF2 
and SRSF5 promote exon 5 skipping through their com-
petition for specific binding sites on exon 5 of TF mRNA 
[51]. Additionally, SRSF9 plays a major role as an alterna-
tive splicing factor in neutrophils [52].
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SRSFs promote tumorigenesis and progression
High expression of SRSFs was associated with poor 
prognosis in various types of tumors, including ovarian 
cancer, gastric cancer, colorectal cancer, breast cancer, 
hepatocellular carcinoma, lung cancer, and glioma [53, 
54]. First, SRSFs are essential for the growth and survival 
of cancer cells [53, 54]. In gastric cancer, SRSF1 directly 
binds to MST1R mRNA, regulating its splicing and pro-
moting malignant tumor cell proliferation [55]. Second, 
in triple-negative breast cancer, SRSF3 interacts with the 
splicing factor TDP43 to regulate various splicing events, 
including apoptosis, extracellular matrix remodeling, cell 
adhesion, and tumor cell metastasis [56]. Third, SRSFs 
can also modulate the splicing of VEGF and fibronectin 
mRNA, promoting tumor angiogenesis and breast cancer 
progression in the tumor microenvironment [57]. Fourth, 
SRSF3 directly binds to CCDC50S mRNA, maintain-
ing its stability in the cytoplasm, which is closely related 
to lower tumor differentiation [58]. Moreover, overex-
pression of SRSFs in patient-derived glioma stem cells 
induces notable alterations in alternative splicing, pro-
moting the growth and self-renewal of glioma stem cells 
[59, 60] (Fig. 2).

Elevated expression of SRSF5 and SRSF6 has also been 
observed in gastrointestinal cancer. Phosphorylation of 
these proteins by CLK regulates spliceosome assembly, 
alternative splicing, and gene expression [61–63]. The 
small molecule inhibitor of CLK, SM08502, penetrates 
the nucleus of tumor cells and inhibits CLK activity. It 
suppresses the phosphorylation of SRSF5 and SRSF6 in 
gastrointestinal cancer, resulting in abnormal splicing of 
the Wnt signaling pathway and decreased gene expres-
sion. Currently, a phase I clinical trial of SM08502 in 
solid tumors (NCT03355066) is underway to explore its 
efficacy in tumor treatment [64]. Another kinase regu-
lating phosphorylation of SRSFs, SRPK-1, was also a 
therapy target of cancers. In non-small cell lung cancer 
(NSCLC), the chimeric antibody target for SRPK-1 could 

significantly suppress growth, migration and invasion of 
the NSCLC cells [65].

Functions of SRSFs in normal hematopoiesis
SRSF2 plays crucial roles in primitive hematopoiesis
SRSFs play crucial roles in hematopoietic development, 
and knockdown of Srsf2 in the hematopoietic system 
leads to embryonic death [66]. The expression level of 
SRSF2 changes during the differentiation of mesoderm 
cells into endothelial progenitor cells (EPCs). Disrupt-
ing this process specifically delays the emergence of 
EPCs and hemogenic endothelial progenitor cells (HEPs) 
by altering the splicing of NUMB mRNA [67]. NUMB 
is essential for normal cell proliferation, and its expres-
sion in EPCs peaks during hematopoietic development. 
However, NUMB exhibits various alternative splicing 
isoforms, primarily distinguished by the length of the 
phosphotyrosine binding (PTB) domain and proline-rich 
(PRR) domain. The long isoform, NUMB_L, includes 
exon 9 encoding the 48th amino acid in the PRR domain, 
while the short isoform, NUMB_S, lacks exon 9 [68]. In 
mesoderm cells, NUMB_L is predominantly expressed, 
while NUMB_S is specifically added in EPCs. NUMB_S 
plays a vital role in EPC development by activating the 
NOTCH pathway. SRSF2 interacts with NUMB exon 
9 to regulate the alternative splicing of NUMB mRNA 
and promote the generation of NUMB_L. However, the 
expression level of SRSF2 is down-regulated during EPC 
generation, resulting in the predominant expression of 
NUMB_S in EPCs [67] (Fig. 3A).

It has been reported that fetal hepatocytes lacking 
Srsf2 exhibit significantly elevated apoptosis levels and 
reduced hematopoietic stem/progenitor cells in the liver 
[69] (Fig.  3B). The SRSF2P95H mutation targets were 
related to RNA processing and splicing, which include 
several members from the hnRNP and SR families, indi-
cating that SRSFs may dominate in RNA splicing [70].

Fig. 2 Roles of SRSFs in solid tumors. High expression of SRSFs in solid tumors can promote the growth and self-renewal of cancer stem cells (CSCs), 
maintain the growth and survival of cancer cells, induce extracellular matrix remodeling, cause angiogenesis and metastasis
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SRSF2 and SRSF4 can maintain adult hematopoiesis
Knockdown of Srsf2 in adult mice results in significant 
reductions in platelet count, bone marrow cell count, and 
hematopoietic stem cells in bone marrow [69] (Fig. 3C). 
Various splicing factors, including SRSF2, could be inhib-
ited by telomere dysfunction, leading to altered differ-
entiation in common myeloid progenitor (CMP) and 
development of classic myelodysplastic syndrome (MDS) 
phenotype [71].

SRSF2P95H and SRSF2P95R mutations in CD34+ hema-
topoietic stem and progenitor cells (HSPCs) have the 
potential to trigger a widespread abnormality in alter-
native splicing. By inducing G2-M phase arrest, these 
genetic alterations hinder the growth of CD34 + HSPCs, 
trigger cell apoptosis, and disrupt the process of hema-
topoietic differentiation towards CMP cells [70, 72]. In 
particular, SRSF2 gene mutations are identified by an 
atypical bias in the process of granulo-monocytic differ-
entiation towards monocytes and megakaryo-erythroid 
differentiation towards megakaryocytes [72].

The protein level of SRSF4 is greatly diminished in 
Dkc1 hypomorphic mutant mice, which serve as a model 
for X-linked dyskeratosis congenita (X-DC). X-DC is 
known for causing bone marrow failure, as well as skin 
and appendage lesions. LSK cells and CMPs exhibit 
reduced proliferation capacity due to the decrease in 
Srsf4 protein expression [73].

SRSF3 promotes megakaryocyte maturation and platelets 
production
SRSF3 was reported to be crucial in megakaryocyte 
maturation and the production of functional plate-
lets (Fig.  3C). Deletion of megakaryocyte-specific Srsf3 
in mice results in megakaryocytosis, characterized by 
arrested megakaryocyte maturation, abnormal increase 
in platelet volume, reduced platelet count, impaired 
platelet function, and aberrant platelet activation in the 
absence of agonists [5]. There are two main mechanisms 
through which Srsf3 contributes to these processes. 
Firstly, Srsf3 regulates the nuclear export of mRNA from 
megakaryocytes, and its loss leads to the nuclear accu-
mulation of mRNA encoding the cell surface receptors 
c-MPL and CD41 [5]. Secondly, Srsf3 is involved in the 
sorting and deposition of megakaryocyte RNA into plate-
lets, as evidenced by significant changes in the RNA rep-
ertoire of platelets upon Srsf3 knockout. For instance, 
loss of Srsf3 in megakaryocytes results in decreased 
expression of Nbeal2 mRNA in megakaryocytes, whereas 
its expression is increased in platelets [5].

Multiple SRSFs participate in the erythroid maturation
The splicing factor SRSF5 plays a critical role in erythroid 
maturation [74] (Fig. 3C). In early progenitor cells, SRSF5 
recognizes the  A G A C T A G motif in exon 16 of 4.1R 
mRNA through its RRM domain, thereby promoting 
the splicing of 4.1R mRNA. However, in mature eryth-
rocytes, SRSF5 is hydrolyzed by the proteasome via the 

Fig. 3 Roles of SRSFs in normal hematopoiesis. (A) Mesodermal hematopoietic stage: In mesoderm cells, SRSF2 interacts with NUMB exon 9 to regulate 
the alternative splicing of NUMB mRNA and promote the generation of NUMB_L. However, the expression level of SRSF2 is down-regulated during EPC 
generation, resulting in the predominant expression of NUMB_S in EPCs. (B) Fetal liver hematopoietic stage: fetal hepatocytes lacking Srsf2 exhibit sig-
nificantly elevated apoptosis levels and reduced hematopoietic stem/progenitor cells (HSPCs) in the liver. SRSF2P95H mutation triggers a series of gene 
regulatory events that collectively affect hematopoiesis in primary human CD34 + fetal liver cells. For instance, SRSF2P95H targets include several members 
of the hnRNP and SR families. (C) Bone marrow hematopoietic stage: SRSFs play an important role in various stages of adult hematopoiesis
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RS domain, leading to the retention of exon 16 in 4.1R 
mRNA. This allows erythrocytes to synthesize 4.1R pro-
tein isoforms with a 10 kDa domain, which are crucial for 
stabilizing the membrane skeleton.

In addition, the expression level of SRSF2, SRSF3, 
SRSF6 and SRSF7 also showed significant change of alter-
native splicing from proerythrocyte to orthochromatic 
erythroblasts [75] (Fig. 3C).

SRSFs and hematological malignancies
Multiple SRSFs are involved in the development of acute 
myeloid leukemia
The epigenetic alterations in SRSF1 are involved in the 
progression of acute myeloid leukemia (AML) (Table 1). 
Firstly, arginine methylation of SRSF1, mediated by pro-
tein arginine methyltransferase 5 (PRMT5), promotes 
the survival of AML cells [76]. Depletion of PRMT5 
results in alterations in mRNA alternative splicing 
and decreased levels of vital proteins that facilitate the 
growth of AML, including POLD1, POLD2, PPP1R7, 
PNISR, FDPS, PNKP, and PDCD2 [76]. It was demon-
strated that treatment of glioblastoma (GBM) cells with 
PRMT5 inhibitors compound 5 (CMP5) led to apopto-
sis of differentiated GBM cells [77]. However, whether 
CMP5 has the same effect in AML remains to be stud-
ied. Secondly, SRSF1 phosphorylation is critical in acute 
promyelocytic leukemia. It has been shown that retinoic 
acid promotes the accumulation of protein kinase A in 
the nucleus, which increases the phosphorylation level of 
SRSF1. This, in turn, regulates the alternative splicing of 

the anti-apoptotic factor Mcl-1, induces promyelocytic 
granulocyte differentiation, and inhibits cell proliferation 
[78].

Approximately 25% of AML patients exhibit SRSF2 
mutations, which are linked to unfavorable prognosis 
and reduced survival rates in both primary and second-
ary AML patients [79–81] (Table 1). The proline-to-histi-
dine mutation at position 95 of SRSF2 (SRSF2P95H) alters 
the spatial structure of SRSF2, affecting its recognition 
of splice sites. This mutation leads to the mis-regulation 
of 548 splicing events, with 374 involving the inclusion 
of cassette exons (Fig. 4A). The UCCA/UG and UGGA/
UG motifs are enriched in the more-included and more-
excluded exons, respectively. The SRSF2P95H mutation 
has a stronger affinity for RNA sites that have UCCAG, 
and its affinity for UGGAG sites is weaker compared to 
the wild type, resulting in a higher frequency of exon 
inclusion [96]. For instance, SRSF2 mutations affect the 
splicing of CSF3R mRNA [97]. CSF3R has two splice 
variants, V3 and V1. The presence of V3 alone confers a 
hypo-proliferative characteristic and impaired JAK-STAT 
activation in hematopoietic cells. AML patients with 
SRSF2 mutations exhibited a notable rise in the V3/V1 
ratio. The V3/V1 ratio was reduced by the knockout of 
SRSF2, indicating that CSF3R is affected by SRSF2 muta-
tions [98] (Fig. 4B). Targeting the changes in alternative 
splicing caused by SRSF2 mutations may be a therapeu-
tic approach for AML. The spliceosome inhibitor E7107 
treatment could significantly reduce leukemic burden, 
and AML with SRSF2P95H mutations is preferentially 

Table 1 The functional roles of SRSFs in hematologic malignancy
Cancer type SRSF family 

members
Role of SRSFs in cancer Refer-

ences
Acute myeloid 
leukemia

SRSF1 Arginine methylation of SRSF1 promote the survival of AML cells; phosphorylation level of SRSF1 
induces promyelocytic granulocyte differentiation and inhibit cell proliferation.

 [76, 
78]

SRSF2 SRSF2 mutation was associated with poor prognosis and shortened survival in primary and secondary 
AML patients

 [79–
81]

SRSF10 SRSF10 promotes the proliferation of AML cells  [82]
Myelodysplastic 
syndromes

SRSF2 MDS patients with SRSF2 mutation had an inferior overall survival  [83–
85]

ALL SRSF1 The expression level of SRSF1 were significantly up-regulated in ALL; phosphorylation of SRSF1 at 
tyrosine 19 enhances cell proliferation

 [86, 
87]

T-ALL SRSF6 The high expression of SRSF6 in T-ALL was associated with poor prognosis  [46]
B-ALL SRSF3 The expression level of SRSF3 was lower in relapsed B-ALL, leading to exon 2 skipping of CD19 and 

expression of the N-terminally truncated CD19 variant in B-ALL cells, which fails to trigger killing by 
CART-19

 [88]

Myeloproliferative 
neoplasm

SRSF2 SRSF2 mutation can promote the progression of primary myelofibrosis and leukemic transformation  [89–
91]

Chronic myeloid 
leukemia

SRSF1 High SRSF1 levels in the bone marrow of CML patients at presentation correlated with poorer re-
sponses to tyrosine kinase inhibitors

 [92]

Chronic my-
elomonocytic 
leukemia

SRSF2 Whether SRSF2 mutation was associated with prognosis in CMML patients is controversial  [93, 
94]

Clonal 
hematopoiesis

SRSF2 SRSF2 mutation was associated with malignant transformation to myeloid malignancies  [95]
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susceptible to spliceosome inhibitor, unlike leukemias 
that do not have these mutations [99].

Co-mutation of SRSF2 with other genes can synergisti-
cally promote the development of AML [100]. The con-
currence of genetic changes in IDH2 and SRSF2 among 
individuals with AML results in synchronized impacts 
on the epigenome and RNA splicing, which play a role in 
the development of leukemia. AML cells with mutations 
in both IDH2 and SRSF2 display abnormal splicing and 
decreased levels of INTS3, a component of the integra-
tor complex. This leads to enhanced RNA polymerase 
II (RNAPII) stalling. The abnormal splicing of INTS3 
caused by the mutant SRSF2 binding to cis elements in 
INTS3 mRNA, along with the increased DNA methyla-
tion of INTS3 caused by the mutant IDH2, plays a role in 
the development of leukemia [100] (Fig. 4B).

Zhong et al. analyzed the expression characteristics of 
SRSFs in AML samples from the TCGA database and 
found that SRSF4 and SRSF9 were significantly down-
regulated, while SRSF8, SRSF5, SRSF2, SRSF7, SRSF10, 
and SRSF12 were up-regulated compared to normal 
samples. They also confirmed that SRSF10 expression 
was significantly up-regulated in clinical AML samples. 
Knockdown of SRSF10 inhibited AML cell proliferation, 
promoted apoptosis, and induced G1 phase arrest in the 
cell cycle [82] (Table 1).

SRSF2P95H mutation plays the carcinogenic role in 
myelodysplastic syndromes
In myelodysplastic syndromes (MDS), oncogenic muta-
tions of the splicing factor SRSF2P95H are common [101–
103]. The presence of SRSF2 mutation showed a strong 
correlation with being male and having advanced age. 
Patients with SRSF2 mutation had a lower overall sur-
vival rate [83–85] (Table  1). It was demonstrated that 
Srsf2-mutated HSPCs exhibited a series of aberrant splic-
ing [104, 105]. The presence of SRSF2 mutation led to a 
decrease in HSPCs and resulted in abnormalities in their 
differentiation. Additionally, it facilitated the conversion 
of hematopoietic stem cells into myeloid tumors, which 
were characterized by anemia, leukopenia, and erythroid 
dysplasia [105–107]. For example, SRSF2P95H enhances 
the process of Class IV splicing by attaching to ESE pat-
terns in exon 17 of CSF3R mRNA, leading to dysgranu-
lopoiesis [108] (Fig.  4C). In addition, SRSF2 mutation 
can cause EZH2 mRNA isoforms to contain a premature 
termination codon (PTC) degraded by NMD pathway, 
resulting in impaired erythrogenesis and increased inef-
fective hematopoiesis [103, 109]. SRSF2P95H mutation 
could also cause elevated levels of DNA: RNA interme-
diates (R-loops) and ATR pathway activation in MDS 
CD34+ cells [110, 111].

Co-mutation of SRSF2 and other important genes, such 
as U2AF1 and RUNX1, was common in MDS. Mutant 
U2AF1 and SRSF2 can cause convergent mis-splicing of 
the GNAS isoform, leading to the activation of G protein 
and ERK/MAPK signaling. This activation drives MDS 

Fig. 4 Roles of SRSF2P95H mutation in AML and MDS. (A) The proline-to-histidine mutation at position 95 of SRSF2 (SRSF2P95H) alters the spatial structure of 
SRSF2, affecting its recognition of splice sites. The SRSF2P95H mutation binds more tightly to RNA sites containing UCCAG but binds less tightly to UGGAG 
sites compared to the wild type. (B) In AML, SRSF2 mutations affect the splicing of CSF3R mRNA, leading to the significant increase in the V3/V1. In addi-
tion, co-mutations of SRSF2 with IDH2 can synergistically promote the development of AML. Mutant IDH2 increase DNA methylation of INTS3, and mutant 
SRSF2 binds to cis elements in INTS3 mRNA to change the splicing, which lead to reduced expression of INTS3 and contribute to leukemogenesis. (C) 
SRSF2P95H promotes Class IV splicing by binding to ESE sequences in CSF3R exon 17, leading to dysgranulopoiesis. In addition, SRSF2 mutation can cause 
EZH2 mRNA isoforms to contain a premature termination codon (PTC) degraded by NMD pathway, resulting in impaired erythrogenesis and increased 
ineffective hematopoiesis. Co-mutation of SRSF2 with splicing factor U2AF1 cause mis-splicing of the long GNAS isoform (GNAS_L) mRNA
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and makes mutant cells responsive to MEK inhibition 
[112]. Huang et al. constructed a mouse model by com-
bining the Runx1 knockout with the Srsf2P95H mutation, 
resulting in multilineage hematopoietic defects. This 
was accompanied by mis-splicing of genes that are spe-
cifically abundant in the DNA damage response and cell 
cycle checkpoint pathways [113] (Fig. 4C).

It was suggested that the pathways of cell-cycle and 
DNA damage response are necessary for the survival of 
Srsf2P95H/+ cells. Additionally, it was proposed that palbo-
ciclib, an inhibitor of cyclin dependent kinase 6 (CDK6), 
could serve as an alternative therapeutic choice for tar-
geting cancers with SRSF2 mutations [114].

High expression of SRSF1 and SRSF6 are associated with 
poor prognosis in T-cell acute lymphoblastic leukemia
In acute lymphoblastic leukemia (ALL), the splicing 
profiles of T-ALL patients were significantly differ-
ent from those of normal T cells. In ALL patients, the 
level of SRSF1 expression was notably increased, while 
the expression of SRSF1 returned to normal after com-
plete remission with cytosine arabinosine or vincristine, 
but increased again in relapsed samples [86] (Table  1). 
Knockdown of SRSF1 resulted in increased apoptosis and 
inhibited the proliferation of ALL cells [86]. The phos-
phorylation of SRSF1 at Tyr-19 was detected in newly 
diagnosed ALL samples, but it was not found in samples 
from complete remission or normal controls. Phosphory-
lation of SRSF1 at tyrosine 19 promotes cell proliferation 
and enhances the ability of colony-forming units [87]. 
The subcellular localization of SRSF1 was impacted by 
missense mutants that altered Tyr-19 phosphorylation in 
contrast to SRSF1 wild-type cells.

High expression of SRSF6 in T-ALL was linked to 
poor prognosis, and the ubiquitin-specific peptidase 7 
(USP7) could improve the protein level of SRSF6 through 
active de-ubiquitination and promote the proliferation of 
T-ALL cells [46] (Table 1). The small molecule H3B-8800, 
which acts as a splicing inhibitor by binding to Splicing 
Factor 3B1 (SF3B1), can affect the splicing of proteasome 
transcripts and proteasome activity and synergize with 
proteasome inhibitors to inhibit the growth of T-ALL 
[115]. It was reported that the splicing factors SRSF5 and 
SRSF6 can also cause a change in the splicing of CCAR1 
mRNA, shifting it from the complete version to a shorter 
variant, and maintain the growth of cancer cells [116].

Low expression of SRSF3 causes resistance to CART-19 in 
recurrent B-cell neoplasms
CD19 is an important therapy target for CART in B-ALL 
[117]. Splicing factor SRSF3 was associated with reten-
tion of exon 2 in CD19 mRNA. However, the levels of 
SRSF3 were reduced in relapsed B-ALL, resulting in the 
exclusion of exon 2 and the emergence of a truncated 

form of CD19 in B-ALL cells. This truncated variant of 
CD19 is unable to activate the killing response by CART-
19 [88] (Table  1). Thus, enhancing the expression of 
SRSF3 may enhance the survival rate of individuals expe-
riencing recurrent B-cell neoplasms.

SRSF2 mutations are linked to poor prognosis of 
myeloproliferative neoplasm
Myeloproliferative neoplasms (MPN) include primary 
myelofibrosis (PMF), polycythemia vera (PV) and essen-
tial thrombocythemia (ET), which are morphologically 
and molecularly similar [118]. The frequency of SRSF2 
mutation in PMF patients was about 17%, mainly occur-
ring in residue P95, which is an independent marker of 
poor prognosis in PMF patients [89–91, 119] (Table  1). 
Vallapureddy et al. collected and analyzed the clinical and 
cytogenetical characteristics of 1306 PMF patients and 
found that SRSF2 mutations were predictors of leuke-
mic transformation in the first 5 years of diagnosis [89]. 
Lasho et al. screened 187 PMF patients and confirmed 
significant associations between SRSF2 mutations and 
older age, IDH mutations, and elevated DIPSS-plus risk 
classification. Mutations in SRSF2 were linked to reduced 
overall and leukemia-free survival [119]. In addition, it 
was demonstrated that SRSF2 mutations was associated 
with poorer overall in PV [120]. SRSF2 mutations can 
also promote rapid blast transformation of MPN [121, 
122].

SRSF1 mediates imatinib resistance in chronic myeloid 
leukemia
SRSF1 expression was found to be elevated in primary 
CD34+ progenitors of chronic phase chronic myeloid 
leukemia (CML) compared to the normal progenitors, 
which was mediated by BCR-ABL1 and cytokine. Ele-
vated levels of SRSF1 upregulated PRKCH and PLCH1 
mechanistically, leading to impaired imatinib sensitivity 
in patients with CML [92] (Table 1).

However, in East Asian, the potential mechanism of 
imatinib resistance mediated by SRSF1 was different. 
The deletion polymorphism located in intron 2 of the 
BIM mRNA caused the splicing of BIM mRNA to shift 
from exon 4 to exon 3 mediated by SRSF1, leading to 
the production of splice isoforms that do not contain 
the pro-apoptotic BH3 domain encoded by exon 4 [123]. 
The removal of exon 4 in BIM mRNA splicing hinders 
the ability of TKIs to trigger apoptosis [123]. It was sug-
gested that SRSF1 could be a potential target for treating 
imatinib-resistant CML caused by the deletion polymor-
phism in BIM.
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The controversial roles of SRSF2 mutations in chronic 
myelomonocytic leukemia
Patnaik et al. analyzed the cytogenetics of 226 patients 
with chronic myelomonocytic leukemia (CMML) and 
found that SRSF2 mutation is the most commonly 
mutated gene in the spliceosome with a mutational fre-
quency of 40% (all affecting P95). And it is not associated 
with prognosis of CMML patients [93]. However, Yuan et 
al. reported that CMML patients with SRSF2 exhibited 
reduced overall survival (OS) and progression-free sur-
vival (PFS) [94] (Table 1). In CMML patients with muta-
tions in the splicing factor SRSF2, there were multiple 
abnormal splicing occurrences observed in genes related 
to DNA repair [124]. Furthermore, a portion of the Srsf2/
Tet2 mutants exhibit an elevated proliferation of granu-
locytes and a unique proliferation of monocytes (myelo-
monocytic hyperplasia), characterized by an increase 
in immature promonocytes and monoblasts, as well as 
binucleate promonocytes [125].

SRSF2 mutations plan an important role in clonal 
hematopoiesis
Clonal expansions driven by somatic mutations in the 
hematopoietic system was defined clonal hematopoiesis 
[126]. Fabre et al. found that SRSF2 mutations was one 
of the common clonal hematopoiesis-associated muta-
tions. The mutation exhibiting unique behavior was SRS-
F2P95H, which was linked to notably quicker expansion 
in contrast to other SRSF2 mutations. Clonal expansion 
triggered by SRSF2P95H mutation typically occurred after 
the age of 30 and expanded 50% per year, far more than 
DNMT3A and TP53 mutations (5%) [127]. In addition, 
the risk of leukemogenesis was higher in patients with 
SRSF2P95H mutation than those with DNMT3A muta-
tions. Recurrent microhomology causes the decreased 
copy number of SRSF2 in early pluripotent HSCs, which 
is also closely related to the development of clonal 
hematopoiesis [128]. Moreover, SRSF2 mutations was 
associated with malignant transformation to myeloid 
malignancies of chronic idiopathic neutropenia patients 
[95] (Table 1).

Conclusions and open questions
In conclusion, the review has introduced the basic func-
tions of SRSFs in hematopoietic development and malig-
nancies. However, there are still some problems waiting 
to be solved. First, it has been demonstrated that SRSFs 
could regulate various forms of alternative splicing, but 
what determines the specific splicing form is unclear. 
Second, although SRSF2P95H mutations are common 
in a variety of hematological malignancies, including 
AML, MDS, MPN, CMML, and clonal hematopoiesis, 
the therapeutic strategies targeting this mutation remain 
to be further studied. Moreover, the specific inhibitors 

of SRSFs are less developed. Currently, only a kind of 
small molecule inhibitor of CLK, which can suppress the 
phosphorylation of SRSF5 and SRSF6, have been applied 
in a phase I clinical trial of solid tumors, and the clini-
cal efficacy is needed to be further explored. Therefore, 
more specific inhibitors of SRSFs need to be developed to 
better serve patients with hematologic malignancies and 
other solid tumors and improve the prognosis of patients.
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