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Abstract
Immune checkpoint blockade therapy targeting the programmed death-1(PD-1) pathway has shown remarkable 
efficacy and durable response in patients with various cancer types. Early prediction of therapeutic efficacy is 
important for optimizing treatment plans and avoiding potential side effects. In this work, we developed an 
efficient machine learning prediction method using routine hematologic and biochemical parameters to predict 
the efficacy of PD-1 combination treatment in Pan-Cancer patients. A total of 431 patients with nasopharyngeal 
carcinoma, esophageal cancer and lung cancer who underwent PD-1 checkpoint inhibitor combination therapy 
were included in this study. Patients were divided into two groups: progressive disease (PD) and disease control 
(DC) groups. Hematologic and biochemical parameters were collected before and at the third week of PD-1 
therapy. Six machine learning models were developed and trained to predict the efficacy of PD-1 combination 
therapy at 8–12 weeks. Analysis of 57 blood biomarkers before and after three weeks of PD-1 combination therapy 
through statistical analysis, heatmaps, and principal component analysis did not accurately predict treatment 
outcome. However, with machine learning models, both the AdaBoost classifier and GBDT demonstrated high 
levels of prediction efficiency, with clinically acceptable AUC values exceeding 0.7. The AdaBoost classifier exhibited 
the highest performance among the 6 machine learning models, with a sensitivity of 0.85 and a specificity of 0.79. 
Our study demonstrated the potential of machine learning to predict the efficacy of PD-1 combination therapy 
based on changes in hematologic and biochemical parameters.
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Introduction
Immune checkpoint blockade (ICB) therapy targeting the 
programmed death-1 (PD-1) pathway has demonstrated 
remarkable efficacy and durable response in patients with 
various malignancies, including lung cancer (LC), mela-
noma, head and neck squamous cell carcinoma, esopha-
geal carcinoma, and nasopharyngeal carcinoma (NPC) 
[1]. Although PD-1 antibodies have led to revolutionary 
advances in cancer therapy, their therapeutic efficacy var-
ies greatly among individuals with the same cancer type. 
Therefore, it is of great clinical value to precisely target 
the beneficiary population of ICIs. Prior studies have 
demonstrated that biomarkers such as PD-L1 immu-
nohistochemical expression, tumor mutation burden 
(TMB), tumor infiltrating lymphocytes (TILs), and insta-
bility/defective mismatch repair (MSI/dMMR) have the 
potential to predict the efficacy of immunotherapy. How-
ever, the current reliance on invasive biopsies for their 
assessment presents limitations in terms of accuracy. 
Consequently, there is a critical need to explore alterna-
tive noninvasive approaches to enhance the precision of 
predicting immunotherapy outcomes [2, 3].

Routine clinical laboratory tests, such as complete 
blood count (CBC) and routine biochemical analysis, 
which are prescribed for every patient receiving PD-1 
antibodies, could serve as predictive biomarkers of PD-1 
antibodies in previous studies [4]. In patients with mul-
tiple solid cancers, serum inflammatory indices, such as 
C-reactive protein (CRP) levels, lactate dehydrogenase 
(LDH) levels and the neutrophil-to-lymphocyte ratio 
(NLR), are traditionally recognized as hallmarks of the 
systemic immune-inflammatory status of the host [5]. 
In non-small cell lung cancer (NSCLC), the baseline 
derived-NLR (dNLR) and LDH level were combined to 
generate a novel prognostic model for patients treated 
with PD-1 antibodies [6], while a decreased monocyte-
to-lymphocyte ratio (MLR) was found to significantly 
correlate with superior outcomes in patients receiving 
first-line therapy with PD-1 inhibitors plus chemother-
apy [7]. In pancreatic carcinoma patients treated with 
PD-1 inhibitors, the predictive value of the pretreatment 
dNLR and LDH level for clinical outcome has also been 
discussed and validated [8]. In unresectable esophageal 
squamous cell carcinoma (ESCC), an MLR-based nomo-
gram reliably predicted survival in patients treated with 
first-line therapy comprising an anti-PD-1 antibody plus 
systematic chemotherapy [9]. In NPC, the serum bio-
markers EBV DNA and LDH were identified as two inde-
pendent prognostic factors of survival in patients treated 
with PD-1 antibody-based immunochemotherapy [10]. 
Therefore, it is reasonable to generate a novel predictive 
model of PD-1 antibody efficacy based on these serum 
markers in a wide range of pan-cancer subtypes.

In contrast to gene expression profiling or immunohis-
tochemistry of tumor tissue, serum markers from blood 
tests have advantages in terms of affordability, feasibility, 
non-invasiveness, reproducibility, and dynamic detection 
in clinical settings. Moreover, the standard detection of 
these serum markers, mostly derived from CBC and rou-
tine biochemistry tests, could be easily achieved in differ-
ent centers and institutes. Up to one hundred parameters 
derived from CBC and routine biochemistry tests could 
be screened for their potential predictive value for PD-1 
antibodies. Our previous study has demonstrated that 
dynamic changes in LDH levels and the serum ALT/AST 
ratio (LSR) significantly correlate with the efficacy of 
PD-1 antibodies in NPC patients. [11]

Machine learning, which encompasses multiple tech-
nologies for computationally simulating human intelli-
gence, has achieved unprecedented success in diagnosing 
cancer, predicting cancer-related treatments and predict-
ing patient survival. [12–16] In the study of developing 
blood index models through machine learning tech-
niques, the utilization of circulating cytokine features in 
machine learning algorithms shows promise in predict-
ing the efficacy of immune therapy in patients with non-
small cell lung cancer, thus offering potential benefits for 
informing pre-treatment and early clinical decision-mak-
ing processes. [17] However, machine learning methods 
have not yet been employed to establish predictive mod-
els for the efficacy of anti-PD-1 combination therapy in 
pan-cancer.

In the present study, we aimed to construct a pan-
cancer predictive model for PD-1 antibody combination 
therapy. We employed multiple machine learning meth-
ods, including support vector machine (SVM), random 
forest (RF), adaptive boosting decision tree (AdaBoost), 
gradient boosting decision tree (GBDT), extreme gradi-
ent boosting decision tree (XGBoost) and artificial neu-
ral network (ANN) methods, to analyze the data derived 
from CBC and routine biochemistry tests of patients 
with NPC, ESCC and LC at baseline and after two cycles 
of PD-1 antibody combination therapy. Ultimately, the 
AdaBoost model for PD-1 antibody therapy prediction in 
pan-cancer patients was established and validated.

Method
Patients and study design
This retrospective study included 170 NPC patients, 110 
esophageal cancer patients (ECs), and 151 lung cancer 
(LC) patients from Sun Yat-sen University Cancer Cen-
ter who underwent PD-1 checkpoint inhibitor combi-
nation therapy. (Fig.  1) The inclusion criteria consisted 
of patients with NPC, ESCC or LC who received PD-1 
therapy in combination with radiotherapy or/and che-
motherapy or/and surgical treatment or/and targeted 
therapy from September 2018 to July 2022. The exclusion 
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criteria consisted of a follow-up time of < 1 year, a lack 
of hematological examination before treatment and after 
the third week of treatment, a duration of PD-1 inhibitor 
administration of less than three months, and not under-
going imaging evaluation within 8–12 weeks. Imaging 
evaluations were carried out according to the Response 
Evaluation Criteria in Solid Tumors (RECIST) v1.1 to 
evaluate the effect of immunotherapy at 8–12 weeks and 
included progressive disease (PD) and non-PD (complete 
response (CR), partial response (PR), and stable disease 
(SD).

Basic clinical parameters, including age, sex, histologi-
cal type, metastasis stage, and TNM classification, were 
collected.

Laboratory examination
The complete blood analysis results were obtained using 
an automated XN-2000 hematology analyzer (Sysmex, 
Japan). Flow cytometry, impedance cytometry and opti-
cal cytometry were used to determine the hematological 

parameters of the Sysmex XN-2000 strain. The imped-
ance method and hydrodynamic focusing method were 
used to count red blood cells (RBCs) and platelets. Fluo-
rescent flow cytometry was used to determine the white 
blood cell (WBC) count in all the channels. Fluorescent 
flow cytometry was performed with scattered laser light 
(on the front and side). The Sysmex XN-2000 analyzer 
can be used to determine 28 basic diagnostic parameters 
and 16 optional diagnostic parameters, including RBC, 
WBC (percentage and absolute number of neutrophils, 
lymphocytes, eosinophils, basophils and monocytes), 
mean corpuscular volume (MCV), hematocrit (HCT), 
platelet (PLT), hemoglobin (HGB), mean corpuscular 
hemoglobin concentration (MCHC), and mean corpus-
cular hemoglobin (MCH).

Biochemical parameters were measured according 
to standard commercially available assays adapted to a 
Roche Cobas C702 Chemistry Analyzer (Roche Diag-
nostics, Japan) or Hitachi LABOSPECT 008 AS Chem-
istry Analyzer (Hitachi High-Tech Corporation, Japan) 

Fig. 1 Machine learning-assisted prediction of cancer treatment response categories. Blood biomarker tests were also conducted before and after PD-1 
antibody combination therapy. The tumor responses were diagnosed after 8–12 weeks of therapy. A biochemistry analyzer and flow cytometer were 
used to analyze the biomarkers. The indicators are implemented in machine learning models, and the tumor response is subsequently predicted to 
demonstrate the efficacy of therapy in patients
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using automated procedures: glucose(GLU), urea, 
creatinine(CRE), uric acid(UA), total bile acid(TBA), 
triglycerides (TG), total cholesterol(CHO), aspartate 
aminotransferase (AST), alanine aminotransferase 
(ALT), alkaline phosphatase (ALP), gamma-glutamyl 
transferase (GGT), total proteins(TP), globulin(GLOB), 
albumin(ALB), carbon dioxide(CO2), calcium(Ca+), 
lactate dehydrogenase (LDH), total bilirubin(total 
bilirubin(TBA), Direct bilirubin(DBIL), cholinesterase 
(CHE), creatine kinase (CK), cystatin C(CYSC), high-
density lipoprotein-C (HDL-C), low-density lipoprotein-
C (LDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B 
(ApoB), C-reaction protein(CRP), serum amyloid(SAA). 
A chemistry analyzer was used to conduct photometric 
assays on the absorbance changes of various analytes, and 
the quantitative results were calculated. The details are 
listed in Table S1 in the supplementary material.

The NLR, MLR, PLR, and systemic immune-inflamma-
tion index (SII) were calculated as the neutrophil count/
lymphocyte count (NLR), monocyte count/lymphocyte 
count (MLR), platelet count/lymphocyte count (PLR), 
and NLR * platelet count, respectively.

Machine learning methods for the prediction of cancer 
treatment response
To predict the response of cancer patients to PD-1 
checkpoint inhibitor combinations, we employed com-
monly used machine learning methods, including princi-
pal component analysis (PCA), support vector machine 
(SVM) [18], random forest (RF) [19], adaptive boosting 
decision tree (AdaBoost) [20], gradient-boosting decision 
tree (GBDT) [21], extreme gradient boosting decision 
tree (XGBoost) [22] and artificial neural network (ANN) 
methods [23], to learn blood biomarker features. The 
dimension of the blood biomarker features was reduced 
to 2 in the PCA. We employed the ν-SVM method, which 
utilized a parameter ν to control the number of support 
vectors. After tuning the hyperparameters, ν was chosen 
to be 0.03, and the radial basis function was selected as 
the kernel function to maximize the prediction accuracy. 
For decision tree-based methods, multiple decision trees 
are employed to improve classification performance. The 
number of trees in the RF was set to 100, and the maxi-
mum depth of the trees was adjusted to 20. To evaluate 
the importance of blood biomarkers, base decision tree 
classifiers were used to calculate the feature importance 
in AdaBoost. The number of trees in AdaBoost was cho-
sen to be 100, and the learning rate was 1. GBDT also 
employs 100 decision trees with a maximum depth of 
3. For the XGB method, the tree number was adjusted 
to 60 with a maximum depth of 20. The ANN method 
employed 3 layers of neural networks, and the nodes 
were 64, 48 and 16 for the first, second and third hid-
den layers, respectively. We used the ReLU activation 

function for the first and second hidden layers. For the 
third output layer, the Softmax activation function was 
chosen to determine the probabilities for different class 
predictions. The optimization function of the MLP was 
the Adam function, and the learning rate was 0.0001. The 
loss function was chosen to be MSELoss.

Response category prediction strategy
The blood biomarker levels of 431 patients were normal-
ized to the range of [-1,1]. The numbers of patients with 
different treatment responses were 66 (PD), 256 (SD) 
and 109 (PR). The SD and PR patients formed the DC 
group. To train and test the machine learning models, the 
samples were randomly divided into training and test-
ing datasets at a ratio of 8:2. In the training dataset, there 
were 345 patients, including 53 PD patients and 292 DC 
patients. Due to the imbalance between the numbers of 
PD patients and DC patients, the number of PD patients 
was increased from 53 to 292 with the synthetic minority 
oversampling technique (SMOTE) to avoid ignoring the 
features of PD during training [24]. In the testing data-
set, there were 13 PD patients and 73 DC patients. The 
test results of the machine learning models are shown 
with receiver operating characteristic (ROC) curves. The 
scaled values of true positives, false positives, true nega-
tives and false negatives are presented.

Results
Statistical analysis of blood biomarkers for cancer
The clinical characteristics of 170 NPC patients, 110 EC 
patients, and 151 LC patients who received PD-1 check-
point inhibitor combination therapy are presented in 
Table 1.

We conducted an analysis to examine the difference 
in the changes in the levels of 57 blood biomarkers 
before treatment and after three weeks of PD-1 inhibi-
tor treatment (∆W3) between the PD and DC groups. 
(Fig. 2) None of the indicators were significantly different 
between the PD and DC groups.

Heatmap and PCA of blood biomarkers for cancer
To further analyze the blood biomarkers for tumor 
response prediction, we examined the normalized varia-
tions in biomarkers after treatment via traditional anal-
yses, including heatmaps and PCA (Fig.  3). There was 
no significant difference between PD and DC (Fig.  3a). 
For example, several blood biomarkers, including RBC, 
HGB, HCT, total bilirubin (TBIL), direct bilirubin (DBIL) 
and indirect bilirubin (IBIL), from both the PD and DC 
groups generally showed a decreasing trend. Further-
more, BA, B, RDW-CV, RDW-SD, ALT, AST, ALP and 
GGT in both groups generally increased after treatment. 
For some blood biomarkers, including EO, E, TBA, LDH 
and GLU, in the PD and DC groups, most of the patients 
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exhibited little variation, while some patients exhibited 
prominent increasing or decreasing values. Biomarkers, 
including MCV, MCH, CRE, CYSC and CK, have little 
variation between PD patients and DC patients. More-
over, most of the blood biomarkers, including WBC, NE, 
N, LY, L, MO, M, MCHC, PLT, Ca, CO2, AS/AL, CHE, 
TP, ALB, GLOB, A/G, UREA, UA, TG, CHO, HDL-C, 
LDL-C, ApoA1, Apo-B, CRP, SAA, CRP/ALB, NLR, 
PLR, MLR, SII and ApoA1/Apo-B, exhibited inconsis-
tent variations between the PD and DC groups. Similarly, 
according to the PCA results, the PD and DC patients 
could not be differentiated from the overlapping samples 
after dimension reduction (Fig.  3b). The student’s t test 
of principal components between PD and DC groups 
also showed no difference (p = 0.83 for PC1 and p = 0.65 
for PC2). In summary, neither the heatmap nor the PCA 
could predict PD patients according to comparisons of 
the PD and DC groups.

Prediction of Pancancer treatment responses using 
machine learning methods
To predict treatment responses in cancer patients, 
we developed and trained 6 machine learning models 
(Fig. 4). The ROC curves of the predictions show that the 

AdaBoost classifier achieves the best performance among 
these methods. The sensitivity reached 0.85 when the 
1-specificity was 0.21 (Fig.  4a). The GBDT method also 
achieved better classification than did the other meth-
ods. Both AdaBoost and GBDT achieved an AUC ≥ 0.70, 
which is generally accepted as clinically useful (Fig. 4b). 
However, other methods have AUCs lower than 0.62. To 
evaluate the prediction performance for PD and DC, we 
further presented the predicted numbers of true posi-
tives, true negatives, false positives and false negatives 
(Fig.  4c). All the algorithms can excellently predict true 
negatives (DCs) with an accuracy greater than 80%, and 
few patients are classified as false positives. The Ada-
Boost algorithm predicts the highest number of true 
positives in PD patients with an accuracy of 76.92%, and 
it can also predict DC patients (true negatives) with an 
accuracy of 80.82%. Although GBDT achieved a true neg-
ative prediction accuracy of 97.26%, it failed to correctly 
predict most of the PD patients and had an accuracy of 
46.15%. With respect to the RF, XGBoost, SVM and 
ANN methods, more than 69% of the PD patients were 
falsely predicted to be negative. In summary, the results 
demonstrate that the AdaBoost method has the best 
performance when compared to other machine learning 
methods and predicts PD with clinical accuracy.

Variable importance
The feature importance analysis of AdaBoost is shown in 
Fig. 5. The result demonstrates that the normalized fea-
ture importance scores are all lower than 0.05. MCV and 
LDH have the highest scores, implying that they contrib-
ute most to the model accuracy.

Discussion
PD-1 inhibitors are widely utilized in cancer therapy, 
but the main challenges in developing successful drugs 
for immune checkpoint blockade are the selection of 
patient subgroups that would benefit most from these 
agents and the avoidance of ineffective treatments and 
potential side effects related to autoimmune effects 
resulting from blocking the PD-1/PD-L1 pathway [25, 
26]. Nevertheless, the current indicators have demon-
strated limited efficacy, and some necessitate the acqui-
sition of tissue samples, incurring high costs [27]. For 
example, the limitations of PD-L1 immunohistochemi-
cal expression include intratumor heterogeneity, the lack 
of standardized scoring criteria, and the potential for 
distinguishing between biopsy samples and metastatic 
sites. These limitations highlight several key challenges in 
accurately assessing PD-L1 expression [28, 29]. Similarly, 
the tumor microenvironment (TME) is recognized as a 
critical component influencing tumor progression and 
the immune response. However, the assessment of the 
TME is limited by the lack of standardized methods and 

Table 1 Demographics and clinical characteristics of patients
NPC(n = 170) EC(n = 110) LC(n = 151)
No. (%) No. (%) No. (%)

Age, y
 Median (range) 46 (19–78) 60 (42–78) 61 (30–90)
Sex
 Female 47 (27.65) 15 (13.64) 39 (25.83)
 Male 123 (72.35) 95 (86.36) 112 (74.17)
Histological type
 Squamous cell carcinoma 170 (100) 99 (90) 14 (9.27)
 Adenocarcinoma 0 (0) 5 (4.55) 127 (84.11)
 Small cell carcinoma 0 (0) 4 (3.64) 2 (1.32)
 Other 0 (0) 2 (1.82) 8 (5.3)
Clinical stage
 I-II 11 (6.47) 7 (6.36) 2 (1.32)
 III 49 (28.82) 35 (31.82) 20 (13.25)
 IV 110 (64.71) 68 (61.82) 129 (85.43)
Metastasis stage
 M0 82 (48.24) 71 (64.55) 23 (15.23)
 M1 88 (51.76) 39 (35.45) 128 (84.77)
The PD1 drug
 Camrelizumab 21 (12.35) 3 (2.73) 4 (2.65)
 Pembrolizumab 3 (1.76) 1 (0.91) 119 (78.81)
 Toripalimab 124 (72.94) 81 (73.64) 1 (0.66)
 Sintilimab 22 (12.94) 23 (20.91) 1 (0.66)
 Nivolumab 0 (0) 2 (1.82) 24 (15.89)
 Tislelizumab 0 (0) 0 (0) 2 (1.32)
Outcomes
 non-PD 23 (13.53) 17(15.45) 26 (17.22)
 PD 147 (86.47) 93(84.55) 125 (82.78)
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comprehensive characterization techniques [30]. Given 
the limited response rates of patients with advanced 
tumors to immune checkpoint inhibitors (which range 
between 20% and 50%) [31], it is imperative to explore 
and identify noninvasive markers that can be used to 
effectively evaluate the efficacy of immunotherapy.

Recently, several studies have proposed the use of 
serum-based indicators, such as the neutrophil-to-lym-
phocyte ratio (NLR), to predict treatment response [32]. 
Alessi et al. reported that a high baseline dNLR and an 
increase in the dNLR between cycle 1 and cycle 2 in 
NSCLC patients treated with pembrolizumab mono-
therapy prior to radiological assessment are associated 
with worse clinical outcomes [33]. In our previous inves-
tigation, we devised a model employing lactate dehydro-
genase (LDH) and the alanine transaminase/aspartate 
transaminase (ALT/AST) ratio for predicting the effi-
cacy of PD-1 inhibitors in patients with NPC [11]. In this 
study, we further assessed the predictive value of serum-
based indicators by applying machine learning tech-
niques to a broader range of cancer patients receiving 
PD-1 inhibitor treatment. First, we examined the changes 
in routine hematologic and biochemical parameters 
before treatment and at the third week in patients receiv-
ing PD-1 therapy. Among the 57 indicators, none of them 
exhibited a significant difference between the DC and 
PR groups. Traditional statistical analysis methods can-
not help demonstrate their ability to predict therapeutic 

outcomes. Subsequently, we employed multiple machine 
learning methods to explore the predictive value of 
dynamic serum biomarkers.

Various machine learning models have been employed 
in clinical and translational oncology, leveraging a blend 
of clinical data to improve patient diagnosis, prognosis, 
and treatment selection [34–36]. Therefore, we devel-
oped and trained 6 machine learning models including 
SVM, RF, AdaBoost, GBDT, XGBoost and ANN meth-
ods, to analyze the data derived from CBC and routine 
biochemistry tests of patients with NPC, ESCC and LC 
at baseline and after two cycles of PD-1 antibody com-
bination therapy to predict the efficacy of PD-1 com-
bination therapy at 8–12 weeks. With our predictive 
model, we found that both the AdaBoost classifier and 
GBDT demonstrated high levels of prediction efficiency, 
with AUC values exceeding 0.7. This study revealed that 
the AdaBoost classifier (AUC = 0.784; sensitivity = 0.85; 
specificity = 0.79) could accurately predict the effective-
ness of PD-1 combination therapy. For the first time, our 
research employed various machine learning techniques 
to assess the efficacy of PD-1 therapy in patients with 
pan-cancer. The performance of the AdaBoost classifier, 
with an AUC of 0.784, surpassed that of our previously 
developed models based on alanine transaminase (ALT)/
aspartate transaminase (AST) and lactate dehydrogenase 
(LDH) levels, which yielded AUC values of 0.737 in the 
training cohort and 0.723 in the validation cohort [11]. 

Fig. 2 Statistical analysis of blood biomarkers in the testing dataset. * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001, ns denotes not significant
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To streamline the model’s parameters, numerous studies 
employ feature importance analysis to identify significant 
feature parameters and develop revised models. In the 
present study, we similarly conducted an analysis of fea-
ture importance within the model; however, all param-
eters yielded scores below 0.05, thus precluding the need 
for further simplification of the model.

Our machine learning-based approach demonstrated 
promising accuracy in predicting the efficacy of PD-1 
therapy at 8–12 weeks. These findings have significant 
implications for personalized medicine and the optimi-
zation of treatment strategies for patients receiving PD-1 
therapy. By identifying patients who are likely to respond 
positively to PD-1 therapy, we can optimize treatment 
plans and avoid unnecessary side effects and costs for 
nonresponders. This approach has the advantage of being 
noninvasive and easily applicable in clinical settings.

Although, studies have been conducted on radiomic 
data using machine learning to predict the efficacy of 
anti-PD-1 antibodies-based combinational treatment in 
advanced breast cancer, demonstrating good agreement 
with the actual clinical immunotherapy response sta-
tus. (AUC of 0.994 in the training cohort, and 0.920 in 

the validation cohort) [3] Zhao et al. has not conducted 
an assessment of the blood indicators, thus hindering a 
comprehensive understanding of the efficacy between 
blood and radiomic model. Nevertheless, the simplic-
ity and affordability of utilizing blood indicators present 
clear advantages for imaging purposes. Especially hema-
tological testing is more suitable for repeated testing in a 
short period of time, with a shorter warning interval.

While this study marks the initial exploration into fore-
casting the effectiveness of PD-1 combination therapy 
across diverse cancer types, it is important to acknowl-
edge its limitations. First, this study is limited by a small 
sample size and the lack of external multicenter data-
sets and representation of other cancer types. Future 
research should aim to validate the predictive model in 
diverse cancer types and across multiple research cen-
ters. Second, additional non-invasive prediction models, 
such as imaging parameters models, have shown promis-
ing results in enhancing the predictive accuracy of PD-1. 
The potential synergistic effects of combining blood and 
imaging omics for enhanced predictive capabilities war-
rant further investigation in future studies. Third, our 

Fig. 3 Traditional analysis of blood biomarkers for predicting response category. (a) Heatmap of biomarkers of PD and DC patients. (b) PCA of PD and 
DC patient blood biomarkers with dimension reduction to 2. (c) Statistical analysis of PCs from PCA. * denotes p < 0.05, ** denotes p < 0.01, *** denotes 
p < 0.001, ns denotes not significant
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Fig. 5 Normalized feature importance scores of AdaBoost analysis

 

Fig. 4 Prediction via machine learning methods. (a) ROC curves of the applied machine learning methods for PD prediction. (b) AUC values of the 
machine learning methods. (c) True positives (TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs) predicted by the machine learning 
methods
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study focused on a specific time frame (8–12 weeks) and 
may not capture long-term treatment outcomes.

Conclusions
In conclusion, our research demonstrated the potential of 
machine learning to predict the efficacy of PD-1 therapy 
based on changes in routine blood cell and biochemical 
parameters. This innovative approach holds the potential 
to enhance the monitoring of patient treatment plans and 
optimize treatment efficiency by accurately predicting 
the efficacy of PD-1 combination therapy.
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