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Abstract 

Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always 
plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames 
(ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) 
which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, transla-
tional regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, 
increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the reg-
ulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology 
research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their 
coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small pep-
tides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute 
to a deeper understanding of cancer and the development of new targeted anticancer therapies.
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Introduction
Cancer threatens the health of people all over the world 
and is the cause of a large number of deaths each year [1]. 
Disorders of gene expression and imbalance in transcrip-
tion are typical indicators of cancer. In fact, both coding 
and non-coding RNAs play a key role during these pro-
cesses [2]. With the development of high-throughput 
sequencing technology, a large number of ncRNAs have 
been identified as key regulators in a variety of patho-
physiological conditions including cancer [3–5]. Long 
non-coding RNAs (lncRNAs), by definition, refer to RNA 
with transcripts longer than 200 nucleotides (nt), which 
have no long open reading frames (ORFs, > 100 amino 
acids) and lack the ability to code proteins. Therefore, 
lncRNA were originally regarded as trash produced by 
the transcription process. Upon further research, lncR-
NAs have been proven to drive many important cancer 
phenotypes by interacting with other cellular macromol-
ecules, including DNA, RNA and protein [5]. They can 
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regulate cancer processes through chromatin remod-
eling [6], transcription [7] or translation [8, 9] regulation, 
RNA editing [10], RNA degradation [11], RNA splicing 
[12] and miRNA sponge [13]. Like mRNAs, lncRNAs 
are transcribed, spliced, capped, and polyadenylated. For 
a long time, it was overlooked whether the short open 
reading frames (sORF) in lncRNAs could be translated. 
Recently, with the advancement of ribosome profiling 
and sequencing technologies, it has been proved that 
the sORF in lncRNAs can encode peptides (less than 100 
amino acids) or small proteins that perform some impor-
tant biological functions [14–16]. According to cur-
rent knowledge, the sORF, with canonical start and stop 
codon, go through the translation process in a way simi-
lar to that of mRNA. lncRNAs that are translated pref-
erentially localize in the cytoplasm and their translation 
efficiency is similar to that of mRNAs [17].

Studies have confirmed that peptides can act as key 
regulators of many basic cellular processes such as devel-
opment, differentiation, proliferation, splicing regula-
tion, apoptosis and cell metabolism [18–23]. In fact, 
both lncRNA and polypeptides encoded by lncRNA can 
mediate a variety of biological functions, especially in 
the regulation of cancer progression. lncRNA AGPG and 
lncRNA AFAP1-AS1 can promote tumor progression 
by regulating PFKFB3-mediated glycolysis reprogram-
ming or epigenetic inhibition of p21 expression, respec-
tively [24, 25]. HOXB-AS3 is a peptide of 53 amino acids 
encoded by lncRNA HOXB-AS3 [20]. The expression of 
HOXB-AS3 peptide is decreased in cancer tissues. The 
HOXB-AS3 peptide rather than lncRNA can inhibit the 
growth of colorectal cancer (CRC). ASRPS is a peptide of 
60 amino acids encoded by LINC00908, which is down-
regulated in triple-negative breast cancer (TNBC), and 
can inhibit angiogenesis and exert an anti-tumor effect in 
TNBC [26]. The deciphering of the function of lncRNA-
encoded peptides/proteins has just begun.

In this review, we describe the biological function of 
lncRNA in cancer, introduce the coding ability of lncRNA 
and the current methods to evaluate the coding potential. 
Finally, we discuss the most updated findings on the role 
of small peptides encoded by lncRNA in cancer.

Biological function of lncRNA in cancer
LncRNA has been recognized as a key regulator in can-
cer [27]. Previous studies have shown that lncRNA affects 
some important biological functions in the tumor micro-
environment including cell proliferation, migration and 
invasion, apoptosis and autophagy, epithelial-mesenchy-
mal transformation (EMT), cancer stemness, etc. (Fig. 1) 
via mechanisms involving chromatin remodeling, RNA 
editing, RNA splicing, transcription and translation regu-
lation [28–33].

Cell proliferation, migration and invasion
Cell proliferation, migration and invasion play an 
important role in the progression of tumors. Through 
proliferation, migration and invasion, the tumor cells 
gradually spread to the adjacent tissue and become 
malignant cancers. lncRNAs are critically involved in 
this process. XIST (X inactivation specific transcript) 
is a newly discovered carcinogenic lncRNA, which pro-
motes the malignant phenotype of many cancers [34]. 
Competitive endogenous RNA (ceRNA) form a network 
in which different RNAs, both coding and noncoding, 
influence each other’s expression by binding to micro-
RNA response elements (MREs). In thyroid carcinoma, 
XIST acts as a ceRNA sponging miR-34a and competes 
with MET for miR-34a binding. MET is a receptor 
tyrosine kinase that promotes cell proliferation through 
PI3K/AKT signaling and miR-34a is considered to be a 
tumor suppressor targeting MET, thus XIST promotes 
the proliferation of thyroid cancer by down-regulating 
miR-34a and increasing MET [35]. In pancreatic can-
cer (PC), ZEB1 (the key regulator of EMT and cell 
invasion) is the downstream target of MiR-429. Its 
overexpression can accelerate the migration, invasion 
and EMT of PC cells. XIST, as the ceRNA of miRNA-
429, upregulates the expression of ZEB1, leading to PC 
cell migration, invasion and EMT enhancement [36]. In 
non-small cell lung cancer (NSCLC), XIST acts as the 
ceRNA of miR-744, inhibits the feedback loop of miR-
744/RING1 and activates the Wnt/ β-catenin signal-
ing pathway, which results in enhanced proliferation of 
NSCLC cells [37]. It has also been reported that XIST 
can affect tumor progression by regulating cell prolif-
eration, migration, and invasion in nasopharyngeal car-
cinoma [38], glioma [39], oral squamous cell carcinoma 
[40], colorectal cancer [41], and hepatocellular car-
cinoma [42]. ABHD11-AS1 is a lncRNA that is highly 
expressed in various cancers including papillary thyroid 
carcinoma (PTC). MiR-199a-5p, as a tumor suppres-
sor, inhibits the carcinogenic function of its down-
stream target SLC1A5. ABHD11-AS1, as the ceRNA 
of miR-199a-5p, blocks the tumor inhibitory function 
of miR-199a-5p, thereby enhancing the proliferation, 
migration and invasion of PTC cells [43]. It has also 
been confirmed that ABHD11-AS1 can influence tumor 
progression by regulating cell proliferation, migration, 
and invasion in colorectal cancer [44], pancreatic can-
cer [45], and epithelial ovarian cancer [46]. In short, 
the majority of cancer-related lncRNAs can affect cell 
proliferation, migration and invasion, thus regulating 
tumor progression. Some representative lncRNAs are 
listed in Table 1.
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Apoptosis and autophagy
Apoptosis (or type I cell death) is an orderly cellu-
lar process in living organisms, which features a vari-
ety of morphological changes including cell shrinkage, 
nuclear fragmentation and chromatin condensation. 
In this manner, all cellular components are even-
tually degraded and digested by other living cells 
[100]. Autophagy is characterized by the presence 
of autophagic vacuoles (autophagosomes) which are 
finally delivered to lysosomes for degradation. It often 
causes damaged cells or excess aging proteins/orga-
nelles to be swallowed and degraded, making the cells 
more conducive for survival [101]. However, in some 
circumstances, it also activates an alternative cell death 
pathway (or type II cell death) [102]. Many lncRNAs 
affect tumor progression by regulating these two pro-
cesses. In gastric cancer (GC), lncRNA HAGLROS 
inhibits autophagic cell death by competitively spong-
ing miR-100-5p to increase mTOR expression. At the 
same time, HAGLROS interacts and activates the 
mTORC1 signaling pathway, which serves as a negative 
regulator of autophagy, thus promoting the prolifera-
tion of GC cells [103]. LncRNA DANCR is transcrip-
tionally activated by KLF5, a gene highly expressed in 

GC. Knockdown of KLF5 inhibits the DANCR/miR-
194/AKT2 axis to enhance autophagy and decrease 
cancer cell viability [104]. LncRNA SNHG11 acceler-
ates the progression of GC by activating oncogenic 
autophagy, which is dependent on the induction of 
ATG12 through the miR-483-3p/miR-1276 [105]. In 
glioblastoma, lncRNA AC003092.1 acts as a ceRNA 
to suppress miR-195 and promote the expression of 
Konitz protease inhibitor (TFPI-2). It enhances temo-
zolomide (TMZ) chemosensitivity through TFPI-2-in-
duced cell apoptosis [106]. It has also been reported 
that lncRNA CASC9 promotes cancer progression by 
enhancing cell proliferation and inhibiting autophagy 
dependent cell apoptosis by activating the AKT/mTOR 
signaling pathway in oral squamous cell carcinoma 
[107]. LncRNA NBR2 can repress autophagy-induced 
cell proliferation and down-regulate ERK and JNK sig-
nals in hepatocellular carcinoma (HCC), thereby inhib-
iting the malignant progression of HCC [108].

Epithelial‑mesenchymal transformation (EMT)
EMT refers to the transition of cells from an epithelial 
state to a mesenchymal state and is associated with vari-
ous tumor processes such as tumorigenesis, metastasis, 

Fig. 1 LncRNAs influence key processes in cancer. LncRNAs themselves can regulate the progression of cancer by affecting cell proliferation, 
migration and invasion, autophagy and apoptosis, EMT and cancer stemness. They can also encode peptides to participate in cancer regulation
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Table 1 Cancer-related lncRNA affecting cell proliferation, migration and invasion

lncRNA Cancer type function Mechanism Refer

XIST TC Promote proliferation Acts as ceRNA sponge miR-34a [35]

PC Promote migration, invasion and EMT Acts as ceRNA of miRNA-429 [36]

NSCLC Enhanced proliferation of NSCLC cells Acts as ceRNA of miR-744 [37]

NPC Promote migration, invasion Regulating miR-30b and RECK [38]

Glioma Promotes proliferation and metastasis Regulating miR-133a/SOX4 [39]

OSCC Promotes proliferation & cisplatin resistance Downregulating miR-27b-3p [40]

CRC promoted CRC metastasis Acting as a ceRNA of miR-125b-2-3p [41]

HCC Inhibit proliferation and migration Acting as miR-497-5p molecular sponge and Target-
ing PDCD4

[42]

TNBC Inhibit proliferation and EMT Interacts with miR-454 [49]

PVT1 NPC Promote proliferation and clone formation Activating the KAT2A acetyltransferase and Stabilizing 
HIF-1α

[50]

NSCLC Promote proliferation, migration and invasion Regulating miR-551b/FGFR1 Axis [51]

OSCC Enhances Proliferation and Cisplatin Resistance Regulating miR-194-5p/HIF1a Axis [52]

lung cancer Facilitating proliferation and metastasis Promoting VEGFC expression [53]

CRC Promote proliferation and apoptosis Regulating miR-761/MAPK1 axis [54]

GBC Promotes proliferation and tumor progression Regulating the miR-143/HK2 axis [55]

cervical cancer Promote proliferation and invasion Facilitating Smad3 expression by sponging miR-
140-5p

[56]

PC Promote proliferation and migration Sponge miR-448 [57]

ovarian cancer Promotes proliferation Binding to miR-140 [58]

bladder cancer Promote growth, migration, and invasion Regulating miR-31/ CDK1 [59]

HOTAIR cervical cancer Facilitating proliferation and suppress apoptosis Sponging miR-214-3p [60]

GC Promote growth, migration, and invasion acts as a ceRNA sponge mir-331-3p [48]

TNBC Promote proliferation and invasion m6A site regulates [61]

NSCLC Promotes proliferation, invasion and migration Regulating CCL22 signaling pathway [62]

OSCC Promotes proliferation and migration Targeting miR-126 [63]

Glioma Promote proliferation and invasion Sponges miR-301a-3p [64]

BC Promotes cancer progression Regulating the miR-129-5p/FZD7 axis [65]

CCA Inhibit apoptosis, autophagy and promote prolifera-
tion

Regulating the miR-204-5p/HMGB1 axis [66]

ovarian cancer Promotes migration and proliferation Modulating miR-222-3p/CDK19 axis [67]

LSCC Promote EMT and metastasis Modulating PI3K/ p-AKT /AKT pathway [68]

CRC Promotes cancer development Down-regulating miRNA-34a [69]

HCC Mediate cancer occurrence Inhibit miRNA-218 expression and enhancing P14 
and P16 signaling

[70]

H19 Glioma Promotes Proliferation, Migration, and Angiogenesis Regulating Wnt5a/β-Catenin Pathway via Targeting 
miR-342

[71]

Nephroblastoma Suppress proliferation and promote apoptosis Regulating the miR-675/TGFBI axis [72]

PC Facilitating proliferation and migration Regulating the miR-194/PFTK1 axis [73]

NPC Promote proliferation and metastasis let-7 dependent manner [74]

lung cancer Promotes proliferation and metastasis Suppressing miR-200a function [75]

HCC Promote proliferation, migration and invasion Activating CDC42/PAK1 pathway [76]

ABHD11-AS1 PTC Enhancing the proliferation, migration and invasion Acts as ceRNA of miR-199a-5p/SLC1A5 axis [43]

CRC Promotes CRC development Regulation the miR-133a/SOX4 axis [44]

PC Promote proliferation, migration and invasion Regulation the PI3K-AKT pathway [45]

AFAP1-AS1 NSCLC Promote proliferation, migration and invasion Epigenetically suppressing p21 expression [25]

GBC Promotes proliferation and invasion [77]

PDAC Promote migration and invasion [47]

HCC Promotes proliferation and invasion Activating the RhoA/rac2 signal [78]

SNHG5 HCC promote proliferation, cancer stemness Regulating UPF1 and Wnt-signaling pathway [79]
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invasion, and malignant progression [109–111]. EMT can 
be divided into partial, incomplete or mixed EMT states 
based on the characteristics between the epithelial state 
and the complete mesenchymal state of the cells [112]. 
Some lncRNAs may play a role in the progression of 
cancer by affecting EMT. In NSCLC, lncRNA linc00673 
has been shown to facilitate tumor progression through 
EMT by acting as a ceRNA to sponge miR-150-5p, lead-
ing to increased expression of ZEB1 which is a proven 
regulatory factor in the promotion of EMT, thus enhanc-
ing the proliferation, migration, invasion and EMT of 
NSCLC [113]. In HCC, MiR-15b is a carcinogenic gene 
that promotes cancer migration, invasion, EMT and 
angiogenesis. Programmed cell death 4 (PDCD4) is a 
tumor suppressor gene that suppresses tumor migration, 
invasion, EMT and angiogenesis. Interestingly, IncRNA 
miR503HG acts as a ceRNA to sponge miR-15b leading 
to increased PDCD4 expression, which in turn inhibits 
HCC migration, invasion, EMT and angiogenesis [114]. 
LncRNA AB073614 is significantly up-regulated in CRC, 
resulting in enhanced activation of JAK/STAT3 signal-
ing, a pathway that promotes cancer metastasis and EMT 
and accelerates tumor progression [115]. In lung cancer, 

lncRNA-LINP1 can down-regulate transforming growth 
factor β (TGF- β), a key regulator of EMT in tumor pro-
gression, and inhibit tumor EMT through the TGF- β / 
SMAD pathway [116].

Cancer stemness
Some cancer cells in the tumor cell population have 
the ability to self-renew, differentiate and proliferate. 
They resist anticancer treatments and maintain survival 
of cancer cells. These cells are called cancer stem cells 
(CSCs) [117]. Undoubtedly, CSCs have become a stum-
bling block in the treatment of tumors and investigation 
of them is deemed to hold great potential in cancer treat-
ment. In recent years, some lncRNAs have been reported 
to be involved in the regulation of cancer stemness. In 
CRC, lncRNA H19 is expressed by cancer associated 
fibroblasts (CAFs) and delivered by CAF derived exo-
some. It acts as a ceRNA sponge of miR-141 (CRC cell 
stemness inhibitor) to activate β-catenin signaling and 
promote the stemness of CRC cells [118]. In GC, lncRNA 
MACC1-AS1 is induced by transforming growth fac-
tor β1 (TGF-β1) secreted by mesenchymal stem cells 
(MSCs), which suppresses the expression of miR-145-5p 

Table 1 (continued)

lncRNA Cancer type function Mechanism Refer

MALAT1 GC Promote proliferation and migration Suppressing miR-122, miR-1297, miR-22-3p, miR-202, 
etc

[80]

Melanoma Promote proliferation, migration and invasion Downregulating miR-23a [81]

ovarian cancer Promotes proliferation and metastasis Modulating the PI3K-AKT pathway [82]

BC Promotes progression and doxorubicin resistance Modulating miR-570-3p [83]

CRC Promote the development of CRC Modulating miR-129-5p/HMGB1 axis [84]

HCC Promote HCC metastasis Regulation of peripheral vascular infiltration caused 
by miRNA-613

[85]

NSCLC Accelerating cancer progression Modulating miR-185-5p/MDM4 axis [86]

TUG1 ovarian cancer Promote proliferation, invasion and stemness Modulating miR-186-5p/ZEB1 axis [87]

osteosarcoma Facilitating proliferation and Inhibit apoptosis Modulating miR-212-3p/FOXA1 axis [88]

HCC Promotes Proliferation, Migration, and Invasion Modulating miR-29c-3p/ COL1A1 Axis [89]

BC Accelerating the malignant progression of tumor Modulating the miR-320a/FOXQ1 axis [90]

DANCR TSCC Facilitating proliferation, migration, and invasion Modulating miR-135a-5p/KLF8 axis [91]

SNHG4 lung cancer Facilitating proliferation, migration, invasiveness, 
and EMT

Modulating miR-98-5p [92]

LUCAT1 cervical cancer Facilitating proliferation, migration and invasion Regulating miR-181a [93]

FGD5-AS1 ovarian cancer Accelerating the progression of cancer Regulating miR-142-5p [94]

TINCR lung cancer Inhibit proliferation and invasion Modulating miR-544a/FBXW7 axis [95]

CASC11 CRC Accelerating the Proliferation and Migration Sponging miR-646 and miR-381-3p [96]

MALAT1 Melanoma Facilitating Proliferation, Migration, and Invasion Suppressing the expression of miR-23a [81]

ovarian cancer Facilitating proliferation and metastasis Regulating PI3K-AKT pathway [82]

BC Promote the progression of cancer Modulating miR-570-3p [83]

ATB Lung cancer Facilitating Proliferation, Migration, and Invasion Regulating microRNA-590-5p/NF90 Axis [97]

THAP9-AS1 PDAC Promote tumor growth Regulating miR-484 and YAP [98]

HOXB-AS3 Lung cancer Facilitating proliferation, migration, and invasion Regulating PI3K-AKT pathway [99]
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(the stemness & chemoresistance inhibitor) to acceler-
ate FAO-dependent (fatty acid oxidation) stemness and 
chemotherapeutic resistance of GC cells [29]. In breast 
cancer (BC), lncRNA FGF13-AS1 can regulate RNA 
binding proteins and insulin-like growth factor 2 mRNA 
binding proteins (IGF2BPs) to shorten the half-life of 
c-Myc (Myc) mRNA. Myc (c-Myc) is a recognized car-
cinogenic transcription factor, which regulates cancer 
cell growth, proliferation, apoptosis and stemness [119]. 
LncRNA FGF13-AS1 suppresses the stemness of BC cells 
by accelerating Myc metabolism. In general, lncRNA can 
regulate cancer stemness, which is an important biologi-
cal function of cancer-related lncRNA.

Tumor immunity
Recent studies have found that lncRNA not only regulates 
the progression of many cancers, but also participates in 
the regulation of immune process, which plays an impor-
tant role in innate immunity and acquired immunity 
[209]. LncRNAs may affect cancer progression through 
immune regulation [210]. Based on this, ImmLnc, which 
is a tool designed to identify immunomodulatory related 
lncRNA, has been developed by researchers [211].

Ability of lncRNA to encode small peptides
As early as 20  years ago, a study revealed that lncRNA 
possesses sORF that can encode small peptides with bio-
logical functions in soybean [120]. After further research, 
it has been confirmed that these short ORFs from 
lncRNA can be captured by ribosomes and then trans-
lated into corresponding peptides with biological func-
tions. In Drosophila, a ncRNA called polished rice (pri) 
actually has several short sORFs that encode peptides 
of 11 or 32 amino acids in length and participate in epi-
thelial morphogenesis [121]. In human, as early as 2015, 
lncRNA CRNDE has been found to encode an endoge-
nous CRNDEP peptide, which was located in the nucleus 
and may participate in oxygen metabolism and regulate 
cell proliferation [172]. With the in-depth study of pep-
tides/proteins encoded by lncRNA in recent years, some 
lncRNAs with the ability to encode small peptides have 
been found. In addition, they have some biological func-
tions, especially in tumor regulation. Interestingly, these 
lncRNAs can function both through their RNAs and the 
encoded peptides, such as lncRNA HOXB-AS3. Research 
has shown that lncRNA HOXB-AS3 can bind ErbB3-
binding protein 1 (EBP1) and affect the EBP1-NPM1 
complex formation to regulate rRNA transcription [123]. 
At the same time, it can also encode a 53aa peptide that 
plays oncogenic or tumor suppressive roles in different 
cancers, which will be discussed later. Overall, peptides 
encoded by lncRNAs can participate in the regulation 
of various cancer processes. This is usually achieved by 

binding of small peptides to their downstream targets, 
which are directly or indirectly involved in the occur-
rence and development of cancer. The binding of pep-
tides with their targets will change the balance of tumor 
processes, stabilizing oncogenic signals or inhibiting 
tumor suppressive pathways to promote cancer progres-
sion, or upregulating tumor suppressor signals or inhib-
iting oncogenic pathways to inhibit cancer progression 
(Fig. 1).

In fact, some lncRNAs’ ORF can be translated and 
these small peptides are further processed into small 
antigenic peptides on MHC class I proteins, activating 
CD8 immune cells to inhibit tumor growth [212]. The 
peptides encoded by lncRNA can also mediate antigen 
presentation, CD4 + T cell response, interleukin produc-
tion, etc. in the immune process [213]. This is an impor-
tant functional discovery of lncRNA-derived peptides, 
which will drive the research of tumor immunotherapy 
and cancer vaccines to a new level.

Prediction of lncRNA coding potential
With the advancement of high-throughput sequencing 
technology, RNA-seq can be used to identify protein-
coding RNA and non-coding RNA [124]. Methods built 
on this have been developed to predict the coding poten-
tial of lncRNAs, using computer-based, high-throughput 
sequencing technology and experimental methods that 
comprehensively evaluate the sequence characteris-
tics and ORF of lncRNA, and finally predict the coding 
potential of lncRNA and identify candidate small pep-
tides (Table 2).

Methods based on sequence
Advances in sequencing technologies have led to more 
precise assessment of sequence features of lncRNA, 
including sequence homology, conservation, nucleotide 
composition, secondary structure, Open Reading Frame 
(ORF), etc. Relying on a variety of sequencing results, the 
coding potential of lncRNA can be predicted by methods 
with high precision based on sequence features. These 
methods include COME, CPAT and PORTRAIT. Coding 
Potential Computation Tool (COME) not only has high 
prediction accuracy, but also characterizes multiple cod-
ing parameters of lncRNA and is applicable to a variety 
of organisms [127]. CPAT is a tool that uses a logistic 
regression model to predict the coding performance of 
lncRNAs, and the model is based on the comprehensive 
evaluation of four sequence features: ORF size, ORF cov-
erage, Fickett TESTCODE statistic and hexamer usage 
bias [128]. PORTRAIT is a software originally proposed 
to screen ncRNAs in transcriptomes from not so well-
characterized organisms. Based on the support vector 
machine (SVM) algorithm, protein-coding or non-coding 
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genes can be classified with high specificity. Thus it can 
be used to evaluate the coding potential of ncRNAs [129].

In addition, the coding potential of lncRNAs can be 
evaluated based on the sequence features of their ORFs. 
Research has found that lncRNA contain several ORFs 
shorter than mRNAs (sORFs), in which the longer ORFs 
located in the cytoplasm may be more easily captured 
by ribosomes, thereby facilitating translation [17, 140, 
141]. We can distinguish whether the translated ORF 
comes from lncRNA or from mRNA via marker map-
ping and mutation experiments [142, 143]. Therefore, 
the identification of sORFs is an important indicator 
when evaluating the coding capacity of lncRNA. There 
are two important characteristics in the ORF sequence: 

one is the length and the other is the integrity [130, 
144]. Moreover, ORFs that can be translated should have 
sequence homology and should be conserved. By identi-
fying sORFs (10–100 amino acids) with coding potential 
in a given nucleotide sequence, a tool to identify sORFs 
in lncRNA was developed: sORFfinder [134]. Through 
this package, the ORFs from lncRNA can be calculated 
quickly. This kind of software is developing rapidly, and 
the latest version is csORF-finder designed by NUAA, 
which makes the computing performance more power-
ful [145]. Additionally, GWIPS-Viz [135, 136] is a data-
base for the identification of sORFs based on ribosome 
occupancy analysis, which can identify ORFs with high 
coding potential in lncRNA (lncRNA has a large number 

Table 2 Tools for predicting lncRNA coding potential

Tools platform Link Functions and features Refer

TransLnc http:// bio- bigda ta. hrbmu. edu. cn/ Trans Lnc/ Prediction of peptides encoded by lncRNA 
in multiple species and provide computation-
ally predicted tumor neoantigens from pep-
tides encoded by lncRNAs

[125]

PhyloCSF GNU/ Linux/ Mac OS http:// compb io. mit. edu/ Phylo CSF Nucleotide sequence analysis and Protein cod-
ing region determination

[126]

COME Linux https:// github. com/ lulab/ COME Identify and characterize lncRNAs with multi-
feature support

[127]

CPAT Linux
Windows

http:// code. google. com/p/ cpat/ Rapidly recognizes coding and noncoding 
transcripts

[128]

PORTRAIT Linux http:// bioin forma tics. cenar gen. embra pa. br/ 
portr ait

Predicted putative proteins are evaluated 
for coding potential by SVM

[129]

CONC Linux http:// cubic. bioc. colum bia. edu/ ~liu/ conc/ Evaluation of coding potential by protein 
characteristics

[130]

CPC Linux http:// cpc. cbi. pku. edu. cn Prediction based on six biologically meaningful 
sequence features

[131]

CPC2 Linux http:// cpc2. cbi. pku. edu. cn More fast and accurate than CPC1, applying 
to ncRNA

[132]

RNAcode Linux
Windows

http:// wash. github. com/ rnaco de Detecting coding regions in multiple sequence 
alignments

[133]

sORFfinder Web server http:// www. ncbi. nlm. nih. gov/ gorf/ orfig. cgi A program package for identifying sORFs 
with high-coding potential

[134]

GWIPS-viz Web server http:// gwips. ucc. ie/ a database for the identification of sORFs based 
on ribosome occupancy analysis

[135, 136]

MiPepid Linux
Windows

https:// github. com/ MindAI/ MiPep id A machine-learning tool specifically 
for the identification of micropeptides

[137]

NAMS webserver Web server http:// sunlab. cpy. cuhk. edu. hk/ NAMS/ Coding potential assessment and functional 
annotation of plant transcripts

[138]

DeepCPP Linux
Windows

https:// github. com/ yuuuu zhang/ DeepC PP A deep learning method for RNA coding poten-
tial prediction

[139]

SPENCER Web server https:// spenc er. renlab. org/#/ home A comprehensive database for small peptides
encoded by ncRNA in cancer patients

[214]

SEP Web server https:// ngdc. cncb. ac. cn/ omix/ relea se/ OMIX2 66 A database that attempts to maximize a collec-
tion of SEPs from human and mouse lncRNA 
transcripts

[215]

FuncPEP Web server https:// bioin forma tics. mdand erson. org/ Suppl 
ements/ FuncP EP/

A database of Functional Peptides Encoded 
by Non-Coding RNAs

[216]

ncEP Web server http:// www. jiang lab. cn/ ncEP/ A verified peptide database encoded by non-
coding RNAs

[217]

http://bio-bigdata.hrbmu.edu.cn/TransLnc/
http://compbio.mit.edu/PhyloCSF
https://github.com/lulab/COME
http://code.google.com/p/cpat/
http://bioinformatics.cenargen.embrapa.br/portrait
http://bioinformatics.cenargen.embrapa.br/portrait
http://cubic.bioc.columbia.edu/~liu/conc/
http://cpc.cbi.pku.edu.cn
http://cpc2.cbi.pku.edu.cn
http://wash.github.com/rnacode
http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi
http://gwips.ucc.ie/
https://github.com/MindAI/MiPepid
http://sunlab.cpy.cuhk.edu.hk/NAMS/
https://github.com/yuuuuzhang/DeepCPP
https://spencer.renlab.org/#/home
https://ngdc.cncb.ac.cn/omix/release/OMIX266
https://bioinformatics.mdanderson.org/Supplements/FuncPEP/
https://bioinformatics.mdanderson.org/Supplements/FuncPEP/
http://www.jianglab.cn/ncEP/
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of identical and conservative fragments protected by 
ribosomes). A peptide encoded by lncRNA has been pre-
dicted in this manner and has proven to be biologically 
functional [26].

Computer‑based machine learning methods
In the past decade, machine learning technology has 
been widely used in biological applications including 
genome annotation [146, 147], protein binding predic-
tion [148, 149], identification of key transcriptional driv-
ers of cancer [150, 151], prediction of metabolic function 
of complex microbial communities and characteriza-
tion of transcriptional regulatory networks [152–155]. 
In recent years, with the development of bioinformat-
ics, machine learning technology has been applied to 
the prediction of gene expression by building models 
[156], the study of gene splicing [157], and the identifi-
cation of long non-coding RNA [158–161]. Even more 
recently, machine learning methods have been applied to 
the identification of transcript coding potential. After the 
discovery that some non-coding RNAs have the ability to 
encode peptides, the machine learning technology was 
brought to the prediction of the coding ability of ncRNA. 
MiPepid [137], a tool dedicated to the identification of 
micropeptides, is based on machine learning techniques. 
MiPepid has been trained using an existing database and 
logistic regression with 4-mer features to achieve a high 
degree of accuracy while running fast. DeepCPP [139], 
a deep neural network for RNA coding potential predic-
tion, is based on nucleotide bias information and mini-
mum distribution similarity features. Its advantage is the 
improved ability to identify sORFs RNA (lncRNA, etc.). 
NAMS webserver [138] is a web server that predicts the 
coding potential and functional annotation of plant tran-
scripts. Based on its computing power, it can also be used 
to evaluate the coding potential of lncRNA genes.

Experimental approach
As more and more functional small peptides encoded by 
lncRNA are discovered, researchers have also designed 
experimental methods for verification. Ribosomal 
sequencing is a method used to evaluate the coding 
potential of ncRNAs. By sequencing ribosome-protected 
RNA fragments, the ribosome enrichment information 
of lncRNA sequences can be used to predict whether the 
lncRNA has the potential to encode peptides [17]. Many 
lncRNA encoded peptides have been discovered in this 
manner [20, 162]. After the initial identification, a vector 
expressing the FLAG-labeled ORF can be transfected into 
cells. If the ORF is translatable, it will drive the FLAG tag 
to be translated together, and immunofluorescence can 
be used to determine whether the corresponding pro-
tein is produced followed by other methodologies such as 

Western Blot, etc. [163–166]. Next, the start codon can 
be mutated, and once again used to detect whether there 
is a FLAG band at the corresponding molecular weight 
by Western blotting, in order to determine whether the 
translation occurs normally [167]. At the same time, the 
endogenously expressed lncRNA encoded peptide can 
be detected with antibodies raised against amino acid 
sequences in the peptide by western blotting and/or IP/
MS. In addition, pull-down experiments such as co-
immunoprecipitation (CO-IP) can also be used to dis-
cover proteins that interact with the functional peptide 
[168], which can further be detected by MS.

Functions of peptides encoded by LncRNA 
in cancer
Some lncRNAs possess small open reading frames 
(sORFs), which can exert biological functions by encod-
ing functional small peptides. Several studies have found 
that small peptides encoded by lncRNA play a key role 
in the regulation of various cancer processes [169]. Some 
small peptides can cause worsening of the cancer phe-
notype and manifest as oncogenic peptides, while others 
can inhibit tumor proliferation, metastasis and invasion, 
manifested as tumor suppressor peptides. RNA-binding 
regulatory peptide (RBRP) is a functional peptide of 71aa 
encoded by lncRNA LINC00266-1. Studies have shown 
that RBRP is a regulatory subunit of RNA  m6A reader 
IGF2BP1 complex by binding directly to the GxxG motif 
in the KH3–4 di-domain of IGF2BP1, which is indispen-
sable for  m6A recognition and interaction. The increased 
expression of RBRP in tumors promotes the recogni-
tion and binding of  m6A reader IGF2BP1 to the targeted 
RNA in order to enhance the mRNA stability of proto-
oncogenes (such as c-Myc, etc.), which induces tumori-
genesis [170]. PACMP is a 44aa micropeptide encoded by 
lncRNA CTD-2256P15.2 with multiple functions. It not 
only suppresses CtIP-KLHL15-dependent CtIP ubiquit-
ination, but also promotes PARP1-induced PAR polym-
erization by combining with DNA damage-mediated 
polychains. Both PARP1 and CtIP are important targets 
in cancer, so PACMP has the potential to become a high-
value anti-cancer target [122]. The forced expression 
of TUBL, a 87aa peptide encoded by lncRNA TINCR, 
promotes cell cycle progression in normal human epi-
dermal keratinocytes. Mice lacking this protein exhibit 
decreased cell cycle progression in skin-keratinocytes, 
delayed wound healing, and the protein may promote the 
proliferation of cancer cells [171]. A similar functional 
peptide encoded by lncRNA that is involved in cell pro-
liferation is CRNDEP (84aa) encoded by lncRNA CRNDE 
[172]. A number of functional small peptides encoded by 
lncRNAs play crucial roles in different types of cancers 
(Table 3 and Fig. 2).
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Table 3 Peptides encoded by lncRNA in cancer

Cancer type Pep name Pep length lncRNA Function Mechanism Refer

Multi Cancer RBRP 71aa LINC00266-1 tumorigenesis Binding to IGF2BP1 [170]

TUBL 87aa TINCR cell proliferation [171]

PACMP 44aa CTD-2256P15.2 Regulate drug resistance Inhibit the degradation of CtIP 
by KLHL15 and promote PARP1-
dependent PARylation

[122]

Hela cell CRNDEP 84aa CRNDE [172]

CRC HOXB-AS3 53-aa lncRNA HOXB-AS3 Suppress CRC growth Binds to arginine residues 
and inhibits reprogramming of glu-
cose metabolism

[20]

pep-AP lnc-AP Chemosensitive Interacts with TALDO1 protein 
to inhibit its expression

[173]

ASAP 94aa LINC00467 Promote CA progression Interacts with ATP5A and ATP5C 
to promote CRC progression

[174]

PVT1 lncRNA PVT1 Immune Surveillance Recognized by CD8 tumor-infiltrat-
ing lymphocytes and mononuclear 
cells

[175]

FORCP 79 aa LINC00675 Inhibit tumorigenesis FORCP depletion results 
in decreased apoptosis

[176]

SRSP 130aa LOC90024 promotes CRC progression Induces "cancerous" Sp4 splicing 
variant formation

[177]

UBAP1-AST6 12.8 kDa LncRNA UBAP1-AST6 Promote CA progression [178]

TNBC ASRPS 60-aa LINC00908 Inhibit tumor angiogenesis ASRPS directly bound to STAT3 
and down-regulated STAT3 phos-
phorylation

[26]

CIP2A-BP 5.5KDa LINC00665 Inhibited tumor progression Binds tumor oncogenes to inhibit 
PI3K/AKT/NFκB pathway

[179]

XBP1SBM 21aa lncRNA MLLT4-AS1 promotes angiogenesis and metas-
tasis

Promote the expression of VEGF [180]

HCC SMIM30 59aa LINC00998 promotes HCC development Activates the MAPK signaling 
pathway

[181]

KRASIM 99-aa lncRNA NCBP2-AS2 suppress HCC growth Binds KRAS protein to inhibit ERK 
signaling

[182]

HBVPTPAP 145 aa lncRNA HBVPTPAP Inducing apoptosis of HCC cells Activates the JAK/STAT pathway 
by interacting with PILRA

[183]

PINT87aa 87aa LINC-PINT anti-proliferation in HCC cells Binds to FOXM1 to block PHB2 
transcription

[184]

ZFAS1 lncRNA ZFAS1 Promotes CA Cell Migration Inhibiting nicotinamide adenine 
dinucleotide dehydrogenase 
expression

[185]

TP53LC04 100aa lncRNA AC022075.1 Inhibit cell proliferation Regulation of cell cycle and DNA 
damage

[186]

Glioma ORF1/ ORF8 DLEU1 promotes CA progression encode small peptides with ion 
channel activity

[187]

OSCC HOXB-AS3 53-aa lncRNA HOXB-AS3 Promote CA progression Binds to IGF2BP2 to maintain 
the stability of c-Myc mRNA

[188]

Lung cancer UBAP1-AST6 12.8 kDa LncRNA UBAP1-AST6 promote tumor progression significantly promote cell prolifera-
tion and clone formation

[178]

Melanoma MELOE-3 54 aa LncRNA meloe Produce immune tolerance result from its expression in normal 
melanocytes

[189]

Breast cancer CASIMO1 10 kDa lncRNA CASIMO1 Promote tumor progression interact with members of the meva-
lonate (MVA) pathway

[190]

ESCC YY1BM 21 aa LINC00278 Involved in the ESCC progression YY1BM blocked YY1 binding to AR 
to activate the expression of eEF2K

[191]

PDAC RASON 108aa LINC00673 promotes CA progression Promote the expression of carcino-
genic RAS pathway

[192]

ovarian cancer DDUP 186aa lncRNA CTBP1 Promote drug resistance to chemo-
therapy

DNA damage repair [193]
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Hepatocellular carcinoma (HCC)
Liver cancer ranks fourth among all cancer-related 
deaths worldwide, and a large number of people die from 
hepatocellular carcinoma (HCC) each year [195]. It has 
been confirmed that a variety of small proteins encoded 
by lncRNA can affect the occurrence and progression of 
HCC. SMIM30 is a 59aa peptide encoded by LINC00998. 
SMIM30 promotes the carcinogenesis of HCC by activat-
ing the MAPK signaling pathway. The underlying mecha-
nism involves the binding of the peptide to non-receptor 
tyrosine kinase Sploy, which drives its membrane anchor-
ing and phosphorylation, and then activates the mito-
gen-activated protein kinase (MAPK) pathway thus 

promoting the proliferation and migration of HCC cells 
[181]. KRASIM is a 99aa peptide encoded by lncRNA 
NCBP2-AS2. Overexpression of KRASIM can reduce 
the level of proto-oncogene KRAS protein, which then 
inhibits the ERK signaling pathway in HCC cells causing 
a reduction in the growth and proliferation of HCC cells. 
In the cytoplasm of human HCC cells, KRASIM interacts 
and colocalizes with KRAS protein [182]. The lncRNA 
HBVPTPAP encodes a peptide of 145aa called HBVPT-
PAP. HBVPTPAP is mainly located in the cytoplasm and 
can induce mitochondrial apoptosis by activating the 
JAK/STAT signaling pathway, thus inducing apoptosis of 
HCC cells. This regulation was through the interaction 

Table 3 (continued)

Cancer type Pep name Pep length lncRNA Function Mechanism Refer

HNSCC MIAC 51 aa LncRNA RP11-469H8.6 Inhibits HNSCC Progression directly interacts with AQP2 
(Aquaporin 2) to inhibit the actin 
cytoskeleton

[194]

Fig. 2 Functions of peptides encoded by lncRNA in cancer. LncRNA can encode peptides to promote tumor development in glioma, lung cancer, 
HCC, OSCC, ESCC, breast cancer and melanoma or inhibit tumor development in HNSCC, TNBC and CRC 
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between the HBVPTPAP polypeptide and PILRA [183]. 
PINT87aa is a functional small peptide of 87aa encoded 
by LINC-PINT. PINT87aa can induce senescence of 
hepatoma cells by blocking PHB2 transcription through 
the direct binding of PINT87aa and FOXM1 DNA bind-
ing domain [184]. A study by Guo et al. has shown that 
lncRNA ZFAS1 has several small open reading frames 
(smORF), one of which has been proven to be up-regu-
lated in HCC tumor tissue, but is scarcely expressed in 
normal liver tissue, which implies that smORF may be 
related to the occurrence and development of hepatocel-
lular carcinoma. However, the detailed mechanism needs 
to be further elucidated [185].

Colorectal cancer (CRC)
More than 1.2 million patients are diagnosed with colo-
rectal cancer (CRC) each year, and more than 600,000 
people die from the disease [196]. In CRC, functional 
small peptides encoded by a variety of lncRNAs regulate 
tumor progression. As mentioned above, HOXB-AS3 
peptide promotes the proliferation of oral squamous cell 
carcinoma cells. The oncogenic role of LncRNA HOXB-
AS3 has also been implicated in different cancer types. 
On the contrary, in CRC, lncRNA HOXB-AS3 inhibits 
the reprogramming of glucose metabolism through its 
encoded 53aa peptide. This antagonizes the regulation 
of splicing of pyruvate kinase M (PKM) mediated by 
hnRNP A1, and ultimately inhibits the growth of CRC. 
This process is achieved by the competitive binding of 
HOXB-AS3 peptide to the ariginine residues of hnRNP 
A1 which blocks the binding of its own arginine residue 
to exon 9 of PKM [20]. Further investigation is pending 
into whether the function of lncRNA HOXB-AS3 and its 
peptide differs depending on cancer type. ASAP is a 94aa 
peptide encoded by LINC00467, which is associated with 
ATP synthesis. Clinically, ASAP is associated with the 
malignant phenotype in patients, whereby high expres-
sion of ASAP indicates poor survival in patients with 
CRC. As for the mechanism, ASAP peptide promotes 
the proliferation of CRC cells by promoting ATP synthe-
sis, thereby increasing the activity of ATP synthase and 
the rate of oxygen consumption by mitochondria, while 
the deletion of ASAP can inhibit the growth of colon 
tumors in  vitro [174]. LINC00675 encodes a small pro-
tein of 79aa, FORCP, endogenously expressed mainly in 
the cytoplasm and can promote tumor cell apoptosis in 
response to stress in the endoplasmic reticulum. Func-
tionally, FORCP can also inhibit cancer cell proliferation 
and clone formation to further inhibit tumor progression 
[176]. SRSP is a functional small peptideof 130aa that is 
encoded by LOC90024, which can promote CRC tumo-
rigenesis and progression. Long SP4 isomer (L-SP4 pro-
tein) is a carcinogenic protein, while short SP4 isomer 

(S-SP4 peptide) is a non-carcinogenic protein. SRSP pep-
tide increases the probability of SRSF3 binding to exon 
3 of transcription factor SP4, thus inducing the forma-
tion of carcinogenic protein L-SP4, which leads to tum-
origenesis [177]. Pep-AP is a short peptide encoded by 
lnc-AP, which can reverse the resistance of colon cancer 
cells and make them more sensitive to oxaliplatin [173]. 
Kikuchi et al. reported that PVT1 is a carcinogenic pep-
tide encoded by lncRNA PVT1, located downstream of 
transcription factor MYC gene and is abnormally overex-
pressed in various cancers. In CRC, PVT1 carcinogenic 
peptide can be detected in CD8 T cells and peripheral 
blood mononuclear cells of patients [175].

Breast cancer & triple‑negative breast cancer (TNBC)
According to the global cancer statistics in 2020, breast 
cancer ranked first in the incidence of malignant tumors 
in the world, and it was the fifth leading cause of death 
among malignant tumors [197]. It has been reported 
that lncRNA CASIMO1 encodes a 10  kDa micropro-
tein CASIMO1 in breast cancer. The overexpression of 
CASIMO1 causes binding to the oncogene SQLE, pro-
moting its accumulation at the protein level and subse-
quently accelerates the proliferation of breast cancer. 
Mutation of lncRNA CASIMO1 translation promoter 
or knockout of lncRNA CASIMO1 causes a loss of its 
carcinogenic effect [190]. Triple-negative breast can-
cer (TNBC) accounts for 15% of breast cancers with a 
high degree of malignancy and usually poor prognosis. 
In TNBC, the three main breast cancer tumor markers: 
estrogen receptor (ER), progesterone receptor (PR), and 
Her2 are all negative [198]. ASRPS and CIP2A-BP are two 
small proteins with tumor suppressive roles in TNBC. 
ASRPS is a functional small peptide of 60aa encoded by 
LINC00908. ASRPS can inhibit tumor progression and 
the mechanism is that the ASRPS peptide binds STAT3 
directly through the coiled coil domain (CCD), and then 
down-regulates the phosphorylation of STAT3, resulting 
in a decrease in the expression of VEGF [26]. A 5.5 kDa 
peptide encoded by LINC00665 has been designated 
as CIP2A-BP. CIP2A-BP can inhibit the progression of 
TNBC. It replaces the B56γ subunit after binding to the 
tumor gene CIP2A, and then stimulates PP2A activity, 
thus reducing the expression of MMP-2, MMP-9, and 
Snail by inhibiting the PI3K/AKT/NFκB signaling path-
way [179].

Upper gastrointestinal cancer
The oral cavity is the starting point of the upper diges-
tive tract and has important physiological functions. 
Oral cancer is becoming a global public health problem. 
At present, about 377,000 people suffer from oral squa-
mous cell carcinoma and 177,000 people die each year 
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[197]. The tumor promoting role of lncRNA HOXB-AS3 
has been well documented in various types of cancers 
[99, 199, 200]. HOXB-AS3 peptide is a small 53aa pep-
tide encoded by lncRNA HOXB-AS3. In oral squamous 
cell carcinoma (OSCC), HOXB-AS3 and its encoded 
peptides can promote the proliferation of cancer cells, 
which is achieved by the direct binding of HOXB-AS3 
peptide to IGF2BP2 to maintain the stability of mRNA 
stability of the oncogene c-Myc [188]. Esophageal squa-
mous cell carcinoma (ESCC) is threatening more than 
400,000 people worldwide, and men are more vulnerable 
than women [197]. A study by Wu et a.l has shown that 
LINC00278, a Y-linked lncRNA, down-regulated in male 
ESCC, encoded a micropeptide called YY1BM. YY1BM 
binds to YY1 to suppress the expression of eEF2K simu-
lated by YY1 and the androgen receptor (AR), which pro-
motes apoptosis and inhibits the proliferation of ESCC. 
However, YY1BM is down-regulated in ESCC, which in 
turn promotes cancer progression [191].

Other types of cancer
Lung cancer is especially important in the eyes of the 
public, since it causes more than 1.76 million death per 
year [201]. Studies with lung cancer have found that 
lncRNA UBAP1-AST6 encodes a peptide of 12.8  kDa, 
called UBAP1-AST6. It can promote cell proliferation 
and clone formation, but the specific mechanism is not 
clear. This peptide may promote the occurrence and 
development of tumors [178]. Pancreatic ductal carci-
noma (PDAC) is a malignant tumor with low survival 
rate. The vast majority of PDAC patients have KRAS 
mutations [202]. Rason is a 108aa peptide encoded by 
LINC00673. Rason prolongs the active state of KRAS 
signaling by binding to KRAS in order to drive tumori-
genesis and metastasis [192]. Melanoma is a type of skin 
cancer caused by melanocytes, the pigment-producing 
cells found in tissues such as the epidermis, hair fol-
licles, and the iris. In most countries, the incidence of 
melanoma has been increasing over the past few dec-
ades [203, 204]. Delphine et a.l found two new polypep-
tides, MELOE-1 and MELOE-2, which are involved in 
immunosurveillance [205]. The same researchers also 
discovered MELOE-3, a 54aa functional small peptide 
encoded by lncRNA meloe, which is expressed in both 
melanoma cells and normal melanocytes. MELOE-3 has 
poor immunogenicity in melanoma cells, and the pro-
tein expressed in the physiological state is also associated 
with immune tolerance [189]. This provides a promising 
T cell target for melanoma immunotherapy.

In addition to the above cancers, peptides encoded by 
lncRNA have been identified to drive the progression of 
other cancers, including head and neck squamous cell 
carcinoma (HNSCC), glioma and ovarian cancer. Head 

and neck squamous cell carcinoma (HNSCC) is the sixth 
most common cancer globally with a high mortality rate 
of 40 to 50% [206]. MIAC is the first micropeptide, 51aa 
in length, found in head and neck squamous cell carci-
noma, which is encoded by lncRNA RP11-469H8.6. 
MIAC directly binds to aquaporin 2 (AQP2) to suppress 
the expression of SEPT2 & ITGB4. It then inhibits the 
actin cytoskeleton, which is a key regulatory factor in the 
migration and invasion of cancer cells, thus suppressing 
tumor growth and metastasis [194]. Glioma is the most 
common primary tumor in the brain, accounting for up 
to 81% of malignant brain tumors. Although relatively 
rare, it has a high mortality rate [207]. Cao et  al. pre-
dicted lncRNAs which may encode small transmembrane 
peptides in gliomas using in silico approaches. They dem-
onstrated that lncRNA DLEU1 has two smORFs (ORF1 
and ORF8). DLEU1 encodes small peptides, ORF1 and 
ORF8, which can aggregate to form similar ion chan-
nels and lead to an increase in the permeability of the 
glioma [187]. However, the expression and function of 
these peptides need to be verified by further experi-
ments. Ovarian cancer is a type of tumor among females 
which has a high degree of malignancy. It has a low sur-
vival rate and threatens the health of most women [208]. 
DDUP is a polypeptide of 186aa encoded by lncRNA 
CTBP1. In ovarian cancer, DDUP can bind to ATR kinase 
activated by DNA damage and can be phosphorylated, 
resulting in structural changes in DDUP. Conformational 
changes aggravate the binding ability of DDUP to rapidly 
phosphorylated histone H2AX (γ-H2AX) and RAD18 
(transduction of DNA damage signal), resulting in the 
formation of a stable γ-H2AX/DDUP/RAD18 complex 
and persistent retention of RAD18 foci at the injured site 
[193]. This leads to resistance to chemotherapy and radi-
otherapy based on DNA damage.

Conclusions and future perspectives
Recent studies have shown that some originally defined 
lncRNAs can participate in the regulation of multi-organ 
tumors by encoding functional small peptides, which 
totally changed our understanding of these supposedly 
non-coding RNAs. Functional peptides, such as HOXB-
AS3, pep-AP, ASAP, PVT1, SRSP, etc. are encoded by 
lncRNAs and promote or inhibit the development of 
CRC through a series of regulatory processes. In other 
cancers, there are similar small peptides/proteins, which 
are encoded by lncRNAs and affect the occurrence and 
development of tumors. Research in this area has just 
begun and these new findings may lead to change in the 
classification of these lncRNAs in the future.

At present, it has been confirmed that lncRNAs 
can regulate the occurrence and development of 
tumors either by themselves or through encoded small 
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peptides. Although this has great application value, 
such as the development of new antineoplastic drugs 
and/or new cancer biomarkers, deeper research is 
needed before the real clinical applications are possi-
ble. At the current stage, several questions remain to 
be answered. First, until now, studies have only iden-
tified a small number of lncRNA-encoded peptides. 
There are still an inestimable number of functional 
peptides encoded by lncRNA waiting to be discovered. 
Over time, we will get a clearer picture of the role of 
these peptides and will be able to determine whether 
they are evolutionarily important. Second, with the 
development of technology, more advanced tools are 
needed to accurately predict and validate the coding 
potential of lncRNAs. Third, the mechanism by which 
many small peptides affect tumor progression is not 
clear. It remains unclear as to whether the small pep-
tides themselves or lncRNAs or both are functional. 
Scientists need to carefully discriminate between the 
functions of lnRNA and that of the encoded peptides 
or to determine whether the lncRNA is bifunctional. 
Finally, if these micropeptides are going to be used as 
potential anti-tumor targets, the upstream regulatory 
mechanism and downstream binding proteins need to 
be further clarified. Despite these problems, lncRNA-
encoded peptides are a promising resource for the 
development of new diagnostic and prognostic bio-
markers and/or therapeutic targets in cancer, which 
merits further and an in-depth investigation. It will be 
a widely-studied topic in cancer research in years to 
come and will undoubtedly push research into human 
biomedicine to a new level.
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