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Abstract
Background  To explore the impact of ARGs on the prognosis of NSCLC, and its correlation with clinicopathological 
parameters and immune microenvironment. Preliminary research on the biological functions of CEBPA in NSCLC.

Methods  Using consensus clustering analysis to identify molecular subtypes of ARGs in NSCLC patients; 
employing LASSO regression and multivariate Cox analysis to select 7 prognostic risk genes and construct a 
prognostic risk model; validating independent prognostic factors of NSCLC using forest plot analysis; analyzing 
immune microenvironment correlations using ESTIMATE and ssGSEA; assessing correlations between prognostic 
risk genes via qPCR and Western blot in NSCLC; measuring mRNA and protein expression levels of knocked down 
and overexpressed CEBPA in NSCLC using CCK-8 and EdU assays; evaluating the effects of knocked down and 
overexpressed CEBPA on cell proliferation using Transwell experiments; examining the correlation of CEBPA with T 
cells and B cells using mIHC analysis.

Results  Consensus clustering analysis identified three molecular subtypes, suggesting significant differential 
expression of these ARGs in NSCLC prognosis and clinical pathological parameters. There was significant differential 
expression between the two risk groups in the prognostic risk model, with P < 0.001. The risk score of the prognostic 
risk model was also P < 0.001. CEBPA exhibited higher mRNA and protein expression levels in NSCLC cell lines. 
Knockdown of CEBPA significantly reduced mRNA and protein expression levels of CEBPB, YWHAZ, ABL1, and CDK1 in 
H1650 and A549 cells. siRNA-mediated knockdown of CEBPA markedly inhibited proliferation, migration, and invasion 
of NSCLC cells, whereas overexpression of CEBPA showed the opposite trend. mIHC results indicated a significant 
increase in CD3 + CD4+, CD3 + CD8+, and CD20 + cell counts in the high CEBPA expression group.
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Introduction
Lung cancer is the most common type of cancer and a 
leading cause of cancer-related deaths worldwide. The 
death toll has exceeded the sum of breast cancer, colorec-
tal cancer and pancreatic cancer [1–4]. Non-small cell 
lung cancer (NSCLC) constitutes the majority of lung 
cancer cases [5]. Despite early detection and advances in 
multiple treatment modalities including surgery, radio-
therapy, chemotherapy, and immunotherapy, its five-year 
overall survival rate remains below 20% [6]. Recent stud-
ies have revealed significant gene expression variations in 
the occurrence and progression of NSCLC, highlighting 
the need to identify stable and precise tumor biomarkers 
as well as novel therapeutic targets [7–9].

Aging, an inevitable and essential biological process, 
is characterized by the degeneration and loss of mate-
rial structure composition and physiological function 
[10, 11]. It has been recognized as a critical risk factor 
in cancer development and progression. Aging-related 
genes (ARGs) have shown both inhibitory effects on cell 
growth to suppress cancer development and progression 
[12–15]. Moreover, aging has gained increasing atten-
tion in cancer research as it has been a tumor biomarker 
aiding in the diagnosis and prognosis of various can-
cers [16, 17]. CCAAT/Enhancer-Binding Protein Alpha 
(CEBPA), the main focus of this study, is a transcription 
factor that coordinates proliferation arrest and differen-
tiation of myeloid progenitor cells, liver cells, and lung 
and placental cells [18–20]. However, the biological func-
tion of CEBPA in NSCLC remain poorly understood, and 
further investigation is required to establish its role as a 
tumor marker.

The tumor immune microenvironment (TIME) is 
critical in cancer development [21, 22]. TIME is closely 
related to tumor immunosuppression or activation. 
In addition to tumor cells, TIME also includes innate 
immune cells, adaptive immune cells, stromal cells, 
endothelial cells and fibroblasts [23]. T cells and B cells, 
being the most widely distributed lymphocyte popula-
tions, have a significant impact within the TIME [24]. It 
is noteworthy that many immune cells have dual roles 
in promoting and inhibiting tumor growth [25]. T cells, 
characterized by the expression of CD3, CD4, and CD8, 
are of particular importance in NSCLC development, 
while CD20 is a common B cell marker [26]. Identifying 
immune markers facilitates the discovery of potential 

immune targets, consequently advancing the field of 
immunotherapy [27].

In this study, we extensively reviewed the literature 
and selected 25 highly relevant ARGs from the Human 
Aging Gene Repository (HAGR) for analysis. The Cancer 
Genome Atlas database (TCGA) and Gene Expression 
Omnibus Database (GEO) were utilized in the analysis. 
Consensus clustering analysis was applied to identify 
molecular subtypes of ARGs in NSCLC patients, indicat-
ing that the selected ARGs have a substantial impact on 
NSCLC prognosis and clinicopathological parameters. 
Subsequently, a prognostic model was constructed using 
the screened genes to accurately evaluate the relevance 
and prognostic value of ARGs in NSCLC. Next, we con-
structed a nomogram to verify that the risk score could 
serve as an independent prognostic factor for NSCLC. 
Furthermore, the validation process was replicated in two 
GEO cohorts using the same algorithm, confirming the 
accuracy of the prognostic model.

The mRNA expression levels of seven prognostic 
risk genes in NSCLC cell lines were analyzed by qPCR 
method, and their correlations were further analyzed. 
After extensive literature review, CEBPA was finally 
selected as the best prognostic risk gene. Subsequent in 
vitro cell experiments, including qPCR, Western Blot, 
CCK-8, EdU, and Transwell experiments, further verified 
that knocking down CEBPA significantly inhibited the 
proliferation, migration, and invasion of NSCLC cells. 
Conversely, forced overexpression of CEBPA demon-
strated pro-oncogenic effects in NSCLC cells. Then, we 
used ESTIMATE and ssGSEA algorithms to analyze the 
immune microenvironment and evaluated whether ARG 
can affect the occurrence and progression of NSCLC 
through the immune microenvironment pathway. Finally, 
we evaluated the colocalization of CEBPA with immune 
cell markers using multiplex immunohistochemistry 
(mIHC) technology on tissue microarrays. CEBPA can 
be used as a tumor marker to guide the diagnosis and 
immune-related research of NSCLC.

Materials and methods
Data sources
In the study, the relevant information of the databases 
can be found in Table S1.To ensure the accuracy of the 
study, data from NSCLC patients without survival infor-
mation and clinicopathological parameters were removed 
from the analysis.

Conclusions  The risk score of the prognostic risk model can serve as an independent prognostic factor, guiding the 
diagnosis and treatment of NSCLC. CEBPA may serve as a potential tumor biomarker and immune target, facilitating 
further exploration of the biological functions and immunological relevance in NSCLC.

Keywords  Non-small cell lung cancer, Prognostic model, LASSO regression, Tumor immune microenvironment, 
Therapeutic target
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Selection of ARGs and PPI network analysis
25 highly suitable ARGs were obtained from the HAGR 
Genage database (Table S2). The STRING database is 
used to draw their protein-protein interaction (PPI), 
which is currently a relatively authoritative database for 
the study of protein interactions. Required score is set to 
medium confidence (0.400). Through this database, we 
can easily retrieve the interaction relationship between 
known proteins, which helps to better understand the 
complex regulatory network in organisms. Xiantao aca-
demic software was used for further visualization. PPI-
related data are attached in Table S3.

Consensus clustering analysis and heatmaps
Consensus clustering analysis is a relatively common 
unsupervised classification method for cancer subtypes. 
We used the “Consensus clustering Plus” R package to 
classify samples into different molecular subtypes based 
on different mRNA expression levels. The color scale 
changes in the heatmap indicate the expression level. 
Purple indicates low values, and yellow indicates high 
values. A color block represents a numerical value. The 
yellower the color, the higher the expression level, and 
the purpler the color, the lower the expression level. 
Z-score normalization is performed on each gene (row) 
so that the mean of each row becomes 0 and the standard 
deviation becomes 1.

Construction and verification of prognostic risk model
Firstly, 15 ARGs with prognostic value were identified by 
least absolute shrinkage and selection operator(LASSO) 
regression, and the setting P < 0.05 for screening. 
Cross-validation was used to select the optimal lambda 
parameter, using the criterion of minimizing the mean 
cross-validation error within one standard error of 
the minimum value (1-SE rule). The cross-validation 
method used ten-fold cross-validation to determine the 
lambda that minimized the prediction error. In addition, 
the prognostic value of ARGs was evaluated within the 
LASSO framework using the Cox proportional hazards 
regression model. Survival analysis was performed to 
evaluate the relationship between ARG expression levels 
and patient survival outcomes. The specific formula of 
the risk score is as follows:

	RiskScore = Exp (ARG1) × β1 + Exp (ARG2)

	 × β2 + . . . + Exp (ARGn) × βn

Exp represents the expression level of ARGs, and β rep-
resents the regression coefficient. The total sample size 
was then divided into two groups based on the cutoff. 
Receiver Operating Characteristic (ROC) analysis based 
on overall survival, risk score, and clinicopathological 

parameters was used to evaluate the accuracy of the 
model. Decision Curve Analysis (DCA) tested the per-
formance of the model. In addition, 3D Principal Com-
ponent Analysis (3DPCA) analysis proved that the seven 
genes had a good separation status in three different clus-
ters and two different risk groups, which again verified 
the accuracy of the model. sex and stability.

Nomogram creation
Nomograms are a visualization tool that reduces predic-
tive models to single numerical estimates of event prob-
abilities on an individual patient basis [28]. We developed 
a nomogram utilizing three-year data on overall survival 
(OS), risk score, and clinicopathological parameters in 
patients with NSCLC. In addition, we generated calibra-
tion curves to assess the expected levels of nomograms.

Duplicate validation for two GEO external queues
We obtained two cohorts, GSE30219 and GSE68465, 
from the GEO database, and used the same formula to 
calculate the risk score for repeated validation. The opti-
mal cutoff is used for grouping. Kaplan-Meier analysis 
and ROC were used to calculate OS and assess model 
accuracy, respectively.

Immune microenvironment analysis
In this study, the immune microenvironment analysis was 
conducted using the ESTIMATE and ssGSEA algorithms. 
The parameters for ESTIMATE were set according to the 
default guidelines provided by the ESTIMATE package, 
which is widely used in transcriptomic studies to predict 
the infiltration of stromal and immune cells in tumor 
samples.In ssGSEA, the parameters were set to normal-
ize enrichment scores to facilitate comparison between 
samples. Specific gene sets, curated from publicly avail-
able immune cell markers databases, were employed to 
identify the various immune cell types. These gene sets 
include markers for T cells, B cells, macrophages, den-
dritic cells, and other immune cell subsets. The ssGSEA 
algorithm calculates an enrichment score for each gene 
set in each sample, which reflects the degree to which the 
genes in a particular set are coordinately up- or down-
regulated within a sample.

Cells, cell culture and transfection
The Cell Bank of the Chinese Academy of Sciences pro-
vides human bronchial epithelial-like cell lines (16HBE) 
and human lung cancer cell lines (A549 and H1650). 
16HBE was cultured in RPMI-1640 medium containing 
10% fetal bovine serum (FBS), while A549 and H1650 
were cultured in DMEM medium with 10% FBS. We 
knocked down CEBPA expression using two differ-
ent classes of siRNA. 24 h after transfection, refresh the 
medium and incubate for 48 h in a suitable environment. 
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We proceeded to verify efficiency by qPCR and WB. The 
CP reagent, CEBPA siRNA (si-CEBPA#1#2) and non-
specific siRNA (NC) used to transfect cells were all from 
Ribobio (Guangzhou, China). The overexpression plas-
mid we used was from ORIGENE (Wuxi, China). The 
sequence data of CEBPA siRNA and overexpression plas-
mid are in Table S4.

Cell proliferation
The CCK-8 assay was employed to evaluate cell prolif-
eration. A total of 2 × 103 cells per well were seeded into 
96-well plates and cultured for a specific period. After 
transfection with siRNA under appropriate conditions, 
the cells were incubated for 0, 24, 48, and 72 h. Follow-
ing the incubation, 10 µL of CCK-8 reagent (Biosharp, 
China) was added to each well according to the manufac-
turer’s instructions. The cells were further incubated for 3 
hours and the absorbance at 450 nm was measured using 
a microplate reader. This measurement provided an indi-
cation of cell proliferation levels. Additionally, the pro-
liferation levels of A549 and H1650 cells were assessed 
using an EdU kit (Ribobio, China). The cells were seeded 
into 24-well tissue culture plates at a density of 5 × 104 
cells per well. EdU (50 µM) was added to each well and 
incubated for 4 hours. Nuclei were then co-stained with 
DAPI and observed using fluorescence microscopy. The 
ratio of cell proliferation was determined by assessing the 
fluorescence intensity of EdU-positive cells.

Cell migration and invasion
To evaluate the migration and invasion abilities of 
NSCLC cell lines with knockdown and overexpression 
CEBPA, the researchers used Transwell chambers from 
(BIOFIL, China). For migration assays without Matri-
gel coating, 5 × 104 cells in 200 µL of serum-free DMEM 
were added to each upper chamber of the Transwell. The 
lower chamber was filled with 600 µL of DMEM contain-
ing 20% FBS. This setup was then incubated overnight 
at 37 °C with 5% CO2 conditions. After incubation, cells 
that migrated to the bottom of the membrane were fixed 
with 4% paraformaldehyde for 20 min. Subsequently, they 
were stained with 2.5% crystal violet 24  h later. Three 
fields of view were analyzed per sample, and cell counts 
were performed using ImageJ software. For invasion 
assays, Transwell chambers with pre-coated upper cham-
bers of 250  µg/mL Matrigel were used. The subsequent 
steps of the invasion assay were the same as the migra-
tion assay described above.

qPCR
Total RNA was isolated from cells using Invitrogen Trizol 
reagent (Servicebio, China). The RNA was then reverse 
transcribed into cDNA using the QuantiTect Reverse 
Transcription Kit. qPCR was performed by SYBR Green 

PCR kit (Ribobio, Guangzhou) and QuantStudio 5 real-
time PCR system. The 2-ΔΔCt method was used for 
normalized quantification. Gene primer sequences are 
shown in Table S5.

Western blotting
Total protein was extracted with protein lysis buffer, and 
protein concentration was measured. Protein samples 
were analyzed using 10% SDS-PAGE and electrophoreti-
cally transferred to PVDF membranes (Millipore, Bed-
ford, MA, USA). Following transfer, they were blocked 
with 10% skimmed milk powder from BD (USA) at an 
appropriate temperature for 1  h to prevent nonspecific 
binding. Subsequently, the membranes were incubated 
with diluted primary antibodies at 4  °C overnight. Fol-
lowing the primary antibody incubation, the membranes 
were washed to remove any unbound antibody and then 
exposed to an HRP-conjugated secondary antibody 
for 1  h at room temperature. ImageJ was used for data 
quantification.

Human tissue sample collection
The tissue microarray (TMA) used in this study included 
195 NSCLC specimen tissues, and each sample tissue 
was averaged into a dot array with a diameter of 2  mm 
on a TMA slide. Patient specimens were obtained from 
September 2015 to September 2022 by the Department 
of Pathology, Affiliated Hospital of Nantong University. 
The patients had not undergone any treatment such as 
radiotherapy, chemotherapy and immunotherapy before 
surgery.

Multiplex immunohistochemistry (mIHC)
To analyze NSCLC TMA slides, the Opal 7-color man-
ual IHC kit from (PerkinElmer, USA) was used for stain-
ing. The optimal concentration and conditions for each 
antibody were determined to establish an optimal stain-
ing protocol.The TMA slides were baked in an oven at 
70  °C for 2  h. Deparaffinization was performed using 
xylene, followed by hydration with ethanol. Subsequently, 
the slides were fixed with 10% formalin for 10 min. The 
TMA slides were placed in AR6 buffer and AR9 buf-
fer (AKOYA, USA) by microwave heating for antigen 
retrieval, and blocked with blocking solution (AKOYA, 
USA) for 10  min. Primary antibodies were incubated 
overnight at 4 °C. The next day, slides were incubated at 
room temperature for 30  min and incubated with sec-
ondary antibody Opal™ polymer HRP Ms + Rb (Perkin 
Elmer, USA) for 10  min. DAPI was used to stain nuclei 
and seal slides. We analyzed and imaged using Vectra 3.0 
and scored using inForm® cell analysis software.

The antibodies involved are as follows: Rabbit anti-CD3 
(CST, USA), Rabbit anti-CD4 (Abcam, England), Rabbit 
anti-CD8 (Abcam, England), Rabbit anti-CD20(Abcam, 
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England), Rabbit anti-CEBPA (CST, USA), Anti-mouse 
cytokeratin (Biobyt, England) and DAPI (Sigma, USA).

Statistical analysis
All statistical analyzes were done using R (version 4.0.4), 
GraphPad Prism 8.0, and Xiantao academic software.

Results
Differential expression and consensus clustering analysis 
of ARGs
In this study, the researchers aimed to identify 25 ARGs 
suitable for their investigation. These ARGs were selected 
from the HAGR database based on previous studies and 
relevant literature reports. First, we evaluated the degree 
of association of these ARGs in the STRING database, 
and used Xiantao academic analysis software to con-
struct a mutual aid network diagram for visualization, 
and found that 21 ARGs exhibited a high level of asso-
ciation (Fig.  1A). Additionally, we analyzed the correla-
tion between these ARGs using a diagonal correlation 
heatmap (Fig.  1B). The heatmap indicated a significant 

correlation among the ARGs. To further investigate the 
expression levels of the selected ARGs, we utilized data 
from the TCGA database. A heatmap was used to assess 
the expression levels of ARGs in different samples. The 
results showed that the expression levels of most ARGs 
varied significantly (Fig. 1C).

To explore the modification pattern and molecular 
subtype relationship of the selected ARGs in NSCLC, 
the researchers combined data from the TCGA-NSCLC 
data source and the GSE50081 dataset. These datasets 
were subjected to unsupervised Consensus clustering 
analysis. The CDF value was used to determine the opti-
mal number of clusters, which was found to be 3 (K = 3). 
Consequently, the total sample was divided into three 
clusters (Fig. 1E). Among them, there were 434 cases in 
cluster A, accounting for about 36.8%, 420 cases in clus-
ter B, accounting for 35.6%, and 326 cases in cluster C, 
accounting for about 27.6%. Kaplan-Meier survival curve 
analysis showed that patients in cluster C had the high-
est overall survival rate and the best survival prognostic 
value, while patients in cluster A had the lowest overall 

Fig. 1  Differential Expression and Consensus Clustering Analysis of ARGs (A) PPI plot of ARGs. (B) Diagonal correlation plot of interactions. (C) Heatmap 
showing ARGs expression levels in two different tissues. (D) Heatmap showing the correlation of subtypes in different clinicopathological parameters. (E) 
Optimal matrix type k = 3 and CDF curves for consensus cluster analysis. (F) Survival analysis plots of the three subtypes of all NSCLC patients (*P < 0.05; 
**P < 0.01; ***P < 0.001)
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survival rate and the worst prognosis(Fig.  1F). Further-
more, we analyzed the expression levels of molecular sub-
types in relation to clinicopathological parameters such 
as age, sex, and TMN stage. Heatmaps were generated 
to visualize the differences in expression levels (Fig. 1D), 
and significant distinctions were observed. In summary, 
this study, based on 25 highly relevant ARGs, uses con-
sensus clustering analysis to preliminarily determine that 
the expression levels of the selected ARGs show signifi-
cant differences. This analysis effectively identifies good 
molecular subtypes, demonstrating significant evaluative 
value in prognosis and clinical pathological parameters. 
It indicates that these ARGs play an important role in the 
occurrence and progression of NSCLC. Further research 

is needed to analyze their potential biological functions 
and molecular mechanisms.

Identification of prognostic risk model
To better evaluate the prognostic value of ARGs in 
NSCLC, an ARGs-based prognostic risk model was con-
structed. Initially, 1000 repeated iterations of LASSO 
regression analysis were conducted to determine the 
optimal lambda parameters for the model. As a result, 15 
ARGs were selected as potential candidates (Fig. 2A-B). 
Subsequently, multivariate COX analysis was performed, 
and finally 7 genes were retained to construct the prog-
nostic risk model. Then, all NSCLC cohorts were divided 
into two risk groups, high and low, using the median 
value as the cutoff. Kaplan-Meier analysis shows that the 

Fig. 2  Identification of Prognostic Risk Model (A) Based on the lowest standard of OS value, lambda was screened through 20 times of cross-validation in 
LASSO analysis. (B) Coefficient profile: cavity curve. (C) Survival curve analysis for the two risk groups. (D) ROC curves showing the survival rate at different 
times for the prognostic risk model. (E) ROC curves evaluating the combined prognostic value of different clinicopathological parameters and prognos-
tic risk models. (F) DCA analysis demonstrating the net benefit between the prognostic risk model and clinicopathological parameters. (G-I) Risk score 
curves, patient survival status, and heatmaps of expression of seven risk-prognostic genes
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overall survival rate of patients in the high-risk group is 
lower and the survival prognosis is worse (Fig. 2C). Time-
dependent ROC analysis showed that the area under 
the curve (AUC) at 3 years were 0.630, 0.624 and 0.635, 
indicating the prognostic risk model has good stabil-
ity (Fig. 2E). Figure 2G-I shows the risk score curve, the 
patient’s survival status and the heat map of the expres-
sion levels of 7 prognostic risk genes. Moreover, we com-
pared the differences in clinical parameters between the 
two risk groups. We initially drew the clinical variable 
correlation ROC diagram and DCA diagram, the results 
showed that the two risk groups differed significantly in 
terms of age, sex and TMN stage (Fig. 2D, F).

Correlation analysis of clinicopathological parameters of 
ARGs
To further assess the value of the model in relation to 
clinicopathological parameters, several analyses were 
conducted. Initially, Sankey diagrams were generated to 
illustrate the associations between the two risk groups, 
three different cluster classes, survival status, and stage 
(Figure S1A). The proportions of clinical variables in 
the two risk groups were calculated and analyzed. It was 
found that various clinicopathological parameters exhib-
ited significant differences between the two risk groups 
in the total NSCLC cohort (Figure S1D-F). In addition, a 
heatmap showing the association between risk scores of 
prognostic risk genes and NSCLC-related clinicopatho-
logical variables was found to be significantly different 
(Figure S1G). Finally, a 3D Principal Component Analy-
sis (PCA) plot was constructed. This plot demonstrated 
that the seven risk prognostic genes were well separated 
within the three different clusters and the two differ-
ent risk groups, thereby reinforcing the accuracy of the 
model (Figure S1B-C). In summary, the prognostic risk 
model we constructed not only has good stability and 
accuracy, but also can guide the survival prognosis of dif-
ferent clinicopathological parameters.

Independent prognostic factors and nomogram
First, univariate and multivariate COX analysis was used 
to validate the predictive ability of the model and to ver-
ify whether the risk score was an independent prognostic 
factor for NSCLC. In univariate COX analysis, riskscore: 
hazard ratio (HR): 2.254, 95CI%: 1.795–2.83, P < 0.001. In 
multivariate COX analysis, riskscore: HR: 2.047, 95CI%: 
1.624–2.581, P < 0.001(Fig. 3A). These results strengthen 
the role of the Riskscore as an independent predictor of 
prognosis in NSCLC. In order to develop a visual prog-
nostic model, a nomogram was constructed. This nomo-
gram combines a risk score with clinical parameters such 
as age, sex, and TMN stage. Effective prediction of three-
year overall survival in NSCLC patients (Fig. 3B). In addi-
tion, the calibration curve showed that the predicted 

curve was close to the standard curve, which effectively 
verified that the predicted survival rate was consis-
tent with the actual survival situation (Fig. 3C-E). These 
results suggest that the risk score can be used as an inde-
pendent prognostic factor, and the construction of the 
nomogram has a predictive advantage.

Duplicate validation in GEO queues
To further explore the stability and effectiveness of the 
prognostic risk model, the risk score was tested in the 
GSE30219 and GSE68465 cohorts through the same 
analysis process. The optimal cut-off value was defined as 
the critical value, and the patients were divided into high-
risk group and low-risk group. As expected, the prog-
nostic OS of the low-risk group was significantly better 
than that of the high-risk group (Figure S2A, E). Figures 
S2B-C and F-G show the risk score distribution and sur-
vival status, respectively. Furthermore, ROC analysis was 
performed to evaluate the predictive performance of the 
prognostic risk model. In GSE30219, the AUC values at 3 
years were calculated as 0.688, 0.691, and 0.679, respec-
tively (Figure S2D). In GSE68465, the AUC values at 1 
year, 2 years, and 3 years were calculated as 0.683, 0.640, 
and 0.628, respectively (Figure S2H). This shows that the 
prognostic risk model can be used to predict the progno-
sis of NSCLC and has good value and significance.

Identification of prognostic risk genes
Univariate and multivariate COX analysis evaluated 
seven prognostic risk genes, including ABL Proto-
Oncogene 1 (ABL1), Apolipoprotein C3 (APOC3), 
Cyclin-dependent kinase 1 (CDK1), Tyrosine 3-Mono-
oxygenase/Tryptophan 5-Monooxygenase Activation 
Protein Zeta (YWHAZ), CCAAT enhancer Binding 
protein Beta (CEBPB), Platelet Derived Growth Factor 
Subunit B (PDGFB) and CEBPA. In the TCGA database, 
there is a general correlation between these prognos-
tic risk genes (Fig.  4A). To analyze mRNA expression 
in NSCLC, we performed qPCR in a human bronchial 
epithelial-like cell line (16HBE) and two lung cancer cell 
lines (A549, H1650) and found that most of the prognos-
tic risk genes were significantly different and in the lung 
cancer cell lines Significantly high expression (Fig.  4B). 
Notably, ABL1 and CEBPA exhibited the most signifi-
cant differences in expression levels. Extensive literature 
research has been conducted, and the molecular mecha-
nisms of ABL1 have been thoroughly studied in various 
cancer types [29–32]. On the other hand, CEBPA acts 
as a protein-coding gene, which plays an important role 
in cancers such as acute myeloid leukemia, liver cancer 
and ovarian cancer [33–35]. However, there are relatively 
few reports on the involvement of CEBPA in lung cancer. 
Therefore, it was chosen as the main research focus of 
this study to conduct further in-depth research.
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Fig. 3  Independent Prognostic Factors and Nomogram (A) Evaluation of clinicopathological parameters and risk scores by univariate COX analysis and 
multivariate COX analysis. (B) Nomogram constructed based on risk score and clinicopathological parameters (Age, Gender, T, M, N). (C-E) Calibration 
curves for nomogram predictions
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Interactions between prognostic risk genes
To further understand the interactions between these 
genes, we analyzed the expression levels of the other 
six markers when CEBPA was knocked down based on 
H1650 and A549 cells. PCR results showed that siRNA 
knockdown of CEBPA significantly reduced the mRNA 
levels of CEBPB, YWHAZ, ABL1 and CDK1 in H1650 
and A549 cells, but there was no significant differ-
ence in the expression changes of APCO3 and PDGFB 
(Fig.  5A-F). Western Bolt results can also support this 
trend. CEBPA knockout significantly reduced the pro-
tein expression levels of CEBPB, YWHAZ, ABL1 and 
CDK1 (Fig. 5G, H). PPI analysis network showed corre-
lation with CEBPA, CEBPB, YWHAZ, ABL1 and CDK1 
(Fig. 5I). Studies have shown that CEBPA and CEBPB are 
members of the C/EBP family, have similar DNA binding 
domains, and play regulatory roles in cell proliferation 
and differentiation [36]. T. Pabst et al. found that CEBPA 
mutations or silencing can synergize with BCR-ABL1 
fusion to exacerbate leukemia development. Both genes 
are essential in the regulation of hematopoietic cells, and 
their dysregulation can significantly affect cancer pro-
gression [37]. ABL1 can influence the activity of CDK1 
either directly or through upstream signaling pathways, 
thereby affecting cell cycle progression and cancer cell 
proliferation [38].

Influence of CEBPA on cell proliferation, migration and 
invasion
To explore the biological function of CEBPA in NSCLC 
cell lines, CEBPA siRNA was transduced into A549 and 

H1650 cells. This siRNA knockdown of CEBPA resulted 
in a significant decrease in mRNA and protein expres-
sion levels in NSCLC, as confirmed by qPCR and West-
ern blot analysis. In H1650, the protein expression level 
decreased by about 30–40% after knocking down CEBPA, 
while in A549, the protein expression level decreased by 
about 20–30% after knocking down CEBPA (Fig. 6A-B). 
The CCK-8 assay was performed to assess the prolifera-
tion activity of H1650 and A549 cells with CEBPA knock-
down. The results demonstrated that knockdown of 
CEBPA led to a significant decrease in the proliferation 
activity of both cell lines (Fig.  6C). To further evaluate 
the impact of CEBPA knockdown on cell proliferation, 
an EdU assay was conducted. The knockdown of CEBPA 
resulted in a reduced ratio of EdU-positive nuclei, indi-
cating suppressed proliferation of H1650 and A549 cells 
(Fig.  6D). Transwell assays revealed that the migration 
of NSCLC cells was weakened. Matrigel Transwell assay 
showed that NSCLC cell invasion was also significantly 
reduced (Fig. 6E-F). In conclusion, siRNA knockdown of 
CEBPA can significantly inhibit the proliferation, migra-
tion and invasion of NSCLC cells.

Next, plasmids encoding CEBPA cDNA (“OE-CEBPA”) 
were transduced into H1650 and A549 cells. Stable cell 
lines were established through selection with puromy-
cin. Compared to control cells with the empty vector 
(“Vec”), the levels of CEBPA mRNA in OE-CEBPA cells 
were significantly increased (Fig. 7A), and protein expres-
sion levels were similarly upregulated (Fig.  7B). CCK-8 
assay results showed that overexpression of CEBPA led 
to a significant increase in the proliferation of H1650 

Fig. 4  Identification of Prognostic Risk Genes (A) Spearman correlation analysis among the 7 best prognostic genes in TCGA-NSCLC. (B) mRNA levels 
quantified using qPCR analysis in human bronchial epithelioid cells and two NSCLC cell lines (*p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 5  Interactions between Prognostic Risk Genes (A-F) qPCR was used to evaluate the mRNA levels of CEBPB, YWHAZ, ABL1, CDK1, APCO3, and PDGFB 
in H1650 and A549 cells after siRNA knockdown of CEBPA. (G, H) Western Blot was used to evaluate the protein expression levels of CEBPB, YWHAZ, 
ABL1 and CDK1 in H1650 and A549 cells after siRNA knockdown of CEBPA. (I) PPI analysis of the correlation of prognostic risk genes. Error bars stand for 
mean ± standard deviation (SD, n = 5)
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and A549 cells (Fig.  7C). Functional studies indicated 
that the proportion of EdU-positive nuclei in OE-CEBPA 
H1650 and A549 cells was significantly higher, suggesting 
that CEBPA overexpression promoted cell proliferation 
(Fig.  7D). Additionally, CEBPA overexpression acceler-
ated the invasion of H1650 and A549 cells (Fig. 7E).

Influence of CEBPA expression on immune 
microenvironment
To assess the influence of CEBPA expression on the 
immune microenvironment of NSCLC, we utilized 
the ESTIMATE algorithm to calculate matrix scores, 
immune scores, and ESTIMATE scores for patients in 
the two different risk groups. We observed significant 

differences only in the immune scores (Fig.  8A). Next, 
we analyzed the relationship between the immune infil-
tration levels of various immune cells, including T cells, 
B cells, NK cells, DC cells, mast cells, and neutrophils, 
and the expression of CEBPA. We found that high levels 
of CEBPA are associated with high infiltration of most 
immune cells but not with Th2 cells. We speculate that 
CEBPA might influence the activity or infiltration of Th2 
cells through specific mechanisms: CEBPA may regu-
late the cytokine network to inhibit the differentiation or 
function of Th2 cells, leading to lower infiltration levels of 
Th2 cells compared to other immune cells. Additionally, 
CEBPA might activate certain immune evasion mecha-
nisms specifically targeting Th2 cells, preventing them 

Fig. 6  Influence of CEBPA on Cell Proliferation, Migration and Invasion (A) and Western blot (B) were used to evaluate mRNA and protein expression 
levels after si-CEBPA transfection. CCK-8 (C) and EdU assays (D) were used to assess the proliferation capacity of H1650 and A549 cells. Cell migration and 
invasion abilities were measured by Transwell (E) and Matrigel Transwell assay (F) (*p < 0.05, **p < 0.01, ***p < 0.001). Human NSCLC cell lines (H1650 and 
A549) and si-CEBPA (“#1” and “#2”) are suitable for (A-F)

 



Page 12 of 19Zhu et al. Cancer Cell International          (2024) 24:267 

Fig. 7  Influence of CEBPA on Cell Proliferation, Migration and Invasion qPCR (A) and Western blot (B) were used to evaluate mRNA and protein expression 
level. CCK-8 (C) and EdU assays (D) were used to assess the proliferation capacity of H1650 and A549 cells. (E) Cell migration and invasion abilities were 
measured by Matrigel Transwell assay (*p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 8  Influence of CEBPA Expression on Immune Microenvironment (A) TME scores of two risk groups, including Stromal score, Immune score and 
Estimates score. (B) Levels of immune infiltration in T cells, B cells, NK cells, DC cells, mast cells, and neutrophils in the CEBPA high- and low-expression 
groups in the TCGA-NSCLC cohort. (C) Scatterplot showing the association of CEBPA with T cells, CD8 + T cells, and B cells. (D) Cell type cluster analysis
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from effectively infiltrating the tumor region (Fig. 8B). To 
further explore the correlation between CEBPA expres-
sion and T cell and B cell infiltration levels, Spearman 
correlation analysis was performed. Scatter plots revealed 
positive correlations between CEBPA expression and 
infiltration levels of T cells and B cells, with a p-value less 
than 0.001 (Fig. 8C). Single cell data analysis showed that 
CEBPA was enriched in cells such as CD4, CD8, NK cells 
and macrophages(Fig.  8D).These findings indicate a sig-
nificant immune correlation between CEBPA expression 
and T cells as well as B cells in NSCLC.

High expression of CEBPA in NSCLC recruit more immune 
cells
To investigate the protein expression levels and immune 
infiltration of CEBPA and four immune cell types (T 
cells: CD3, CD4, CD8, and B cells: CD20) in NSCLC, we 
conducted mIHC assays on TMA slides. The TMA slides 
allowed for simultaneous visualization of CD3, CD4, 
CD8, CD20, CEBPA, CK, and DAPI. By utilizing com-
putational imaging, we examined the immune cell infil-
tration levels and protein expression patterns in NSCLC 
samples. The results revealed varying levels of immune 
cell infiltration among almost all NSCLC samples. Based 

on the median number of positive expressing cells, 
we divided the samples into two different expression 
groups for CEBPA and the immune cell markers. Analy-
sis of the TMA slides demonstrated extensive infiltra-
tion of CD3 + CD4+, CD3 + CD8+, and CD20 + cells in 
the immune microenvironment of NSCLC (Fig.  9A-B). 
Importantly, the high-expression group of CEBPA exhib-
ited significantly increased numbers of CD3 + CD4+, 
CD3 + CD8+, and CD20 + cells compared to the low-
expression group (Fig.  9C). These results confirm the 
bioinformatics analysis and provide experimental veri-
fication that CEBPA is significantly correlated with 
increased infiltration of CD3 + CD4+, CD3 + CD8+, and 
CD20 + cells in the tumor microenvironment of NSCLC.

Discussion
In recent times, the incidence and mortality rates of 
NSCLC have been steadily rising [39]. Despite significant 
advancements in cancer prevention, early screening, and 
surgical intervention for NSCLC, the prognosis remains 
poor [40, 41]. Therefore, there is an urgent need to mine 
novel tumor biomarkers and immunotherapy targets to 
improve the prognosis and survival of NSCLC patients 
[42, 43].

Fig. 9  High Expression of CEBPA in NSCLC Recruit More Immune Cells (A-B) Significantly representative multiplex immunohistochemical images for 
CEBPA, CD3, CD4, CD8, and CD20 in TMA of NSCLC. (C) Abundance of CD3 + CD4 + cells, CD3 + CD8 + cells, and CD20 + immune infiltrates in NSCLC pa-
tients with high or low CEBPA expression
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Studies have consistently demonstrated the strong 
association between aging and cancer, with a higher 
incidence of cancer occurring in the elderly popula-
tion compared to younger individuals [44]. Aging has 
been identified as a major risk factor for tumors, includ-
ing NSCLC. It actively participates in various biological 
processes that promote the development and progres-
sion of NSCLC [45, 46], and is significantly related to 
its poor prognosis [47]. Aging is a universal biological 
process observed in nearly all living organisms. In con-
trast, cancer is characterized by uncontrolled cell growth, 
resistance to apoptosis, distant metastasis, and the acqui-
sition of new abnormal functions [48]. Aging is marked 
by the accumulation of cellular damage, leading to DNA 
damage, diminished tissue metabolism, and loss of organ 
function [49, 50]. These characteristics of aging stand in 
stark contrast to those of cancer. Multiple factors con-
tribute to the association between aging and cancer 
development. Endogenous factors such as genetic fac-
tors, immunodeficiency, and endocrine factors, as well 
as exogenous factors including alcohol consumption, 
radiation exposure, and a high-calorie, high-fat diet, can 
induce oxidative stress and DNA damage. Inflammatory 
mediators secreted during aging, such as interleukins and 
monocyte chemoattractant proteins, create a conducive 
environment for carcinogenesis [51]. Simone et al. found 
that senescent cells typically exhibit elevated levels of 
reactive oxygen species (ROS), leading to oxidative stress. 
ROS can cause significant damage to cellular compo-
nents, including DNA, proteins, and lipids, thereby pro-
moting carcinogenesis. Oxidative stress is a known factor 
in the pathophysiology of NSCLC [52]. Dunyaporn et al. 
discovered that utilizing antioxidants or drugs that mod-
ulate ROS levels can mitigate oxidative stress, potentially 
reducing DNA damage and subsequent cancer risk [53]. 
Furthermore, related research indicates that immunose-
nescence leads to a decline in the production and func-
tion of immune cells such as T cells and B cells, reducing 
the body’s ability to effectively detect and eliminate can-
cer cells [54]. Charlene et al. found that immunotherapies 
have shown promise in reinvigorating the aging immune 
system to effectively target cancer cells. Combining these 
with agents that modulate the immune response could 
enhance their efficacy in elderly NSCLC patients [55]. 
Therefore, it is of great significance to further study the 
connection between aging and the biological processes 
and treatment strategies of NSCLC development.

In this study, the comprehensive approach included 
bioinformatics analysis, in vitro cell function experi-
ments, and immune-related studies. Initially, the expres-
sion levels of 25 ARGs in NSCLC samples and normal 
samples were analyzed using data from the TCGA data-
base. The majority of the ARGs showed significant differ-
ential expression, indicating their suitability for this study 

and enabling systematic research. Subsequently, a com-
bined cohort of patient samples from the TCGA-NSCLC 
and GSE50081 datasets was subjected to consensus clus-
tering analysis. The correlation of ARGs expression with 
the prognosis and clinicopathological parameters of 
NSCLC was further evaluated. To construct a prognos-
tic model, LASSO regression analysis and multivariate 
COX analysis were implemented for gene screening. The 
resulting model accurately estimated the risk of disease 
development or specific outcomes in NSCLC patients 
based on various predictive variables, including progno-
sis and clinicopathological parameters (age, sex, TMN 
stage, etc.) [56–58]. Survival curves showed that patients 
in the high-risk group had a lower overall survival and 
poorer prognosis. Additional analyses, such as DCA 
analysis, ROC analysis, ratio plot of clinicopathological 
parameters, and heatmap, further validated the signifi-
cant correlation between ARG expression, clinical vari-
ables, and the prognosis of NSCLC patients. ROC and 
3DPCA analysis preliminarily verified that the prognosis 
model has good stability. A nomogram, which is a visual 
graphical expression mode, was developed. It calculated 
scores based on individual predictor variable values and 
determined the risk level or survival probability of an 
event [59]. The results proved that the risk score derived 
from the nomogram served as an independent prog-
nostic factor. Finally, the same calculation methodology 
was applied to the GSE30219 and GSE68465 cohorts to 
validate the model. Once again, the results confirmed the 
stability of the model.

The risk score serve as an independent prognostic fac-
tor for NSCLC. Prognostic risk genes may become tumor 
markers and therapeutic targets for the precise diagno-
sis and treatment of NSCLC in the future. In addition, 
further verification through in vitro cell experiments 
is needed to consolidate their role as tumor biomark-
ers [60]. Among the identified ARGs, ABL1 is involved 
in crucial processes related to cell growth and survival, 
including cell motility, adhesion, receptor endocytosis, 
autophagy, and apoptosis pathways. While primarily 
known as an oncogene associated with leukemia, it has 
also been reported to be associated with lung, bladder, 
and gastric cancers [61]. APOC3 is the protein compo-
nent of triglyceride-rich lipoproteins. It promotes the 
assembly and secretion of very low-density lipoprotein 1 
within cells and inhibits hydrolysis and clearance of tri-
glyceride-rich lipoproteins outside cells [62, 63]. APOC3 
has been identified as a biomarker in several malignan-
cies, including hepatocellular carcinoma and colorectal 
cancer [64]. CDK1 can regulate the centrosome cycle 
and mitosis initiation, which is of great significance in the 
control of eukaryotic cell cycle, and the upregulation of 
CDK1 is closely related to the prognosis of various malig-
nant tumors [65]. As a key transcription factor, CEBPB 
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regulates the expression of immune and inflammatory 
responses and plays a major role in immune responses 
such as CD4 + T cell responses and granuloma forma-
tion. PDGFB is a growth factor that plays an important 
role in the regulation of cell proliferation, cell migra-
tion and chemotaxis. Diseases associated with PDGFB 
include dermatofibrosarcoma protuberans and idiopathic 
calcification of the basal ganglia. YWHAZ is upregu-
lated in various cancers and acts as an oncogene in vari-
ous cellular events, including hepatocellular carcinoma, 
colorectal cancer and lung cancer [66]. Based on qPCR 
in cell lines and extensive literature review, CEBPA was 
selected as the main focus for further research. Knock-
down of CEBPA significantly reduced the mRNA and 
protein expression levels of CEBPB, YWHAZ, ABL1 and 
CDK1 in H1650 and A549 cells. To explore the potential 
biological functions of CEBPA in NSCLC cells, CEBPA 
siRNA was introduced into A549 and H1650 cells. The 
knockdown of CEBPA significantly reduced mRNA and 
protein levels in NSCLC cells as confirmed by qPCR and 
Western blot. The CCK-8 assay demonstrated a substan-
tial decrease in the proliferation activity of NSCLC cell 
lines. EdU assay further confirmed that knockdown of 
CEBPA inhibited the proliferation of H1650 and A549 
cells. Transwell and Matrigel Transwell assays revealed 
weakened migration and invasion of NSCLC cells upon 
knockdown of CEBPA. These results indicate that siRNA 
knockdown of CEBPA significantly inhibits NSCLC cell 
proliferation, migration, and invasion. Next, the overex-
pression plasmid was transduced into H1650 and A549 
cells. qPCR and WB showed that CEBPA mRNA and 
protein expression levels were significantly up-regulated 
after OE-CEBPA. CCK-8 and EdU detection experi-
ments showed that overexpression of CEBPA promoted 
cell proliferation. Transwell experiments showed that 
overexpression of CEBPA accelerated the migration and 
invasion of H1650 and A549 cells. This suggests that 
overexpression of CEBPA accelerates the proliferation, 
migration, and invasion of NSCLC cells. Consequently, 
CEBPA can be considered as a tumor biomarker to guide 
the diagnosis and treatment of NSCLC.

The TIME plays a crucial role in the initiation and pro-
gression of tumors. In this study, the ESTIMATE algo-
rithm was first used to perform matrix score, immune 
score, and ESTIMATE score on patients in two differ-
ent risk groups. Interestingly, it was found that only the 
immune score showed significant differences between 
the groups. Further analysis using ssGSEA evaluated 
the infiltration levels of CEBPA in 13 types of immune 
cells. The results indicated that the low-risk group exhib-
ited higher immune scores. In recent years, T cells and 
B cells have emerged as key players in the tumor micro-
environment. T cells have been identified as clinical bio-
markers and have a significant impact on the prognosis 

of NSCLC [67, 68]. In early stages of NSCLC, B cells 
exhibit an inhibitory effect on cancer cell growth, while 
in advanced stages, they promote cell growth. mIHC was 
performed, revealing a significantly increased number of 
CD3 + CD4+, CD3 + CD8+, and CD20 + cells in the high 
CEBPA expression group compared to the low expression 
group. Overall, in NSCLC, CEBPA is highly expressed in 
tumor cells, promoting their proliferation and migration, 
thereby facilitating tumor progression. The mIHC results 
demonstrated the colocalization of CEBPA with immune 
cell markers, indicating that T cells recognized and 
bound to tumor cells, leading to this colocalization phe-
nomenon. However, the immune cells attracted by the 
tumor cells do not necessarily kill the tumor cells. While 
immune cells recognize and target tumor cells, their 
killing ability is inhibited by some immunosuppressive 
molecules such as PD1 and LAG3 [69–71]. Additionally, 
immune cells (e.g., macrophages) can create an immuno-
suppressive microenvironment, further inhibiting T cell-
mediated tumor killing [72, 73].

In summary, this study conducted a comprehensive 
analysis of ARGs expression in NSCLC patients, identify-
ing seven prognostic risk genes and constructing a prog-
nostic risk model. Through in vitro experiments, it was 
found that CEBPA expression was significantly upregu-
lated in NSCLC cells. Knockdown of CEBPA inhibited 
cell proliferation, migration, and invasion, while over-
expression of CEBPA promoted these processes. Immu-
nological correlation analysis showed that the low-risk 
group had higher immune scores. The colocalization of 
CEBPA with immune cell markers in NSCLC suggests its 
important role in the tumor microenvironment.

The potential clinical significance of this study is sub-
stantial. Firstly, the constructed prognostic risk model 
can help clinicians more accurately predict the prognosis 
of NSCLC patients and make personalized management 
and treatment decisions based on the risk scores. Sec-
ondly, key genes such as CEBPA, identified as potential 
tumor biomarkers and therapeutic targets, can guide the 
diagnosis and treatment strategies for NSCLC. Targeting 
these genes may lead to the development of new thera-
peutic approaches, improving patient prognosis and sur-
vival rates. Additionally, understanding the specific roles 
and mechanisms of these genes in NSCLC can contribute 
to the development of new immunotherapies, enhancing 
tumor immune response and ultimately improving treat-
ment outcomes.

Despite the significant findings, this study has some 
limitations. Firstly, the specific molecular mechanisms 
of ARGs in the occurrence and development of NSCLC 
have not been deeply investigated. Secondly, the specific 
roles of ARGs in the immune microenvironment need 
further exploration. Future research should focus on elu-
cidating the detailed mechanisms of these genes in tumor 
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progression and immune response, and further validate 
their effectiveness and mechanisms as tumor biomarkers 
and therapeutic targets through more in vitro and in vivo 
experiments.

Conclusions
The focus of this study was to identify the molecular sub-
types of ARGs and develop a prognostic risk model.The 
risk model was found to be associated with NSCLC prog-
nosis, clinicopathological parameters, immune microen-
vironment, and biological function. Specifically, CEBPA 
can serve as a tumor marker and immune target to guide 
the diagnosis and immunotherapy of NSCLC.
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