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Abstract 

Exosomes are extracellular vesicles well known for facilitating cell‑to‑cell communication by distributing essen‑
tial macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed 
throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, 
gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most 
parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting tra‑
ditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used 
for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. 
Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We 
anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential 
to enhance cancer detection and treatment in the upcoming years.
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Introduction
In the era of precision medicine, identifying and validat-
ing reliable cancer biomarkers are paramount for early 
detection, accurate diagnosis, and effective treatment 
strategies. Exosomes have gained substantial attention 
among emerging candidates as promising carriers of 
valuable information in cancer research. Exosomes are 
tiny extracellular vesicles (EVs) with a diameter rang-
ing from 30 to 150  nm [1]. They are secreted by cells 
into bodily fluids such as blood, urine, cerebrospinal 
fluid (CSF), and saliva. These vesicles transport a col-
lection of nucleic acids, proteins, and lipids. Accord-
ing to the exosome database ExoCarta, 9769 proteins, 
3408 mRNAs, 2838 miRNAs, and 1116 lipids have been 
identified in exosomes from various organisms and bod-
ily fluids [2]. Due to their distinct attributes, including 
stability, specificity, and capability to traverse biological 
barriers, exosomes are promising candidates for detect-
ing cancer biomarkers. Exosomes can carry molecules 
representative of the original cell, including cancer cells. 

Early cancer detection is made possible by analyzing exo-
somal content when the cancer cells release the exosomes 
into the bloodstream or other biofluids. Early detection 
is essential for treatment to begin at a more manageable 
and possibly curable stage. Exosome formation entails the 
fusion and exocytosis of multivesicular bodies (MVBs), 
releasing them into the extracellular environment [3, 4].

Exosomes facilitate the transfer of exosome-associated 
RNA to recipient cells, influencing protein functioning 
and contributing to cellular stress and damage in dis-
eased states. They play a diverse role in various diseases, 
encompassing neurodegenerative, cancerous, hepatic, 
and cardiovascular conditions. In the context of cancer, 
exosomes hold substantial implications for metasta-
sis, drug resistance, and angiogenesis. Specifically, they 
can modify the extracellular matrix to create a favorable 
environment for tumor cell migration [5, 6]. Moreover, 
exosomes influence the migration, invasion, and release 
of cancer cells by affecting tumor suppressor genes and 
degrading the extracellular matrix [7, 8].
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Most tumors exhibit heterogeneity, comprising differ-
ent cell types with diverse molecular profiles. In contrast 
to a single tissue biopsy, exosomes, released by various 
tumor-resident cells, provide a more comprehensive and 
representative view of the tumors’ heterogeneity. Under-
standing this complexity is crucial for tailoring treat-
ment plans effectively. The contents of exosomes act 
as molecular signatures of their cells of origin, making 
them promising biomarkers. The stability of exosomes, 
ensured by the lipid bilayer protecting them from exter-
nal proteases and enzymes, enhances their appeal as 
diagnostic markers. Consequently, diagnostic tests based 
on exosomes are gaining momentum for early cancer 
detection and addressing various ailments. Exosomes 
can be isolated from easily accessible biofluids such as 
blood, urine, saliva, and CSF. When comparing liquid 
biopsy to conventional tissue biopsies, a non-invasive 
approach, significant improvements become evident. 
Liquid biopsies offer a less invasive and more dynamic 
method to monitor the course of cancer and assess the 
effectiveness of treatment. Exosomes can traverse the 
blood–brain barrier (BBB) under specific conditions [9], 
opening up possibilities for therapies involving small 
molecules, RNA therapy, proteins, and CRISPR gene 
editing. In RNA therapy, exosomes can deliver RNA 
molecules, such as mRNA or siRNA, directly to cancer 
cells, selectively silencing oncogenes or restoring tumor 
suppressor genes to reduce tumor growth and metastasis 
[10, 11]. Similarly, exosomes serve as a promising deliv-
ery system for CRISPR-Cas9 components, enabling pre-
cise genetic editing to correct mutations driving cancer 
development [12, 13]. They can complement chimeric 
antigen receptor T (CAR-T) cell therapies targeting can-
cer cells. CAR exosomes, derived from CAR-T cells, bear 
CAR on their surface, exhibit elevated levels of cyto-
toxic molecules, and impede tumor growth [14], thereby 
enhancing the overall efficacy of CAR-T cell therapy by 
extending the therapeutic effect beyond the initial infu-
sion site. Cancer cell-derived exosomes, carrying tumor-
associated antigens, can modulate the immune response 
by recruiting and activating dendritic cells (DCs) and 
other antigen-presenting cells, which stimulate cytotoxic 
T lymphocytes to recognize and destroy cancer cells 
[15]. Experimental evidence suggests that circulating 
exosomes from cancer patients can be utilized for cancer 
diagnosis and prediction of therapeutic outcomes, poten-
tially reducing the need for invasive biopsies.

This review article aims to comprehensively explore 
the clinical signature of exosome-based cancer biomark-
ers, providing an overview of their diverse roles in can-
cer progression, diagnosis, prognosis, and therapeutic 
monitoring. This paper uniquely focuses on the dynamic 
nature of exosomes, which renders them highly suitable 

for tracking the advancement of the disease, the reaction 
to treatment, and the emergence of resistance, thereby 
offering a more sophisticated comprehension of the 
changing terrain of cancer. We will delve into the bio-
genesis of exosomes and their specific cargo, including 
microRNAs (miRNAs), proteins, and metabolites, high-
lighting their potential as non-invasive biomarkers for 
various cancer types. This review elucidates the complex 
exosomal formation and release processes, contributing 
to our understanding of their roles in cancer progression. 
Furthermore, we will explore the latest advancements in 
exosome isolation techniques, analytical methods, and 
high-throughput technologies that enable the profiling 
and characterization of exosomal biomarkers, including 
advanced techniques like OMICS and single exosome 
profiling. Exosomes can aid in initiating and spread-
ing cancer and are involved in intercellular communica-
tion; knowing the precise chemicals that exosomes carry 
could help identify possible targets for treatment. This 
discussion also includes ongoing clinical trials to bridge 
research and clinical practice and a balanced analysis of 
the advantages and disadvantages of using exosomes as 
cancer biomarkers, offering insights into their dual roles 
in cancer promotion and inhibition. Treating cancer in 
new ways may be possible by focusing on exosomes or 
their pathways. Additionally, we explore future pros-
pects, such as bioengineering exosomes for enhanced 
therapeutic capabilities. Ultimately, a deeper understand-
ing of the clinical signature of exosome-based biomarkers 
will enhance personalized and targeted cancer manage-
ment approaches, fostering the advancement of precision 
medicine toward improved patient outcomes and ensur-
ing the review reflects the latest research and innovations 
in the field.

Biogenesis, secretion, and uptake of exosomes
The endosomal compartment of most eukaryotic cells 
produces exosomes, which are membrane-bound EVs 
[16]. These EVs are the intermediate by-products of 
plasma membrane-derived early- to late endosomes [17, 
18]. Processing of early endosomes (EEs) produces a sub-
type of endosomes carrying several membrane-bound 
intraluminal vesicles (ILVs) called MVBs. These MVBs 
consequently fuse with the plasma membrane to release 
their contents, exosomes, out of cells [19]. There are two 
distinct mechanisms by which exosomes are produced: 
ESCRT-dependent (Endosomal sorting complex required 
for transport)-dependent and ESCRT-independent [19].

The formation of MVBs is regulated by the ESCRT, 
which consists of four multiprotein complexes: ESCRT-0, 
ESCRT-I, ESCRT-II, and ESCRT-III. These complexes are 
recruited to the endosomal membrane to sort selected 
proteins into ILVs, requiring the ubiquitination of the 
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cytosolic tails of endocytosed receptors [20]. Tsg101, 
part of ESCRT-I, binds ubiquitinated cargo proteins, 
activating ESCRT-II, which then initiates the formation 
of ESCRT-III. ESCRT-III sequesters MVB proteins and 
recruits a deubiquitinating enzyme to remove ubiquitin 
tags before sorting proteins into ILVs. An ATPase disas-
sembles the ESCRT-III complex afterward [21].

While ESCRT proteins are essential for targeting mem-
brane proteins for lysosomal degradation, their role in 
forming ILVs secreted as exosomes is unclear. Proteomic 
analyses have identified ESCRT complex members such 
as Alix and Tsg101 in DC exosomes, supporting ESCRT-
dependent exosome biogenesis [22]. An ESCRT-0 mem-
ber has also been implicated in DC exosome secretion 
[23]. However, targeting MHC class II molecules in 
activated DCs does not require ubiquitination, and nei-
ther Tsg101 nor Alix are involved in proteolipid protein 
(PLP) sorting into exosomes in oligodendroglial cells 
[24]. Additionally, the sequestration of the pre-melano-
somal protein Pmel17 in ILVs in melanocytes appears 
independent of ESCRT function [25]. These findings sug-
gest that different MVB subpopulations might use dis-
tinct biogenesis mechanisms across various cell types or 
within the same cell type.

However, the scientific rationale for the ESCRT-inde-
pendent pathway could be more evident. Numerous 
studies indicate that some exosomal proteins involving 
alternative mechanisms are released independently of the 
ESCRT pathway. Trajkovic et al. demonstrated that while 
Tsg101 and Alix do not influence the exosomal sorting of 
PLP, ceramide is essential for the secretion of PLP-con-
taining exosomes [24]. Ceramide’s cone-shaped struc-
ture may aid membrane invagination of ILVs, and studies 
have highlighted the role of sphingomyelinases, enzymes 
converting sphingomyelin to ceramide, in exosome bio-
genesis. Specifically, acid sphingomyelinase is involved in 
vesicle release from glial cells, and neutral sphingomyeli-
nase 2 is crucial for miRNA-containing vesicle secretion 
[26, 27]. Additionally, higher-order oligomerization, or 
the clustering of protein oligomers, has been implicated 
in exosome formation, as seen in the exosomal sorting of 
CD43 in Jurkat T-cells [28] and similar processes involv-
ing the transferrin receptor in reticulocytes [29] and 
the MHC class II complex in lymphocytes [30]. In these 
instances, antibody-induced oligomerization enhances 
protein secretion into exosomes. The biogenesis of MVBs 
is also linked to detergent-resistant domains in exoso-
mal membranes, which include tetraspanin proteins. For 
example, sorting MHC class II into DC exosomes par-
tially depends on its integration into tetraspanin CD9-
containing lipid microdomains [31–33].

One intriguing question is: How does the cell decide 
what to package into exosomes, and what are the 

proposed mechanisms for this selective activity? The 
selective packaging of exosomal content may involve 
lipid composition, protein and RNA signals, and specific 
enzymes like sphingomyelinases. Higher-order oligomer-
ization and the presence of tetraspanin-enriched micro-
domains are also factors influencing what gets packaged 
into exosomes. Understanding these selective mecha-
nisms further could provide deeper insights into exo-
some biology.

Additionally, while we have noted differences between 
exosomes derived from normal and cancer cells, the 
detailed biogenesis mechanisms in cancer cells require 
further elucidation. It is conceivable that cancer cells 
have deregulated or preferential pathways for exosome 
formation. Identifying these pathways and understand-
ing how they are altered in cancer could uncover poten-
tial therapeutic targets. By targeting the unique exosome 
biogenesis pathways in cancer cells, we might be able to 
develop treatments that disrupt exosomal communica-
tion, contributing to tumor growth and metastasis. Fur-
ther research could significantly advance our knowledge 
and therapeutic strategies in oncology.

Exosome secretion and uptake are crucial for main-
taining normal cellular activity because they facilitate 
essential intercellular communication, allowing cells to 
exchange proteins, lipids, RNA, and other molecules. 
This exchange supports immune response regulation, 
tissue repair, and cellular homeostasis. If exosome secre-
tion or uptake is altered, it can disrupt these vital com-
munications, leading to various pathological conditions. 
For instance, impaired exosome function can contribute 
to diseases like cancer, where altered exosome-mediated 
signaling can promote tumor growth, metastasis, and 
drug resistance [34].

Exosome and cancer
It is well known that exosome secretion and uptake 
are other important, influential features in normal 
cellular activity. They play pivotal roles in the intri-
cate landscape of cancer cell communication, contrib-
uting to tumor progression and metastasis. Cancer 
cells release more exosomes than normal cells, using 
them to exchange information locally and distantly. 
These exosomes carry bioactive cargo that can pro-
mote tumor growth, pre-metastatic niche formation, 
immune escape, angiogenesis, anti-apoptotic signal-
ing, and drug resistance [35]. In cancer cells, the secre-
tion of exosomes is often dysregulated, leading to the 
release of a unique cargo that can influence both the 
local tumor microenvironment and distant organs [36]. 
Cancer cells release more exosomes than normal cells, 
using them to exchange information locally and dis-
tantly. These exosomes carry bioactive cargo that can 
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promote tumor growth, pre-metastatic niche forma-
tion, immune escape, angiogenesis, anti-apoptotic sign-
aling, and drug resistance [37].

On the receiving end, cancer cells internalize exosomes 
through various mechanisms, such as endocytosis, 
phagocytosis, and direct membrane fusion. Once inter-
nalized, exosomal cargo can modulate recipient cell 
behavior, promoting cell proliferation, migration, and 

evasion of immune surveillance [38]. Figure 1 represents 
the process simply.

Sorting cargo into exosomes is also important in 
the context of cancer cells compared to normal cells. 
It is a finely tuned cellular process governed by vari-
ous molecular mechanisms. One significant aspect is 
the presence of specific signals and sorting motifs that 
guide the inclusion of proteins and nucleic acids into 

Fig.1 Biogenesis, Secretion, and Uptake of Exosomes. Exosomes form through the process of inward budding during endocytosis. Specific cargos 
are sorted into these exosomes within multivesicular bodies (MVBs), where early and late sorting endosomes are assembled. Commonly, Exosomes 
consist of proteins, lipids, RNAs, and genetic material. The protein content of EVs includes various types, such as transmembrane or lipid‑bound 
proteins found on the cell surface (CD63, CD9, CD81, etc.). Additionally, Exosomes contain lipids like ceramide, different types of RNAs such 
as messenger RNA (mRNA) and microRNA (miRNA), and DNA fragments. Exosomes are taken up by cells using several mechanisms, including direct 
fusion of exosomes with the cell membrane of the recipients, receptor‑ligand interactions, and endocytosis. EVs transport their contents 
within the cells comprising proteins, RNAs, and DNAs, releasing them into the cytoplasm or endoplasmic reticulum. MVB: multivesicular body; CD: 
cluster of differentiation, Created with BioRender.com
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these EVs. For instance, certain proteins carry signals 
that earmark them for exosomal packaging [39].

In the context of cancer, the cell state undergoes 
substantial changes, leading to alterations in the cargo 
composition of exosomes. Cancer cells may preferen-
tially sort oncoproteins or mutated nucleic acids into 
exosomes, disseminating cancer-related information to 
neighboring or distant cells [40].

The role of exosomes in cancer progression is com-
plex and dual-faceted, depending on their origin and 
cargo. For instance, exosomes can carry various micro-
RNAs (miRNAs), such as miR-122 [41], which pro-
motes metastasis; mir-9 [42], and miR-135b [43], which 
enhances angiogenesis; and miR-105, which induces 
vascular leakiness and promotes metastasis [44]. Other 
miRNAs like miR-93-5P [45], miR-200 [46], and miR-
210 contribute to cancer cell proliferation, metastasis, 
and tumor progression [47]. Conversely, miR-126 can 
promote an anti-tumor response, highlighting the dual 
roles of exosomal miRNAs in cancer regulation [48]. 
Similarly, long non-coding RNAs (lncRNAs) such as 
lncRNA-HOTTIP [49]and lncRNA-ZFAS1 [50]enhance 
drug resistance and cell proliferation. At the same time, 
proteins like [51] and TGF-β [52] facilitate metastasis 
and suppress immune responses These bioactive mol-
ecules collectively drive cancer progression by enhanc-
ing the tumor’s ability to invade, resist treatment, and 
manipulate its surrounding environment.

Consequently, exosomes have become a focal point 
for developing novel cancer therapies. Strategies 
include using naturally derived exosomes from immune 
cells to suppress cancer, inhibiting the release of can-
cer-derived exosomes, and employing exosomes as car-
riers for genes or anti-cancer drugs. DC exosomes are 
particularly promising for cancer therapy due to their 
antigen-presenting capabilities, which can activate 
tumor-specific cytotoxic T lymphocytes and natural 
killer cells [53]. Interfering with cancer cell-derived 
exosomes by blocking their synthesis, release, or uptake 
also presents a viable therapeutic approach. For exam-
ple, inhibiting Rab27a-mediated exosome secretion 
has been shown to reduce tumor growth and metasta-
sis in mice [54]. Additionally, using exosomes as carri-
ers for miRNAs, proteins, or chemotherapeutic drugs 
can enhance targeted delivery and therapeutic efficacy 
while minimizing side effects [55].

Efforts to understand the relationship between cell 
states, such as cancer transformation and cargo sort-
ing in exosomes, are vital. Researchers seek to unravel 
how the sorting of goods in cancer cells differs from 
that of normal cells. This exploration can uncover valu-
able insights into disease mechanisms and potentially 
reveal diagnostic markers or therapeutic targets based 

on the distinctive cargo profiles of cancer cell-derived 
exosomes [56].

To completely understand the role of exosomes in can-
cer, their specific physiological functions must be elu-
cidated [57]. The necessity of exosome production for 
cellular survival is still under debate, and creating mice 
with complete exosome deletion can help address this 
question [52, 58, 59]. Furthermore, concluding the func-
tional importance of exosomes in cell-to-cell communi-
cation based solely on in  vitro experiments in isolated 
culture systems may not accurately represent physiologi-
cal conditions. Therefore, there is an increasing need 
for in vivo studies to explore the functional significance 
of exosomes in cancer. Figure 2 depicts the relationship 
between exosomes and cancer progression.

Exosome as source of cancer biomarker
As pointed out earlier, exosomes have been detected in 
various body fluids such as blood, urine, saliva, amniotic 
fluid, CSF, ascites, tears, breastfeeding milk, semen, etc. 
[60, 61]. Cancer exosomes, when collected from a hetero-
geneous population in body fluids, can aid in diagnosing 
specific tumor types like glioblastoma, melanoma, pan-
creatic, breast, and ovarian cancers [62]. Exosome-based 
biomarker detection is promising in cancer research, 
offering several advantages over other detection methods 
[63, 64]. Exosomes can be easily isolated from various 
bodily fluids, providing convenient accessibility for bio-
marker analysis [64]. In contrast to invasive tissue biop-
sies, exosomes offer a non-invasive approach to gathering 
valuable information. These EVs exhibit remarkable sta-
bility in circulation and are defended from enzymatic 
degradation by a lipid bilayer membrane, ensuring the 
integrity of their cargo, including nucleic acids and pro-
teins. This stability allows for detecting intact biomarkers, 
ensuring reliable and accurate results [65]. Furthermore, 
exosomes actively released by cells carry a selective 
cargo of biomolecules, reflecting the unique molecular 
characteristics of the originating cells. This composi-
tion provides a more specific and functionally relevant 
representation of the disease state [65]. Notably, cancer 
cells release exosomes at the early stages of tumorigen-
esis, enabling the detection of cancer-specific biomarkers 
before the onset of clinical symptoms. This early detec-
tion potential allows timely interventions and improved 
patient outcomes [65]. In  vitro and preclinical investi-
gations have improved our comprehension of exosome 
content and its potential use in cancer identification and 
monitoring [66]. Research also focuses on the role of 
lipids and metabolites in cancer-derived exosomes, offer-
ing new insights into cancer detection and biology [65, 
67].
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Exosomes may carry unique nucleic acids, such as 
mutant mRNA like the epidermal growth factor receptor 
EGFRvIII variant [68], which can serve as accurate bio-
markers for glioblastoma. Targeted miRNAs enriched in 
exosomes can aid in cancer diagnosis and monitoring of 
cancer progression [62]. Exosome proteins may also con-
tribute to cancer detection and reflect their cellular ori-
gin. The transfer of oncoproteins via exosomes between 
cells may function in carcinogenesis [69, 70].

Exosomes also offer a dynamic snapshot of disease 
progression and treatment response. Their continuous 
release and circulation in bodily fluids enable repeated 
sampling over time, facilitating real-time monitoring 
of disease status and treatment efficacy [71]. Moreover, 
exosomes carry various types of biomarkers, including 
miRNAs, lncRNAs, proteins, and metabolites, provid-
ing multiple targets for biomarker analysis. This diversity 
enhances the chances of identifying robust and reliable 
biomarkers tailored to specific cancer types [72].

Lately, the "liquid biopsy" technique has emerged as 
a potential non-invasive method for biomarker detec-
tion, utilizing bodily fluids like urine and serum. How-
ever, studies have shown that many liquid biomarkers are 

predominantly located in the lysosomes, limiting their 
accessibility [73, 74]. In contrast, exosomal biomark-
ers have demonstrated high diagnostic and prognostic 
efficiency for cancer detection [75–77]. 4729 individu-
als from 42 studies were included to check the specific-
ity and sensitivity of exosomes as prognostic biomarkers. 
From them, 50 prognostic biomarkers were studied. For 
13 biomarkers with overall survival present in colon can-
cer the  I2 value (inconsistency index) was 62.94% and 
P < 0.002;% biomarkers with disease-free survival present 
in colon cancer showed the  I2 value of 0% and P < 0.536, 
while biomarkers with recurrence-free survival present in 
colon cancer showed the  I2 value of 89.61% and P < 0.0004 
biomarkers with overall survival found in gastric can-
cer, 4 biomarkers with overall survival reported in pan-
creatic and 5 biomarkers with overall survival reported 
in liver cancer exhibited the  I2 values and P values of 
96.71%,81.50%,84.48% and 0.000,0.001,0.000 respectively; 
again 9 biomarkers showing overall survival in lung can-
cer had the  I2 value of 89.50% and P < 0.000. So, it can be 
said exosomal biomarkers exhibit specificity and sensitiv-
ity, making them valuable tools in cancer diagnosis and 
monitoring [78].

Fig. 2 Exosomes and Cancer. The role played by exosomes in cancer metastasis and progression. Tumor cells release pathogenic exosomes 
that inhibit immune cell functions (recognition of cancer cells, cytolytic effects, etc.) and pre‑mesenchymal niche formation, Created 
with BioRender.com
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Given these advantages, exosome-based biomarker 
detection emerges as a promising avenue in cancer 
research, offering non-invasive, specific, and dynamic 
insights into cancer biology, diagnosis, prognosis, and 
therapeutic monitoring. It can potentially revolutionize 
the field by providing a more accessible and comprehen-
sive understanding of cancer and its treatment.

Exosomal surface protein as potential biomarkers of cancer
Recent research has shown that exosome-based diag-
nostics can be successfully developed using quick and 
high-throughput technology without exosome purifica-
tion. A microfluidic device called the "ExoChip" was cre-
ated by Kanwar et al. to capture and stain exosomes with 
the CD63 antibody and a fluorescent dye [79]. Exosomes 
may be quantified using a conventional plate reader, and 
exosomal miRNA analysis can be profiled. To diagnose 
glioblastoma multiform, a microfluidic chip labeled with 
a target (CD63, EGFR, or EGFRvIII) specific magnetic 
nanosensor was used [79]. The "ExoScreen" method, 
developed by Yoshioka et al. and using photosensitizing 
beads and CD9 and CD147 antibodies, is extremely quick 
and analytical. "ExoScreen" may identify EVs enriched in 
CD9 and CD147 double-positive EVs and grown in tis-
sue culture media for colorectal cancer cells and patient 
serum [80, 81]. A more specific microfluidic device called 
the "ExoSearch" chip was created by Zhao et al. to isolate 
exosomes quantitatively using immunomagnetic beads 
[82]. Three exosomal tumor protein markers, includ-
ing CA-125, EpCam, and CD24, were measured by the 
"ExoSearch" chip during a liquid biopsy of an ovarian 
cancer patient [56]. In this investigation, we pinpointed 
biomarkers for diagnosing colon cancer (CC) through 
proteomic analysis of small EV-derived from CC cell 
lines. These small-EVs were characterized by western 
blot analysis, nanoparticle tracking analysis, and trans-
mission electron microscopy, with subsequent exami-
nation using mass spectrometry. Western blot analysis 
revealed the upregulation of five selected proteins in CC. 
Among these proteins, tetraspanin 1 (TSPAN1) exhib-
ited elevated levels in plasma EVs from CC patients 
compared to those from healthy controls (HCs), dem-
onstrating a sensitivity of 75.7%. These findings propose 
TSPAN1 as a robust, non-invasive biomarker for detect-
ing CC [83]. Immune checkpoint inhibitor immuno-
therapy brings hope for gastric cancer (GC) treatment, 
but the lack of biomarkers hinders patient selection. 
Using an EV protein expression array, this study identi-
fied four key plasma EV-derived proteins (ARG1/CD3/
PD-L1/PD-L2), forming an EV-score that robustly pre-
dicted and monitored immunotherapeutic outcomes in 
112 GC patients. A high EV score indicates a microen-
vironment with enhanced antitumor immunity, validated 

through analysis and experiments. GC patients with 
EV-score ≥ 1 benefit more from ICIs. At the same time, 
EV-score < 1 suggests advantages in combining ICIs with 
HER2-targeted therapies, highlighting the plasma EV-
score as a valuable tool for clinical decisions and insights 
for ICI-regimen improvements [84]. In the subsequent 
cohort, 96.4% of breast cancer patients exhibited elevated 
plasma-derived exosomal Del-1 levels at diagnosis. A 
high postoperative Del-1 level was significantly linked 
to worse disease-free survival adjusted for clinicopatho-
logical characteristics (hazard ratio 24.0; P < 0.0011). This 
study confirms exosomal Del-1 normalization post-sur-
gery, establishing it as a robust diagnostic biomarker for 
breast cancer. Moreover, the association between high 
postoperative Del-1 levels and early relapse suggests its 
potential as a prognostic biomarker [85].

Exosomal nucleic acid as potential biomarkers of cancer
Ever since Valadi et al. first reported the existence of exo-
somal miRNAs in 2007, researchers have undertaken 
pioneering investigations to explore their potential as 
diagnostic biomarkers for different types of malignan-
cies [86]. Taylor et al. identified eight miRNAs previously 
recognized as diagnostic indicators for ovarian cancer in 
circulating tumor exosomes from patients with ovarian 
cancer [87]. These miRNAs, namely miR-21, miR-141, 
miR-200a, miR-200c, miR-200b, miR-203, miR-205, and 
miR-214, were detected in the exosomes [88]. In a study 
by Rabinowits et al., miRNA profiling analysis was con-
ducted on exosomes extracted from lung cancer patients, 
tumor biopsy samples, and control groups [88]. The 
results showed that exosomes from lung cancer patients 
and tumor biopsy samples exhibited similar miRNA pat-
terns, distinct from those observed in the exosomes from 
the control group. This finding indicated the potential 
of circulating exosomal miRNAs as liquid biopsy mark-
ers (liquid biopsy involves identifying and segregating 
circulating tumor cells, circulating tumor DNA, and 
exosomes, which serve as valuable sources of genomic 
and proteomic insights for individuals diagnosed with 
cancer) for lung cancer [88]. Additionally, Kahlert et  al. 
discovered large fragments of double-stranded genomic 
DNA (> 10  kb) in exosomes derived from pancreatic 
cancer cell lines and patients [89]. They suggested that 
exosomal DNA sequencing could be utilized to pre-
dict treatment options and evaluate therapy resistance. 
Whole-genome sequencing of exosomes obtained from 
pancreatic cancer patients revealed mutations in KRAS 
and p53 [90].

Exosomes from differentiated thyroid carcinoma 
(DTC) patients’ serum showed decreased miR-130a-3p 
compared to benign cases and healthy controls. This 
miRNA correlated with DTC characteristics, such as 
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tumor size, lymph node metastasis, and TNM stage. 
Combining exosomal miR-130a-3p with other mark-
ers (antithyroglobulin autoantibodies and thyroglobu-
lin) improved the sensitivity and specificity of diagnostic 
biomarkers. The study identified insulin-like growth fac-
tor (IGF)-1 as a target gene, with a negative correlation 
between serum IGF-1 and exosomal miR-130a-3p levels. 
These findings suggest reduced exosomal miR-130a-3p 
as a sensitive biomarker for DTC diagnosis [91]. Serum 
exosomal miR-29a levels were significantly reduced in 
papillary thyroid carcinoma (PTC) cases, showing effec-
tive differentiation from normal controls by ROC analy-
sis. Post-surgery, these levels increased significantly at 
30 and 90  days. Lower miR-29a expression correlated 
with higher recurrence risk, worse clinical variables, and 
shorter survival and was an independent prognostic indi-
cator for overall survival in both univariate and multi-
variate analyses [92]. A three-miRNA panel (miR-25-3p, 
miR-296-5p, miR-92a-3p) consistently showed up-reg-
ulation in PTC patients versus healthy controls, demon-
strating superior diagnostic performance (Area under 
the ROC Curve: AUCs: 0.727, 0.771, 0.862) in multiple 
stages, and strong differentiation from benign goiters 
(AUC: 0.969). Analysis of tissue and exosome samples 
supported their close association with PTC, suggesting 
this serum panel is a valuable diagnostic tool [93]. Sta-
ble exosomal miRNAs were analyzed for accurate diag-
nosis of indeterminate thyroid nodules. Exosomes from 
13 PTC and 7 nodular goiter (NG) patients were stud-
ied, identifying 129 differentially expressed miRNAs, 
with miR-5189-3p showing optimal performance (AUC: 
0.951) in distinguishing PTC from NG. Enriched target 
genes in cancer pathways suggest the potential use of 
these plasma exosomal miRNAs as diagnostic biomark-
ers for thyroid nodules [94]. Eight plasma exosomal 
miRNA candidates were identified via RNA-seq, with 
miR-16-2-3p, miR-223-5p, miR-34c-5p, miR-182-5p, 
miR-223-3p, and miR-146b-5p lower in nodules vs. con-
trols and miR-16-2-3p and miR-223-5p higher in PTC 
cases than benign nodules. These miRNAs, particularly 
miR-16-2-3p and miR-223-5p, serve as potent indica-
tors for thyroid nodule detection, and combined panels 
enhance diagnostic sensitivity and specificity compared 
to single markers [95]. Small RNA sequencing identified 
41 potential exosomal miRNA markers for PTC, with 4 
miRNAs (miR-376a-3p, miR-4306, miR-4433a-5p, miR-
485-3p) showing significantly increased expression in 
PTC patients compared to healthy and benign nodules. 
MiR-485-3p demonstrated the highest AUCs for diag-
nosing PTC, particularly in patients with high-risk fac-
tors like larger tumor size, advanced stage, and lymph 
node metastasis [96]. The three-miRNA panel in plasma 
effectively discriminates PTC from healthy control (HC) 

or nodular goiter (NG) (AUC: 0.877), with miR-346 and 
miR-34a-5p up-regulated in PTC tissues and consist-
ently elevated in PTC plasma exosomes [97]. Exosomal 
lncRNAs, particularly RP11-77G23.5 and PHEX-AS1 in 
EpCAM-specific exosomes, show promise as diagnostic 
biomarkers for lung cancer, distinguishing malignancy 
and offering insights into subtype classification and dis-
ease progression. Their elevated levels in lung adenocar-
cinoma and distinct expression patterns related to tumor 
stages and metastasis underscore their diagnostic poten-
tial [98].

Over the previous three years, additional exosomal 
miRNAs have been identified employing a combination 
of RNA sequencing-based miRNA profiling, ExoQuick 
precipitation, ultracentrifugation, and the commercial 
Exo-miR kit (Bioo Scientific, Austin, TX, USA). These 
cancer models encompass glioblastoma, breast, colon, 
prostate, and pancreatic cancers. ExoQuick is a proprie-
tary polymer, so it has the advantage of gent precipitation 
of exosomes [99]. A list of exosomal biomarkers is listed 
in Table 1, and Fig. 3 depicts the utility of exosomes as a 
cancer biomarker.

Isolation of exosomes
Exosomes are isolated on a different basis: Firstly, based 
on size, and secondly, based on its affinity. Ultracentrifu-
gation is considered a gold standard in exosome isolation. 
However, in recent research, some new techniques for 
the isolation of exosomes have been practiced, and they 
are broadly classified based on their mechanism, namely 
Ultracentrifugation (UC), density gradient (DG) centrifu-
gation, infiltration techniques, immunoaffinity, capture-
based techniques, exosome precipitation, and use of 
acoustic nano-filters [102].

Ultracentrifugation
This method is commonly employed and widely recog-
nized as the standard approach for isolating exosomes 
[103]. Although it is one of the most widely adopted tech-
niques for exosome isolation, it depends on a few factors, 
like rotor type, centrifugation type, and sample viscosity. 
Hence, these parameters are optimized before standard-
izing the protocols for performing ultracentrifugation 
[104]. This method is advantageous because it is easy to 
perform and has a significantly higher exosome purity 
yield than other methods [105, 106]. However, there are 
some disadvantages of the above method, which should 
be counted: the downgrade of the quality of exosomes, 
which debars it from clinical applications. It happens 
because, during high-speed centrifugation, exosomes are 
subjected to a high shear force, which tends to damage 
them [107, 108].
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Size‑based techniques
They are categorized into ultrafiltration, sequential fil-
tration, and size exclusion chromatography (SEC). SEC 
is the most advantageous of all three because of the fol-
lowing features: high yield, low cost-to-benefit ratio, and 
low destructive outcomes. This procedure also allows the 
smooth extraction of exosomes from serum and plasma 
[109]. A recent study found ultrafiltration is superior to 
UC since it recovers more particles, including exosomes, 
smaller than 100 nm. The size distributions of exosomes 
extracted through UC or SEC were identical, as dem-
onstrated by TEM and NanoSight. With less processing 

time than the traditional UC protocol, ultrafiltration 
techniques increase exosome yield and isolation effi-
ciency by producing more particles. Despite being widely 
employed in many sectors, these size-based approaches 
still have a lengthy running time, limiting their applica-
bility in therapy and research.

Capture‑based techniques
This technique produces a purity exosome based on 
the immunoaffinity principle [110]. Washing in a 
stationary phase can successfully capture immobi-
lized particular exosomes, depending on the precise 

Table 1 List of Exosomal biomarkers

EGFR: Epidermal Growth Factor Receptor; EGFRvIII: Epidermal Growth Factor Receptor Variant III; CD147: Cluster of Differentiation 147; CD9: Cluster of Differentiation 9; 
CA-125: Cancer Antigen 125; EpCAM: Epithelial Cell Adhesion Molecule; TSPAN1: Tetraspanin 1; ARG1: Arginase 1; CD3: Cluster of Differentiation 3; PD-L1: Programmed 
Cell Death Ligand 1; PD-L2: Programmed Cell Death Ligand 2; KRAS: Kirsten Rat Sarcoma Viral Oncogene Homolog; p53: Tumor Protein p53; BRAF(V600E): B-Raf Proto-
Oncogene, Serine/Threonine Kinase (V600E mutation)

Exosomal biomarkers EVs’ source Application References

cells Biopsy

EGFR, or EGFRvIII – Serum from patients with glioblas‑
toma

Diagnosis and prognosis [80]

CD147 or CD9 Colorectal cancer cell lines (HCT116 
cells, HCT15 cells, HT29 cells, 
COLO201 cells, COLO205 cells, WiDr 
cells and SW1116 cells)

Serum from patients with colorec‑
tal cancer

Diagnosis [81]

CA‑125, EpCAM, CD24 – Plasma from a patient with ovarian 
cancer

Diagnosis [82]

Tetraspanin 1 (TSPAN1) Colon cancer cell lines (HT‑29 
and HCT‑116)

– Diagnosis [83]

ARG1, CD3, PD‑L1, PD‑L2 – Plasma from a patient with gastric 
cancer

Diagnosis and Prognosis [84]

Developmental endothelial locus‑1 
(Del‑1)

– Plasma from a patient with breast 
cancer

Diagnosis and Prognosis [85]

miR‑1246 Breast cancer cell lines (MCF‑7 
and MDA‑MB‑231)

– Diagnosis [100]

miR‑200b, miR‑200c, miR‑141 
and miR‑375

‑ Pleural effusions from patients 
with lung adenocarcinomas

Diagnosis [101]

Mutated KRAS and p53 DNA ‑ Serum from patients with pancre‑
atic cancer

Diagnosis [89]

BRAF(V600E) mutation in exoDNA Melanoma cell lines, wild‑type 
(WT; SK‑MEL‑146 and SK‑MEL‑147) 
or mutated BRAF (SK‑MEL‑28, 
SK‑MEL‑133, SK‑MEL‑192, and SK‑
MEL‑267)

‑ Diagnosis [90]

miR‑130a‑3p – Serum from patients with differen‑
tiated thyroid carcinoma (DTC)

Diagnosis [91]

miR‑29a – Serum from patients with papillary 
thyroid carcinoma (PTC)

Diagnosis and Prognosis [92]

miR‑25‑3p, miR‑296‑5p and miR‑
92a‑3p

– Serum from patients with PTC Diagnosis [93]

miR‑5189‑3p – Plasma from patients with PTC Diagnosis [94]

miR‑16–2‑3p and miR‑223‑5p – Plasma from patients with PTC Diagnosis [95]

miR‑346 and miR‑34a‑5p – Plasma from patients with PTC Diagnosis [96]

lncRNAs RP11‑77G23.5 and PHEX‑
AS1

Lung cancer cell line (NCI‑H1299) Serum from patients with lung 
cancer

Diagnosis [98]
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immunological interaction between the antibody and 
antigen. This method successfully separates exosomes 
that carry particular target membrane proteins. Due to 
thorough assessments of the effectiveness of recycling 
exosomes, the conclusion that capture-based strate-
gies incorporating the Ep-CAM biomarker constitute 
the best strategy for separating exosomes compared to 
other methods has been primarily recognized through 
thorough  evaluations  of  the  effectiveness  of  recy-
cling exosomes [111].

Precipitation technique
The most popular polymer employed in exosome isola-
tion, polyethylene glycol (PEG), vigorously encourages 
enrichment and raises exosome yield. This technique was 
claimed to be practical for separating numerous biomol-
ecules and viruses from physiological fluids before its 
application with exosomes [112]. Due to their simplicity, 
rapidity, lack of exosome destruction, and minimal need 
for extra equipment, precipitation-based approaches 
for exosome isolation are the most appealing for clinical 
research. However, it has been observed that these pro-
cedures have a problem with the sample’s co-isolation 
of other contaminants, such as non-exosomal proteins 
(such as albumin) and other particles [113].

Microfluidic‑based techniques
Microfluidics technologies have been successfully inte-
grated with size-based separation, immunoaffinity-
based separation, and dynamic separation techniques. 
Recently, a novel exosome isolation technology called the 
ExoTIC gadget has been introduced. The ExoTIC gadget 
has gained significant popularity due to its remarkable 
advantages, including high yield, purity, and efficiency. It 
is particularly well-suited for extracting exosomes from 
serum or other physiological fluids, surpassing conven-
tional methods such as PEG precipitation (including 
the ExoQuickTM approach) or UC. Despite its numer-
ous benefits, such as high purity, controllability, sepa-
ration specificity, and efficiency, there are still specific 
challenges associated with the ExoTIC gadget, such as 
the requirement for complex isolation devices and limi-
tations due to the need for strong immunoaffinity [113, 
114].

Above all, a good exosome isolation technique should 
be easy to use, quick, effective, affordable, and scalable. 
Additionally, it shouldn’t harm the exosomes or call for 
additional tools. Different approaches offer unique ben-
efits and drawbacks regarding effectiveness, repeat-
ability, and influence on functional outcomes. Further 
advancement of exosome research for both fundamental 

Fig. 3 Exosome as Cancer Biomarkers. Each tumor cell releases specific exosomes that contain microRNA, DNA, proteins, and metabolites that can 
be used as biomarkers of specific cancer, Created with BioRender.com
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and clinical applications can be facilitated by optimizing 
isolation processes and employing combinations of isola-
tion approaches. Figure 4 depicts the different strategies 
involved in the isolation of exosomes. Table 2 shows how 
exosomes have already been isolated using different ana-
lytical techniques.

The advanced approach of exosome profiling
Throughout the years, there has been relatively rapid 
development in the different methods of exosome pro-
filing. MiRNA profiling through microarray analysis has 
been a potential screening tool for early detection of can-
cers, especially ovarian cancer. However, there is a deficit 
of established and proven molecular markers [115, 116]. 
Nowadays, nanotechnology has become a vital tool for 
the efficient profiling of exosomes. Although SERS (Sur-
face-Enhanced Raman Spectroscopy) has the same fun-
damental principle as Raman spectroscopy, it demands a 
substrate modification [117, 118]. It is a super-sensitive 
multiplexing approach that gives authentic results using 
low-volume/concentration analytes [119]. Recently 
published in a paper, TPEX (Templated Plasmonics for 

Exosomes) is a nanotechnology platform that makes 
space for the analytical study of multiselective molecu-
lar profiling of exosomes apart from their prompt in situ 
assessment of the biomolecular and biophysical compo-
sitions. It provides multiplexed and quick inspection of 
exosomal targets with exceptional results upon adminis-
tration on a microfluidic smartphone-based sensor [120]. 
Of many others, advanced iFCM (imaging Flow Cytom-
etry) is an approach to carry out multiparametric and 
high-throughput vesicle-by-vesicle representation of the 
exosomes, resulting in efficient recovery of specific vesi-
cle subsets [121]. Lastly, over the years, development in 
OMICS-based technologies has significantly advanced 
the studies of markers of proteins and exosomes [122–
124], which in turn have led to elaborate research in the 
field of diagnostic methods [81, 125] related to exosomes 
evaluation of glycomic profiles with the help of lectin 
microarray-based technologies and mass-spectrome-
try are noteworthy mentions [126–129]. Exosomes and 
artificial intelligence (AI) are indeed emerging as prom-
ising tools in cancer diagnosis, and their combination 
holds great potential for advancing our ability to detect 

Fig. 4 Different Isolation Strategies for Exosomes. Traditional methods for isolating exosomes include size exclusion chromatography (SEC) 
and differential ultracentrifugation (DUC). SEC involves using biofluids as a mobile phase against a porous stationary phase to elute molecules 
based on their size, with larger particles eluting first, followed by smaller exosomes, resulting in a longer elution time due to increased path length. 
In addition to these conventional methods, more innovative techniques are available for exosome isolation. In addition to these conventional 
methods, more innovative techniques are available for exosome isolation. One such technique is PEG‑based precipitation, which facilitates 
the aggregation of exosomes in large numbers using a polymer solution. Another approach is immunoaffinity (IA) capture, where antibodies 
targeted against exosomal surface proteins are used to isolate specific exosome populations. Microfluidics (MF) technology, utilizing chips 
with specific antibody‑mediated binding, enables efficient capture of exosomes, Created with BioRender.com
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and understand various types of cancers. Integrating 
exosomes and AI can open new doors in cancer diag-
nosis. A recent study demonstrates the efficacy of using 
artificial intelligence to simultaneously detect six early-
stage cancers by analyzing exosome profiles via surface-
enhanced Raman spectroscopy. In a dataset of 520 test 
samples, our system achieved a robust cancer identifica-
tion rate (AUC: 0.970) and proficiently classified tumor 
organ types in 278 patients (mean AUC: 0.945). The inte-
grated decision model showed a sensitivity of 90.2% and 
specificity of 94.4%, successfully predicting tumor organs 
in 72% of positive cases. Notably, our non-specific Raman 
signature analysis method holds the potential for expand-
ing diagnostic applications to other diseases [130]. Fig-
ure 5 depicts advanced exosome profiling approaches.

While these advanced technologies, such as SERS, 
TPEX, and iFCM, offer significant promise in exosome 
profiling, their potential clinical applications also war-
rant discussion. Integrating these methods into clinical 
practice could greatly enhance early cancer detection 

and monitoring. For example, SERS’ high sensitivity and 
specificity in detecting exosomal markers make it a valu-
able tool for routine clinical diagnostics. TPEX, with its 
smartphone-based microfluidic sensor, provides a feasi-
ble approach for point-of-care testing, thus facilitating 
rapid and accurate exosome analysis in a clinical set-
ting. Furthermore, combining AI with exosome profil-
ing technologies can streamline the diagnostic process, 
offering precise and non-invasive cancer detection. These 
advancements improve diagnostic accuracy and poten-
tially make exosome-based diagnostics more accessi-
ble in clinical environments, thereby bridging the gap 
between research innovations and practical healthcare 
applications.

OMICS profiling of exosomes
OMICS profiling tends to concentrate on detecting all 
the bioinformation of exosomes. This includes its genom-
ics, transcriptomics, proteomics, metabolomics, and 

Fig. 5 Representation of single exosome profiling methods. Created with BioRender.com
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lipidomics, which help to diagnose cancer at early stage 
and, as a result, improve the patient survival rate [143].

Exosomes are seen to act as essential mediators as they 
transport specific molecules among different populations 
of cells [144]. It belongs to the class of EVs, including 
ectosomes, apoptotic bodies, and microvesicles. These 
are secreted by almost all types of cells, including tumor 
cells, and involve extracellular communication. Their 
lipid bilayer nature makes them stable in body fluids and 
contains many nucleic acids, proteins, and lipids. Various 
body fluids contain exosomes, providing an alternative 
approach to detecting tumors [145]. Hence, exosomes 
and their essential components have a significant poten-
tial to serve as biomarkers for diagnosing early-stage can-
cer. In the case of breast cancer, the tumor mass present 
is first analyzed by imaging and is then characterized by 
needle biopsy to check its chance of malignancy. These 
methods are invasive and quite time-consuming. Nowa-
days, exosomal miRNAs are known to be useful biomark-
ers for detecting breast cancer [146]. The presence of 
miR-1246 and miR21 in plasma was predominantly used 
as the initial biomarker to detect breast cancer [147]. In 
2018, Li et al. reported an exosomal miR106a-363 cluster, 
a novel diagnostic biomarker for detecting breast cancer 
[148]. Recently, miR-92b-5p was found in stable breast 
cancer cell lines as the latest therapeutic strategy for its 
detection [148].

Diagnosis of cancerous diseases is mainly done through 
imaging methods and a biopsy, which would confirm the 
result [149, 150]. However, these traditional methods 
were invasive, costly, and uncomfortable for the patient. 
In addition, small-size early cancer may not be detected 
in imaging studies, and a biopsy of the early cancer may 
not be possible. On top of it, the accuracy of a biopsy is 
greatly influenced by the experience of the procedures. 
So, OMICS profiling of exosomes offers a more con-
venient way of diagnosing cancer, which is non-invasive, 
inexpensive, reproducible, procedure-independent, and 
has the potential for early detection [151].

Exosomes were used to check the dysregulated genes 
for different cancer types. Hence, the observed tumor 
heterogeneity character was used as it indicated the pres-
ence of a difference in genes and cell behaviors between 
different types of tumors. Hence, a combination of bio-
informatics, machine learning, and DNA sequencing can 
be done to determine the dysregulated genes and the cor-
responding type of tumor [152, 153].

Hence, exosomal markers are established to be use-
ful targets for the detection of cancer. Cancer cells or 
tumors and other diseased cells release more exosomes 
than normal healthy cells, indicating the presence of 
disease. So, the methods that utilize exosomes can be 
implemented for routine screening and are also useful 

for tumors for which routine screening is unavailable. 
Exosome’s OMICS profiling can be used to verify the 
presence of malignant lesions. Hence, it can distinguish 
between those and benign lesions. Also, it is observed 
that acidic tumor environments can lead to an increase 
in the release of exosomes in body fluids [154]. However, 
the isolation, detection, and quantification of exosomes 
are some of its limitations, and hence, this method isn’t 
utilized rapidly for routine screening yet. Figure 6 depicts 
the major OMICS processes involved in the profiling of 
exosomes.

OMICS technologies face several challenges and limi-
tations in exosome research. Isolating pure exosome 
populations from biological fluids is difficult due to other 
EVs and contaminants, which can affect the accuracy 
and reproducibility of OMICS analyses [155]. The high 
heterogeneity of exosomes in size, content, and func-
tion complicates the interpretation of OMICS data and 
the identification of specific biomarkers [156]. Detect-
ing low-abundance molecules requires highly sensitive 
techniques, which current OMICS technologies may 
lack [157]. The large and complex datasets generated 
necessitate sophisticated bioinformatics tools for analy-
sis, but interpreting these data accurately is challenging 
due to the lack of standardized protocols and reference 
databases [158]. Variability in experimental procedures 
and analytical methods can lead to inconsistent results, 
and the lack of standardization hampers reproduc-
ibility across different studies [159]. Although OMICS 
technologies can identify potential biomarkers or func-
tional molecules, validating their biological relevance is 
challenging and requires additional, resource-intensive 
experiments [160]. Both technical and biological variabil-
ity can influence OMICS data, complicating the identifi-
cation of true biological signals, and disentangling these 
sources of variability necessitates robust experimental 
designs and statistical approaches [102]. Addressing 
these challenges requires ongoing advancements in isola-
tion techniques, analytical methods, bioinformatics tools, 
and standardization across the field of exosome research.

Single exosome profiling
Owing to a difference in origins, exosomes have a highly 
heterogeneous molecular composition [70, 161]. Hence, 
the study of exosomes should be conducted individu-
ally. Otherwise, the heterogeneity would not be properly 
detected in the bulk analysis. Bulk-level analysis meth-
ods like mass spectroscopy or ELISA may give inaccurate 
results in detecting exosome heterogeneity; hence, these 
methods are not preferred [162]. Currently, EV analysis is 
limited to surface proteins only. So, single exosome pro-
filing can be done on the same to get a more concise and 
accurate diagnosis.
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Nowadays, many methods of single exosome profiling 
are being used, and most employ the basic principles of 
light scattering, fluorescent sensing, or electron absorp-
tion. These are derived both for the isolation and sensing 
of EVs like exosomes. The purification and analysis meth-
ods must be made simpler to utilize these analysis meth-
ods for routine screening and cancer detection.

A high-throughput method known as the proxim-
ity barcoding assay can be employed for single exosome 
analysis. This technique allows for profiling over a hun-
dred surface proteins on a single exosome, facilitating the 
distinction between different exosomes based on their 
heterogeneous surface protein compositions. By analyz-
ing human body fluids, various exosome sub-populations 
can be effectively identified [136, 163].

Advances in single exosome profiling techniques have 
been marked by the development of various method-
ologies that allow for more detailed and precise analysis 
[164]. Digital PCR has been adapted for single EV analy-
sis, which can amplify and identify RNA content, tar-
geting miRNA and mRNA, including cancer markers. 

Recent advancements enable the sequestering of EVs in 
droplets before lysing, offering improved sensitivity and 
specificity in mutation detection [165]. Additionally, digi-
tal PCR has been leveraged to detect membrane proteins 
on single EVs, expanding its application beyond nucleic 
acid analysis. DNA-tagged antibodies in digital PCR pro-
vide a powerful approach to identifying multiple coin-
ciding membrane proteins on single EVs, offering richer 
data and more specific diagnostic information [161].

Digital ELISA, inspired by the digital immunoassay 
methodology, has been applied to detect membrane pro-
teins on single EVs [166]. This approach involves labeling 
EVs with antibodies, sequestering them into droplets, 
and using fluorescence to visualize protein markers. 
While suitable for single biomarker detection, challenges 
remain in identifying multiple markers on single EVs 
[166]. Flow cytometry has been optimized for EV analy-
sis, overcoming limitations in conventional systems using 
DNA aptamers, nanoparticle tags, or advanced imag-
ing flow cytometry [167]. These enhancements allow 
for improved detection and characterization of EVs, 

Fig. 6 OMICS Profiling of Exosomes. This profiling 3 ways: Transcriptomics and genomics using the messenger RNA (mRNA), microRNA (miRNA), 
and DNA present in the cancer‑specific exosome; Proteomics using the proteins, histones, transporters present in the exosome; Metabolomics 
using the metabolites such as glucose, pyruvate, nucleotides, amino acids (AAs) specific for cancer. Created with BioRender.com
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contributing to a better understanding of EV subpopula-
tions and providing valuable information on surface pro-
teins and biomarkers [168].

Nanoparticle tracking analysis (NTA) has evolved to 
include fluorescence capabilities, enabling the detection 
of specific biomarkers through immunolabeling. NTA 
remains a high-throughput method for single EV analy-
sis, providing information on concentration, size, and 
surface markers. However, challenges in multiplexing 
with fluorophores limit its capabilities compared to flow 
cytometry [169].

Raman spectroscopy and various trapping techniques 
have been employed for the chemical composition analy-
sis of single EVs [170]. While unable to directly identify 
macromolecular biomarkers, Raman spectroscopy, com-
bined with electromagnetic trapping, distinguishes EV 
populations and detects labeled biomarkers with strong 
Raman scattering cross-sections [171]. Microscopy-
based methods, such as fluorescence and total internal 
reflective fluorescence (TIRF) microscopy, have allowed 
for direct visualization of single EVs. Microfluidic chip-
based systems enable the immobilization and imaging of 
EVs, offering multiplexed detection of surface proteins 
and RNA content. However, these methods are generally 
lower throughput than other techniques [165].

Now, the classification of exosomes based on their 
proteomic characteristics can be done using a machine-
learning algorithm known as FlowSOM [172]. This algo-
rithm helps to generate clusters of exosomes by using 
a self-organizing map. Then, a t-SNE or t-distributed 

stochastic neighbor embedding plot is used to visualize 
the exosome sub-populations. Also, along with the pro-
gression of the disease, the alteration of the presence of 
different sub-populations of exosomes could be moni-
tored through single exosome profiling.

The continuous refinement of single-exosome profil-
ing techniques, including digital PCR, digital ELISA, flow 
cytometry, NTA, Raman spectroscopy, and microscopy, 
has created a comprehensive toolkit for understanding 
exosome heterogeneity and functional diversity at the 
single-exosome level. These advancements significantly 
enhance the study of EV biology and biomarker discov-
ery, providing new insights into exosome diagnostic and 
therapeutic potential. Figure 7 depicts the usage of single 
exosome profiling in the context of cancer.

Advantages and disadvantages of exosome‑based 
cancer biomarker
Exosomes help bring forth a lot of information about the 
tumor state of the patient and assist in sorting the same 
into tumor subtypes by undergoing genomic and pro-
teomic scanning and analysis [173]. The former helps 
design therapeutic treatments considering the genetic 
makeup and abnormalities of the growing tumor. In 
contrast, the latter helps curate certain processes that 
directly target proteins involved in tumor growth. Both 
of these approaches give insights into the tumor’s metas-
tasis rate through specific markers and provide a profile 
of the heterogenicity and complexity of the tumor stud-
ied. They lend out fitting therapeutic strategies, like that 

Fig. 7 Application of Single‑Exosome Profiling in Cancer. Step 1: A sample containing exosomes (small vesicles) is collected and processed. Step 2: 
Exosomes are isolated using ultracentrifugation or microfluidics, then captured and trapped using nanoscale traps or microfluidic chambers. Step 
3: The surface proteins and biomarkers on the trapped exosome are identified and analyzed using mass spectrometry or fluorescence microscopy 
techniques. Step 4: The cargo contents (e.g., RNA, DNA, proteins) of the exosome are extracted and analyzed using techniques like qRT‑PCR. Step 
5: The data from the analysis is integrated to create a comprehensive profile of the individual exosome, including its size, shape, surface markers, 
and cargo contents. Created with Biorender.com
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of the recently evolved method of liquid biopsies, against 
cancer treatment [174–177]. As one of the least intru-
sive and dynamic methods, this detects cancer-specific 
biomarkers that provide an overview of tumor progno-
sis, a comprehensive and accurate capturing of differ-
ent tumor parts’ genetic and molecular makeup, and an 
effective and targeted therapy. One of the crucial advan-
tages of exosomes being used as biomarkers is that they 
can express MHC molecules on their cell surface, thus 
presenting antigens through indirect and direct path-
ways [178, 179]. It is true for some tumor-derived EVs 
that present MHCs loaded with tumor-processed anti-
genic peptides and antigenic proteins, which later form 
complexes with anticancer autoantibodies circulating in 
the plasma produced by various B cell subpopulations 
[180]. They bring forth an elaborate area of research on 
how this process of antigen presentation may be utilized 
in advancing immunotherapy against cancer. They are 
also remarkably durable in storage conditions [181, 182], 
facilitating the preservation of the biomolecules within 
them without degradation over an extended period, 
allowing them to withstand various standardized pro-
tocols in clinical settings for analysis. Abundant studies 
indicate that the intensity of GPC1 in patients of pancre-
atic cancer brings to the fore an exciting insight of using 
these for early detection of this cancer [183], along with it 
being an appealing non-invasive screening and diagnostic 
tool for a wide category of cancers [184]. Several experi-
ments proclaim that serum-derived exosomal DNA can 
be useful in detecting parental tumor cell mutations 
[90, 185–187]. It has also come to our knowledge that 
exosomes fostering non-coding RNAs might help track 
cancer progression and diagnosis, similar to identifying 
breast cancer biomarkers [188–193]. It is a super-sensi-
tive approach that gives authentic results using low-vol-
ume/concentration analytes [194, 195]. On the contrary, 
standardized techniques are needed to analyze, estimate, 
and segregate exosomes for varied clinical implementa-
tions. It is exceedingly difficult to achieve optimized effi-
cacy while isolating pure exosomes from multiplex fluids 
like blood or cell culture supernatants. This induces fluc-
tuating and jumbled exosome reproducibility, causing 
difficulty interpreting and concluding outcomes. We are 
yet to reach the desired improvement in the liquid biopsy 
tools. The current tools  often lead to erroneous cancer 
detection and monitoring.

While exosomes hold great promise as cancer biomark-
ers due to their ability to reflect the molecular composi-
tion of their cells of origin, several disadvantages and 
challenges limit their clinical application. Firstly, the 
isolation and purification of exosomes from body fluids 
are complex and can be contaminated by other EVs and 
proteins, affecting the accuracy and reproducibility of 

results [155]. Additionally, the heterogeneous nature of 
exosomes, arising from different cellular sources and var-
ying physiological states, complicates the identification 
of specific and reliable biomarkers [156]. The sensitiv-
ity of current detection technologies may be insufficient 
to accurately quantify low-abundance exosomal com-
ponents, leading to potential misinterpretations [157]. 
Moreover, the lack of standardized protocols for exosome 
isolation, characterization, and analysis results in vari-
ability across studies, undermining reproducibility and 
comparability [159]. Finally, while OMICS technologies 
can identify potential exosomal biomarkers, validating 
their clinical relevance and biological function requires 
extensive and resource-intensive follow-up studies [160]. 
These challenges necessitate ongoing technological 
advancements and standardization efforts to realize the 
full potential of exosomes as cancer biomarkers.

Clinical trials of exosome‑based cancer biomarker
Clinical trials investigating exosome-based cancer bio-
markers have generated significant interest due to the 
potential of exosomes to provide non-invasive, accurate, 
and dynamic insights into tumor biology. However, thor-
oughly discussing these trials requires understanding 
their real-world applications, limitations, and the transla-
tional journey from clinical trials to medical practice.

Clinical trials on exosome-based biomarkers aim to 
evaluate their effectiveness in early cancer detection, 
monitoring disease progression, predicting treatment 
response and prognosis, and identifying therapeutic 
targets. These trials often involve collecting and ana-
lyzing exosomes from various body fluids, such as 
blood, urine, and saliva, to determine the presence and 
levels of specific cancer-related molecules, including 
proteins, lipids, and nucleic acids [136]. One signifi-
cant scope of these trials is the potential for non-inva-
sive cancer diagnostics. Exosome-based liquid biopsies 
can offer a less invasive alternative to traditional tissue 
biopsies, enabling more frequent monitoring of tumor 
dynamics and potentially improving patient out-
comes. For example, detecting and quantifying exoso-
mal mutations, such as EGFRvIII in glioblastoma, can 
provide critical information about tumor status and 
treatment efficacy [68]. However, there are notable 
limitations. The heterogeneity of exosomes, stemming 
from their diverse cellular origins and the varying 
physiological states of their parent cells, poses a chal-
lenge for standardization and consistency in biomarker 
discovery [156]. Additionally, the current sensitivity of 
detection technologies may not be sufficient to accu-
rately measure low-abundance exosomal components, 
potentially leading to false negatives or positives [157]. 
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Moreover, the lack of standardized protocols for exo-
some isolation and analysis further complicates the 
reproducibility of clinical trial results [159].

Translating the results of clinical trials into oncologi-
cal practice involves several critical steps. To ensure 
their reliability and clinical relevance, robust valida-
tion of identified biomarkers is required through large-
scale studies and cross-cohort comparisons. Once 
validated, the next step is the integration of these bio-
markers into diagnostic, prognostic, and therapeutic 
frameworks. For diagnostic purposes, exosome-based 
assays must be developed and standardized for clini-
cal use. These assays must demonstrate high sensitiv-
ity, specificity, and reproducibility to gain regulatory 
approval and clinical adoption. For instance, assays 
detecting exosomal PD-L1 could potentially guide 
immunotherapy decisions by identifying patients most 
likely to benefit from such treatments [196]. In thera-
peutic contexts, exosome-based biomarkers can help 
personalize treatment plans. By monitoring exoso-
mal content over time, clinicians can assess treatment 
responses and adjust therapies accordingly, enhancing 
personalized medicine approaches. Exosome analy-
sis can provide insights into disease progression and 
recurrence risk, aiding in patient stratification and 
long-term management. For example, exosomal miR-
NAs have been investigated for their prognostic poten-
tial in various cancers, providing valuable information 
on patient outcomes [197].

It is crucial to address their current limitations 
through ongoing research and technological advance-
ments to enhance the clinical utility of exosome-based 
biomarkers. Improvements in isolation techniques, 
detection sensitivity, and bioinformatics analysis will 
be pivotal in overcoming the challenges associated 
with exosome heterogeneity and low-abundance bio-
molecules. Moreover, collaborative efforts to establish 
standardized protocols and consensus guidelines will 
facilitate more consistent and reproducible findings 
across studies and clinical settings. Such efforts will 
also expedite the regulatory approval process, ena-
bling faster translation of research findings into clini-
cal practice.

In conclusion, while exosome-based cancer biomark-
ers hold great promise, their successful integration 
into oncological practice requires addressing several 
key challenges and limitations. Ongoing clinical trials 
and research efforts are essential to validate these bio-
markers and develop reliable diagnostic, prognostic, 
and therapeutic tools to enhance cancer patient care. 
Table 3 lists all the clinical trials with exosomes in dif-
ferent types of cancer and their significance.

Future prospects
Research on exosomes is gaining popularity in the diag-
nosis and treatment of oncological diseases. It has been 
demonstrated that exosomes are crucial cell-to-cell 
communication transmitters. Exosomes are excellent 
therapeutic targets for cancer and perfect drug deliv-
ery vehicles due to several beneficial characteristics. 
Exosomes generated from cancer cells contain various 
proteins, lipids, DNA, RNA, and metabolites unique 
to cancer cells, which can be utilized as biomarkers for 
various cancers [198]. Exosomes are ideal targets for 
cancer diagnostics because they offer a high concen-
tration and protected environment for their payload. 
Recent research has shown that exosomes maintain tis-
sue homeostasis by modulating cell–cell communica-
tion through the chemicals they contain. Furthermore, 
the development of cancer is linked to exosomes that 
are secreted from cancer cells. Thus, understanding the 
function of exosomes in cancer will improve the effi-
cacy of novel therapeutic and diagnostic strategies.

Exosomes, in particular, are helpful sources of bio-
markers due to their affinity for their parent cells and 
ability to load cargo selectively [199]. Studies have 
shown exosomal miRNAs to be useful as molecular 
diagnostic markers for cancers, and miRNAs can be 
transported using nanoparticle platforms to provide 
targeted treatments for cancers [200]. Adipose-derived 
mesenchymal stem cells can transfer miR-122 via 
exosomes, making hepatocellular carcinoma cells more 
susceptible to chemotherapeutic treatments [201]. 
Exosomes are superior to other nanoparticles due to 
their remarkable biocompatibility, low immunogenicity, 
high stability, extended half-life, capacity to pass physi-
cal barriers like the BBB, and targetability. Addition-
ally, their propensity for bioengineering and capacity to 
transport functional biomolecules, such as therapeutic 
proteins, chemotherapeutics, and nucleic acids, have 
garnered significant attention lately [202].

Despite the potential advantages, challenges and 
disadvantages are associated with the clinical use of 
exosomes. Since both cancer and normal cells produce 
exosomes, identifying specific markers or marker pan-
els produced exclusively or at high levels in cancer cells 
is crucial for early cancer detection. Tumor-specific tar-
geting is necessary for therapeutic techniques to reduce 
off-target effects [203]. Cancer-derived exosomes 
contribute to immune evasion, tumor formation, pro-
gression, angiogenesis, metastasis, anti-apoptotic sig-
nalling, and treatment resistance. Conversely, exosomes 
from healthy cells, including DC, T, and B cells, can 
significantly slow down tumor formation. Therefore, 
depending on their cell of origin and bioactive payload, 
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exosomes may have a dual role in promoting, inhibit-
ing, or controlling cancer development [204].

In conclusion, while exosomes offer tremendous 
promise as cancer biomarkers and therapeutic vehicles, 
further research and clinical validation are essential to 
overcome limitations. Their use as cancer biomarkers 
in the clinic presents both advantages and challenges. 
The development of standardized isolation techniques, 
comprehensive profiling methods, and targeted delivery 
systems will be pivotal in realizing the clinical utility of 
exosome-based biomarkers and therapies. With con-
tinued technological advancements and collaboration 
between researchers and clinicians, exosome-based can-
cer biomarkers may soon revolutionize cancer diagnosis 
and management, ultimately leading to improved patient 
outcomes.

Conclusions
The clinical signature of exosome-based cancer biomark-
ers represents a promising avenue for improving cancer 
diagnosis and prognosis. This review explored various 
critical exosome-related aspects and their potential as 
cancer biomarkers. We have provided a comprehensive 

overview of the significance of exosomes in cancer 
research, highlighting their role as essential mediators 
of intercellular communication and potential carriers of 
diagnostic information.

The biogenesis of exosomes sheds light on the com-
plex process by which these tiny vesicles are formed 
and released from cells, indicating their involvement in 
tumor development and progression. Moreover, we have 
focused on the intricate relationship between exosomes 
and cancer, showcasing exosomes’ multifaceted roles in 
tumor microenvironment modulation, immune response 
evasion, and metastasis promotion. The concept of 
exosomes as a source of cancer biomarkers demonstrates 
how their cargo of nucleic acids, proteins, and lipids 
holds immense diagnostic potential for detecting and 
monitoring cancer.

Methodologies for isolating exosomes are crucial 
for obtaining pure and reliable samples for biomarker 
research. OMICS profiling of exosomes highlights the 
wide array of information that can be gleaned from exo-
some cargo analysis, paving the way for personalized 
cancer diagnosis and treatment. Single exosome profiling 
showcases the sensitivity of this approach, allowing for 

Table 3 Clinical trials with exosomes in cancer

Cancer type Trail ID Exosome source Clinical importance

Early lung cancer NCT03542253 Blood The expression of exosomal miRNA was significantly elevated in early‑stage lung 
cancer tissues compared to adjacent non‑cancerous tissues. Moreover, the levels 
of miRNA‑A in the adjacent tissues were notably higher than those observed 
in peripheral blood exosomes

High‑grade prostate cancer NCT02702856 Non‑catheter urine The objective was to evaluate the correlation between an Exosome Urine Test 
score and the detection of high‑grade (Gleason grade/score ≥ 7) prostate cancer 
through a prostate needle biopsy

Pancreatic cancer NCT03821909 Portal venous blood The aim was to assess the practicality and safety of obtaining portal venous 
blood samples using endoscopic ultrasound (EUS), as well as to identify portal 
venous circulating tumor cells (CTCs) and analyze mRNA markers of exosomes 
through RNA‑seq

Lung cancer NCT04529915 Blood The objective was to investigate the abundant exosomes in blood samples 
and conduct clinical studies to assess the feasibility of diagnosing lung cancer

Advanced gastric cancer NCT01779583 Plasma The primary objective was to examine the molecular profile of exosomes derived 
from gastric cancer

Early‑staged lung cancer NCT04939324 Blood This study aimed to analyze the molecular profiling of exosomes obtained 
from samples collected from the tumor‑draining vein. The goal is to identify 
molecular characteristics that can be prognostic indicators for cancer recurrence 
following surgery

Pancreatic cancer NCT02393703 Blood tissue The objective was to isolate and examine exosomes, which are small vesicles 
containing crucial proteins and nucleic acids functioning as messenger systems

HER2‑positive breast cancer NCT04288141 Blood tumor The assessment of HER2‑HER3 dimer expression in tumor samples and blood (exo‑
some) samples was obtained from patients diagnosed with HER2‑positive breast 
cancer undergoing HER2‑targeted therapies

Breast cancer NCT05286684 CSF Evaluating the practicality of exosome analysis in cerebrospinal fluid as part 
of the diagnostic evaluation for metastatic meningitis (Exo‑LCR)

Bladder cancer NCT05270174 Urine Investigate the potential of lncRNA‑ElNAT1 in urine exosomes as a novel target 
for preoperative diagnosis of lymph node metastasis

Pancreatic ductal adenocar‑
cinoma (PDAC)

NCT03032913 Blood Assessing the diagnostic precision of CTCs and quantification of onco‑exosomes 
in the diagnosis of pancreatic cancer—PANC‑CTC study
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the detection of subtle changes in the exosomal content 
with potential diagnostic applications.

We have explored advanced approaches in exosome 
profiling, indicating the continuous advancements in 
technology that promise to enhance the precision and 
clinical utility of exosome-based cancer biomarkers. The 
advantages and disadvantages of exosome-based cancer 
biomarkers underscore the need for careful validation 
and standardization to ensure their successful translation 
into clinical practice. Exosomes offer several advantages, 
including specificity, non-invasiveness, and the ability to 
carry a diverse range of biomolecules. However, chal-
lenges such as heterogeneity, complex isolation methods, 
and high costs must be addressed.

Lastly, we have touched upon the ongoing clinical trials 
investigating the feasibility and efficacy of exosome-based 
cancer biomarkers, underscoring this field’s growing 
interest and potential. These trials will provide valuable 
insights and help bridge the gap between research and 
clinical application.

The clinical signature of exosome-based cancer bio-
markers holds tremendous promise as a non-invasive and 
sensitive approach for cancer diagnosis, prognosis, and 
monitoring. However, more research and rigorous clini-
cal validation are needed to fully realize their potential 
and ensure their successful integration into routine clini-
cal practice. With continued advancements in technology 
and collaboration between researchers and clinicians, 
exosome-based cancer biomarkers may soon revolu-
tionize how we diagnose and manage cancer, ultimately 
leading to improved patient outcomes. The ongoing 
exploration of the advantages and disadvantages of exo-
some-based biomarkers and advancements in isolation 
and profiling technologies will be pivotal in overcoming 
current challenges and enhancing their clinical utility.

In conclusion, exosomes present a unique opportunity 
in oncology, offering a novel and promising approach to 
cancer management. The future of exosome research is 
bright, with the potential to significantly impact patient 
care and treatment outcomes through innovative diag-
nostic and therapeutic strategies.
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