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Abstract
It is accepted that cancer stem cells (CSCs) are key to the occurrence, progression, drug resistance, and recurrence 
of bladder cancer (BLCA). Here, we aimed to characterize the landscapes of CSCs and investigate the biological 
and clinical signatures based on a prognostic model constructed by genes associated with CSCs. The malignant 
epithelial cells were discovered and sorted into six clusters through single cell analysis. C2 was identified as the 
CSCs. The signaling involved in the interactions between C2, cancer-associated fibroblasts (CAFs), and immune cells 
mainly consisted of MK, THBS, ANGPTL, VISFATIN, JAM, and ncWNT pathways. The CSC-like prognostic index (CSCLPI) 
constructed by the random survival forest was a reliable risk factor for BLCA and had a stable and powerful effect 
on predicting the overall survival of patients with BLCA. The level of CAFs was higher among patients with higher 
CSCLPI scores, suggesting that CAFs play a significant role in regulating biological characteristics. The CSCLPI-
developed survival prediction nomogram has the potential to be applied clinically to predict the 1-, 2-, 3-, and 
5-year overall survival of patients with BLCA. The CSCLPI can be used for prognostic prediction and drug treatment 
evaluation in the clinic.
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Introduction
Bladder cancer (BLCA) is a prevalent type of malignant 
tumor in the urogenital system, resulting in approxi-
mately 550, 000 new cases and 200, 000 deaths annually 
[1]. The incidence rate is affected by gender differences, 
with males having an incidence rate about three times 
that of females [1]. There are different molecular sub-
types and pathogenic pathways for BLCA, and the dis-
ease can be classified as non-muscle invasive (NMIBC) 
(70% of cases of first detected tumors) or muscle invasive 
(MIBC) (30%) in clinic. BLCA consists of 75% urothelial 
carcinoma and 25% histopathology labeled “variant” (e.g. 
squamous differentiation, micropapillary) [2]. Identifica-
tion of variant histological subtypes accurately is crucial 
for risk stratification, as these variants exhibit aggressive 
biological behavior and relate to advanced disease at pre-
sentation. In the majority of cases, radical cystectomy 
along with pelvic lymph node dissection is the chosen 
treatment method. The value of this classification lies 
in its ability to reflect the response to drug therapy (e.g. 
neoadjuvant chemotherapy, immunotherapy). Impor-
tantly, NMIBC and MIBC are where the clinical treat-
ment differences and prognosis differences are most 
apparent. NMIBC is usually treated with a combination 
of transurethral resection of a bladder tumor (TURBT) 
and a risk stratified approach to adjuvant intravesical 
therapy (IVe). For MIBC, surgery was the main focus 
of a comprehensive treatment plan assisted by immune 
checkpoint inhibitors, targeted treatments, and anti-
body-drug conjugates [3]. BLCA is a disease that remains 
challenging to treat due to its heterogeneous nature with 
specific genetic and epigenetic characteristics.

Stem cells are known for their pluripotency and self-
renewal potential. It is believed that a complex tumor 
microenvironment contains cancer stem cells (CSCs), 
including BLCA. Bladder CSCs were firstly discovered 
in 2009 using markers to distinguish them from normal 
basal cells [4]. The subsequent research also backed up 
this viewpoint and identified several markers for stem 
cells [5, 6]. Shen et al. have found that BLCA has a high 
expression of SOX4 that can promote stem cell properties 
[5]. Moreover, its expression was linked to advanced can-
cer stages and a poor prognosis. Zhu et al. have discov-
ered that B-cell-specific Moloney murine leukemia virus 
insertion site 1 (Bmi1) is crucial for maintaining stem-
ness properties and tumorigenicity of human bladder 
CSC-like cells [6]. These results provide a novel insight 
into understanding the occurrence, progression, drug 
resistance, and recurrence of BLCA. However, the com-
plexity in the tumor microenvironment prevents further 
observation of the CSCs’ characterization and crosstalk 
between other cell populations. The milestone technol-
ogy of single-cell sequencing has become a reality for 
depicting the landscape of the tumor microenvironment. 

Wang et al. identified distinct cell subpopulations and 
discovered that the cancer stem-cell subpopulation 
becomes enriched during bladder cancer recurrence with 
an increase in EZH2 expression [7]. Ma et al. identified 
the subtypes of CSCs and mesenchymal stem cells in 
the tumor microenvironment of BLCA using single-cell 
sequencing and explored their interactions based on a 
ligand-target network [8]. This study seeks to reveal the 
characterization of the stem cell landscape utilizing sin-
gle-cell sequencing, and attempts to develop and validate 
a stem cells-like model using machine learning and to 
investigate its clinical and biological signatures.

Methods and materials
Acquiring scRNA-seq and bulk RNA-seq data
The Gene Expression Omnibus (GEO) database was 
accessed to download the BLCA scRNA-seq dataset by 
using accession numbers: GSE135337 [9], including 7 
tumor samples and 1 normal sample.

BLCA bulk RNA-seq datasets were procured from 
TCGA and GEO databases with the following accession 
number: TCGA-BLCA, GSE13507 [10], GSE32894 [11], 
GSE48075 [12], and GSE48276 [13]. The TCGA-BLCA 
dataset had 412 tumor samples and 19 normal samples 
that were utilized as the training cohort. The correspond-
ing clinical information contains overall survival (OS) 
time, survival status, age, gender, pathologic stage, and 
TNM stage. The matrix files for the four bulk RNA-seq 
transcriptomes were normalized, and they were regarded 
as the external validation cohorts.

Analyzing BLCA scRNA-seq data
The initial step in preparing scRNA-seq data was to 
screen single cells by ensuring that each gene was 
expressed in at least 5 cells and each cell had at least 
300 genes expressed. Cells were filtered using the 
Seurat based on the number of genes detected per cell 
(200–7500) and the percentage of mitochondrial genes 
expressed (< 10%) [14]. The gene expression matrix was 
devoid of mitochondrial genes and ribosomal genes. At 
last, there were 36,680 cells remaining. The Seurat man-
ual outlined approaches to integration, normalization, 
dimension reduction, and clustering [14]. With default 
parameters, the Seurat package’s FindVariableFeatures 
function identified the top 3000 genes that are highly 
variable. After Z-score normalization, PCA was carried 
out on genes with high variability. Significant princi-
pal components (PCs) were utilized to perform uniform 
manifold approximation and projection (UMAP) dimen-
sion reduction. Clusters were identified using the Find-
Clusters function with a resolution of 0.8. Using the 
FindAllMarkers function, markers genes for each clus-
ter were identified by comparison to one cluster with 
others with logFC = 0.25, minpct = 0.25, and adjusted 
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p-value = 0.05. Afterwards, markers that have been 
reported in literature were used to determine and anno-
tate different cell clusters (myeloid cells: PTPRC, CD14, 
CD68; T cells: PTPRC, CD3D, CD3E; epithelial cells: 
EPCAM, KRT18; stromal cells: ACTA2, MYL9, COL1A1, 
PDPN, VWF, and PECAM1). By using the CopyKAT R 
package, the CNV characteristics of the epithelial cell 
clusters were examined to discriminate malignant epithe-
lial cells (ECs) from nonmalignant ECs [15]. To further 
identify malignant clusters, we analyzed the expression 
of BLCA markers, such as UPK3A, MTHFD2, UHRF1, 
FGFR3, ERBB2, BRCA1, CDKN2A, and BRAF [16–23], 
in normal clusters, ECs, and malignant ECs. Moreover, 
functional enrichment analysis was carried out on the 
genes that differed in expression between malignant ECs 
and ECs.

Pseudotime trajectory analysis for malignant ECs
A pseudotime trajectory was established using Mono-
cle 2 that was based on the gene expression profiles of 
malignant ECs [24]. The malignant ECs were projected 
and ordered into a trajectory with different branches, 
and the cells within the same branch were believed to 
have the same state of differentiation. To identify genes 
with branch-dependent expression patterns, branched 
expression analysis modeling (BEAM) (qval < 1e-20) 
was applied. The identification of genes that are branch-
dependent or state-specific by clustering genes at the 
branch point led to the investigation of the mechanisms 
behind the cell fate decision.

CytoTRACE
The CytoTRACE offers an innovative approach to mea-
sure cell differentiation capacity, which can lead to a sig-
nificant improvement in predicting cell differentiation at 
the single-cell level [25]. It has been proven to perform 
better than current computational methods for stemness 
assessment in large-scale datasets. Each malignant EC 
is given a stemness score by the CytoTRACE algorithm 
after calculating the gene expression matrix. A higher 
CytoTRACE score is indicative of a higher stemness 
(lower differentiation) for malignant ECs.

Analyzing the regulatory network of malignant ECs
The activation of the transcription factor (TF) respon-
sible for gene regulation in each malignant EC pheno-
type was determined by using decoupleR [26]. The tool 
is capable of inferring biological activities using a variety 
of methods, making it efficient, robust, and user-friendly 
for omics data analysis. Moreover, it offers wrappers that 
are easy to use to query the OmniPath meta-database. 
OmniPath offers a common syntax for various methods, 
types of omics datasets, and knowledge sources that can 

be used in multiple workflows to facilitate the exploration 
of different approaches.

Metabolic analysis of malignant ECs
We used scMetabolism (version 0.2.1) [27] to quan-
tify metabolism activity at the single-cell resolution 
for analyzing metabolism activity of malignant ECs. 
Each cell had its metabolic score calculated using the 
sc.metabolism.Seurat function, with the type of metabo-
lism being “KEGG”.

Functional enrichment analysis
The biological characteristics of genes that were differ-
entially expressed were investigated through functional 
enrichment analysis using the “clusterProfiler” pack-
age, as well as an online website (Metascape: http://
metascape.org/gp/index.html#/main/step1), which 
were used to perform KEGG pathway analysis and Gene 
Ontology (GO) analysis. Seurat’s FindMarkers func-
tion was used to identify genes that were differentially 
expressed in scRNA-seq data, while “EdgeR” package 
was used to obtain them in bulk RNA-seq data with the 
adjusted P-value < 0.05 and |log2 [FC]| >1.

Cell-cell communication analysis using CellChat
CellChat is a new program that uses scRNA-seq data to 
quantify the intercellular communication networks. The 
Cellchat package (version: 1.6.1) was used to predict the 
intercellular communication between CSCs subtype and 
stromal cells in BLCA, which was determined by analyz-
ing ligand-receptor interactions. Briefly, we utilized Cell-
Chat to assess the most important signaling inputs and 
outputs among CSCs and stromal cells clusters via Cell-
ChatDB.human. The netVisual_circle function was uti-
lized to demonstrate the strength or weakness of cell–cell 
communication networks. The netVisual_bubble func-
tion presents bubble plots of important ligand-receptor 
interactions.

Machine learning-based integrative approaches to 
generate CSCs-related genes
Univariate Cox regression was used initially to iden-
tify promising markers for prognosis among C2 clus-
ter gene sets. The screening hub CSC-related genes was 
then carried out with 10 machine-learning algorithms 
and 99 combinations. The integrative algorithms com-
prised random survival forest (RSF), elastic network 
(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial 
least squares regression for Cox (plsRcox), supervised 
principal components (SuperPC), generalized boosted 
regression modeling (GBM), and survival support vec-
tor machine (survival-SVM). The machine learning algo-
rithms were followed as in a previous study [28]. The 
TCGA cohort was set as the training cohort, and the test 
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cohort contained the GSE13507, GSE32894, GSE48075, 
and GSE48276 cohorts. Harrell’s concordance index 
(C-index) was determined in all cohorts. The one with 
the highest average C-index is considered the optimal 
model. A variable selection function was used by the 
optimal model to identify the hub CSCs-related genes.

Construction and validation of a cancer stem cell-like 
prognostic index (CSCLPI)
The genes associated with hub CSCs that were identi-
fied through the optimal model were incorporated into 
the multivariate Cox regression model to establish a 
cancer stem cell-like prognostic index (CSCLPI), by 
multiplying the expression values of genes by their coef-
ficient in the model and then adding them together. The 
median CSCLPI value was used to divide the patients 
into high- and low-CSCLPI groups. Then, we performed 
KM survival analysis on the relevant hub CSCs genes 
with statistical significance and the CSCLPI to estimate 
their prognostic power. CSCLPI was also developed in 
the GSE13507, GSE32894, GSE48075, and GSE48276 
cohorts. The median CSCLPI value of the TCGA cohort 
was used to divide patients in the GSE13507, GSE32894, 
GSE48075, and GSE48276 cohorts into high- and low-
CSCLPI groups. KM survival analysis was also conducted 
on them. The ROC curve was used to analyze the perfor-
mance of CSCLPI in predicting 1-, 2-, and 3-year overall 
survival of BLCA patients.

Analysis of gene mutation in CSCLPI subgroups
The discrepant gene mutation in CSCLPI subgroups was 
detected by conducting mutation analysis on BLCA sam-
ples. The major mutation genes and variant classifica-
tions in CSCLPI subgroups were a source of concern for 
us. The investigation involved examining the differences 
in mutated genes between two subgroups.

Evaluation of CSCLPI-based landscape of tumor 
microenvironment
The Immune score and Stromal score were evaluated 
with the use of the ESTIMATE algorithm [29] in the high 
CSCLPI and low CSCLPI groups. A single-sample gene 
set enrichment analysis (ssGSEA) algorithm was used to 
evaluate the abundance of immune cells and the score of 
immune-related activity or function [30]. Tumor immune 
dysfunction and exclusion (TIDE) [31] is an effective tool 
for assessing tumor immune escape and has the potential 
to predict patient responses to immune therapy. TIDE 
and EPIC [32] were applied to quantify the relative pro-
portions of infiltrating immune cells and cancer-associ-
ated fibroblasts (CAFs).

Exploration of the characteristic differences in CSCLPI 
subgroups
The messenger RNA expression-based stemness index 
(mRNAsi) of each BLCA sample (ranges from zero to 
one) was calculated using one-class logistic regression 
machine-learning algorithm (OCLR) based on pluripo-
tent stem cell samples, which was related to stem cell 
features and could be applied to predict cancer stem-
ness [33]. After normalizing and filtering low-expression 
data, the “TCGAbiolinks” package was used to obtain 
mRNAsi of BLCA with gene information as “geneInfo”, 
method as “quantile” and stemSig as “SC_PCBC_stem-
Sig”. The prognostic value of mRNAsi and the correlation 
between CSCLPI and mRNAsi were analyzed. GO and 
KEGG enrichment analyses were used to analyze differ-
entially expressed genes between the CSCLPI subgroups 
to investigate biological signatures and potential regula-
tory pathways. The optimal category amount was deter-
mined by using consensus clustering analysis to classify 
BLCA samples based on the cancer-associated fibroblast-
specific markers previously reported [34]. The samples of 
different fibroblast subtypes in the CSCLPI subgroups, 
as well as the expression of cancer-associated fibroblast-
specific markers, were evaluated.

Drug sensitivity prediction
The “oncoPredict” R package was employed to evaluate 
drug sensitivity to conventional chemotherapy among 
high- and low-CSCLPI patients by comparing their half-
maximum inhibitory concentration (IC50) [35].

Development and validation a nomogram
Clinical characteristics (including age, gender, patho-
logic_stage, pathologic_T, and pathologic_N) and 
CSCLPI were investigated in Univariate and multivari-
ate Cox regression analyses to determine their impact 
on BLCA patients’ overall survival. A nomogram based 
on these factors was developed to predict the 1-, 2-, 3-, 
and 5-year prognosis. The C-index, calibration curve, and 
DCA curve were used to estimate the model’s accuracy. 
The heatmap displayed the association between screened 
CSCs and the clinical characteristics, CSCLPI and the 
fibroblast subtypes.

Statistical analysis
Statistical analyses and plots were carried out using R 
software. The continuous variables were compared by 
independent t-test or Wilcoxon’s rank-sum test. Univari-
ate and multivariate prognostic analysis was conducted 
with the use of Cox regression models. Analysis of sur-
vival was conducted using the Kaplan-Meier method and 
log-rank test. The time-dependent ROC curve was plot-
ted using the “timeROC” R package. The DCA curve was 
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depicted using the “ggDCA” R package. The threshold for 
statistical significance was P < 0.05.

Results
Cell subtypes
The analysis process of the article was represented in 
Fig.  1. With stringent quality control metrics in place 
prior to pre-processing, we managed to obtain 36,680 
high-quality cellular samples from 7 BLCA tissues 
(Supplementary Fig.  1A). The number of genes and the 
sequencing depth were found to have a strong positive 
correlation after normalization, with a Pearson correla-
tion coefficient of 0.92 (Supplementary Fig.  1B). With 
a resolution of 0.8, 20 clusters were identified (Fig. 2A). 
The cell type annotation was based on the markers that 
have been reported in literature (Supplementary Fig. 1C). 
Thus, clusters 15, 17, and 19 were identified as immune 
cells; cluster 16 was identified as stromal cells; remaining 
clusters were identified as epithelial cells (Fig. 2B and C), 
which were consistent with previous classification results 
[9]. Based on single-cell transcriptome data from BLCA 
samples, without relying on normal cells as controls, 
3 and 8 clusters (a total of 4962 cells) were identified as 
malignant epithelial cells (ECs) using CopyKAT (Fig. 2D, 
Supplementary Fig. 1D). Compared to epithelial cells and 
normal clusters, the 3 and 8 clusters showed high expres-
sion of BLCA markers (Supplementary Fig.  1E). The 
results of functional enrichment analysis for differentially 
expressed genes between malignant ECs and ECs dem-
onstrated that some signaling pathways associated with 
carcinogenesis were activated, including VEGFA and 
TP53 signaling pathways (Supplementary Fig. 1F). These 

results supported that 3 and 8 clusters were cancerous 
clusters.

Identification of stem cells cluster for BLCA
We drew 3 and 8 clusters of cells from the total cell 
population. They were subjected to the process of nor-
malization, dimension reduction, and clustering once 
again. With a resolution of 0.25, 6 clusters were identi-
fied (Fig. 3A). The main differential genes of each cluster 
were shown in the Fig.  3B. GO and KEGG enrichment 
analysis for the 6 clusters showed that genes in cluster 1 
(C1) were enriched in the signaling pathways that were 
related to chemical carcinogenesis- reactive oxygen spe-
cies, glutathione metabolism et al.; genes in cluster 2 
(C2) were enriched in the signaling pathways involved 
in pyrimidine metabolism, platinum drug resistance, cell 
cycle, DNA replication et al.; genes in cluster 3 (C3) were 
enriched in the signaling pathways implicated in min-
eral absorption, antigen processing and presentation et 
al.; genes in cluster 4 (C4) were enriched in the signaling 
pathways that were associated with leukocyte transen-
dothelial migration, adhere junction, bladder cancer et 
al.; genes in cluster 5 (C5) were enriched in the signaling 
pathways that were connected to p53 signaling pathway 
activation, HIF − 1 signaling pathway activation, cellular 
senescence et al.; genes in cluster 6 (C6) were enriched in 
the signaling pathways that were related to antigen pro-
cessing and presentation, Th1 and Th2 cell differentiation 
et al. (Fig. 3C, Supplementary Fig. 2A-2 F). The pseudo-
time trajectory analysis of malignant ECs was performed 
with Monocle2 to elucidate the developmental trajectory 
of the ECs (Fig.  3D) and to show that different clusters 
were at different stages of differentiation (Fig. 3E). Based 

Fig. 1 The flowchart of analysis
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on this finding, it can be inferred that C2 or C1 were 
the initial stages of differentiation in ECs. Furthermore, 
CytoTRACE revealed that C2 was the initiator in the pre-
dicted trajectory with higher differentiation potential, 
and C5 and C3 were the terminal states in the differentia-
tion trajectory (Fig. 3F and G). Thus, C2 was identified as 
the cancer stem cells for BLCA for further analysis.

The characterization of the stem cell landscape of BLCA
Firstly, we investigated the activity of transcription 
factors (TFs) and the activation of main pathways, 
and discovered that in the C2 cluster, E2F1, E2F2, 
E2F3, E2F4, and TFAM were significantly activated 
(Fig.  4A, Supplementary Fig.  3A). PI3K and MAPK 
signaling pathways were involved in regulating the 
biological functions of the C2 cluster (Fig.  4B, Sup-
plementary Fig.  3B). Secondly, through metabolic 
analysis, we were able to identify the main metabolic 
pathways in C2 cluster, including butanoate metabo-
lism, citrate cycle (TCA cycle), fatty acid degradation 

and elongation et al. (Fig. 4C, Supplementary Fig. 3C), 
indicating changes in metabolism of CSCs. Thirdly, we 
drew 16 cluster (stromal cells) of cells from the total 
cell population. It was subjected to the process of nor-
malization, dimension reduction, and clustering once 
again. With a resolution of 1, 4 clusters were identified 
(Supplementary Fig.  3D). According to the expressed 
markers of cells, clusters 0, 1, and 3 in stromal cells 
were regarded as cancer-associated fibroblasts (CAFs), 
while cluster 2 was considered endothelial cells. Based 
on the expressed markers of CAFs, clusters 0, 1, and 
3 were regarded as inflammatory CAFs (iCAFs, mark-
ers: CXCL14, MT2A), myofibroblast (myCAFs, mark-
ers: RGS5, ACTA2, MYL9), and antigen-presenting 
CAFs (apCAFs, markers: CD74, HLA-DRA, and HLA-
DPA1), respectively (Fig.  4D). The differential genes 
in each CAFs cluster were showed using heatmap plot 
(Supplementary Fig. 3E). Then, 15 cluster was consid-
ered as myeloid cells (markers: CD14, CD68), while 
17 and 19 clusters were regarded as T cells (markers: 

Fig. 2 Identification of cell subtypes. (A) 20 clusters are identified at a resolution of 0.8. (B) Markers that identify different cells are expressed. We identify 
three major cell clusters: epithelial cells, stromal cells, and immune cells. (C) The UAMP plot displays the distribution of epithelial cells, stromal cells, and 
immune cells. (D) The results of CopyKAT for predicting malignant ECs. 3 and 8 clusters are considered malignant ECs.
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CD3D, CD3E). The final clusters and annotations can 
be found in Fig. 4E. The differential gene expression of 
each cluster cell group was shown in Supplementary 
Table 1. CellChat analysis showed diverse and distinct 
interactions among these cell types (Fig.  4F). There 
were different ligand-receptor modes between C2 and 
CAFs, as well as between immune cells (Fig. 4G). The 
secretion of APP, CD99, COL1A1, COL6A1, COL6A3, 
FN1, MDK, in CAFs, was primarily directed toward 
CD74, CD99, SDC1, SDC4 receptors on the surface of 
C2. SPP1 was mainly produced by myeloid cells, which 
acted on the (ITGAV + ITGB1) receptor on the surface 
of C2. The MDK secreted by T cells was predominantly 
directed at the SDC4 and (ITGA6 + ITGB1) receptors 
on the surface of C2. CellChat analysis of signaling 
pathways demonstrated that MK, THBS, ANGPTL, 
VISFATIN, JAM, and ncWNT signaling pathways from 
tumor microenvironment were involved in regulat-
ing the characteristics of C2 (Fig.  4H, Supplementary 

Fig.  3F). These results demonstrated that modulating 
the characteristics of CSCs was complex and involved 
the alternation of multiple molecules and signaling 
pathways, and the role of CAFs and immune cells in 
the process should be given more attention.

Integrative construction of a consensus CSCLPI based on 
machine learning
The differential genes in C2 were abstracted (Supplemen-
tary Table 2) and the expression matrices of genes with 
adjusted P < 0.05 in the TCGA cohort were obtained.

We have performed functional enrichment analysis for 
the 341 genes to investigate their biological signatures. As 
shown in the Supplementary Fig. 2B, the results demon-
strated that they were mainly involved in the regulation 
of cell cycle et al. We conducted a univariate Cox analy-
sis and uncovered 29 potential CSCs-related genes that 
have a significant correlation with the prognosis of BLCA 
(Supplementary Table 3). The integration of machine 

Fig. 3 Cell differentiation trajectory. (A) 6 clusters of malignant ECs are identified with a resolution of 0.25. (B) Some of positively differential genes in 
each cluster. (C) Display the differential genes and KEGG pathway enrichment results of each cluster simultaneously. (D) A color-coded pseudotime plot 
depicts the differentiation trajectory of malignant ECs in BLCA. (E) Differentiation trajectory of malignant ECs in BLCA for sub-cell types. (F-G) CytoTRACE 
predicts the cell differentiation potential of malignant ECs in BLCA, and identified C2 as the cancer stem cell cluster
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learning was used to study the 29 potential CSCs-related 
prognostic genes. 99 prediction models were fitted in 
all cohorts by using the leave-one-out cross-validation 
framework. The results of calculating the C-index of 
each model across all cohorts were presented in Fig. 5A. 
Accordingly, the prognostic model developed by the RSF 
method was found to be the optimal model with the high-
est average C-index of 0.659 (Fig. 5A). The importance of 
variables was also evaluated (Fig.  5B), and the variables 
that contributed the most to the model were selected, 
including LSM3, S100A10, SPINT1, SPTSSB, and VPS29. 
A multivariate Cox analysis was conducted on five genes 
and it was determined that S100A10 (HR:1.90, 95%CI: 
1.12 to 3.21, P = 0.016) and SPINT1 (HR: 2.25, 95%CI: 
1.36 to 3.70, P = 0.001) were significantly associated with 
the prognosis of BLCA (Fig. 5C). The CSC-like prognos-
tic index (CSCLPI) was constructed as follows: CSCLPI 
= (-0.498 * expression of LSM3) + (0.645 * expression of 
S100A10) + (0.811 * expression of SPINT1) + (-0.269 * 
expression of SPTSSB) + (-0.472 * expression of VPS29). 

TCGA samples were classified into the high CSCLPI and 
low CSCLPI groups using the median value of 1.045 as 
the cutoff value of the model. The KM survival analysis 
revealed a difference in survival between the CSCLPI 
subgroups (Fig. 5D). In the TCGA-BLCA training cohort, 
the area under the ROC curve based on the CSCLPI for 
predicting the 1-, 2- and 3-year survival was 0.749, 0.696 
and 0.65, respectively (Fig.  5E). In the external valida-
tion cohorts, CSCLPI was also developed based on the 
five genes, and 1.045 was considered as the cutoff value 
to classify samples. GSE13507 and GSE48075 cohorts 
had distinct survival differences based on KM survival 
analysis (Fig. 5F), but GSE32894 and GSE48276 cohorts 
did not (Fig. 5F). In GSE13507, the area under the ROC 
curve for predicting the 1-, 2- and 3-year survival was 
0.75, 0.627 and 0.656, respectively. In GSE32894, it was 
0.765, 0.755 and 0.706, respectively.

In GSE48075, it was 0.652, 0.733 and 0.815, respec-
tively. In GSE48276, it was 0.615, 0.552 and 0.513, respec-
tively (Fig.  5). The 1-year AUC value of CSCLPI was 

Fig. 4 Examining the stem cell landscape. (A) The activity of TFs in C2 and other clusters in BLCA. (B) The activation of main pathways in C2 and other 
clusters in BLCA. (C) The changes in metabolism of C2 and other clusters in BLCA. (D) Stromal cells are subdivided into iCAF, myCAF, apCAF, and endothelial 
cells (upper). The major markers expressed in iCAF, myCAF, and apCAF (low). (E) The final clusters and annotations for BLCA. (F) CellChat analysis displays 
communications among these cell types. The impact is greater with a thicker line. (G) CellChat is used to determine selected ligand-receptor interactions 
between immune cells, CAFs, and C2. The size of each circle is what indicated P-values. The color gradient is a representation of the level of interaction; 
blue and red colors are the smallest and largest values, respectively. (H) The heatmap exhibits the incoming and outgoing signaling patterns in C2, CAFs, 
and immune cells. The deeper color indicates more weight and strength of the regulation of the signaling pathway
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Fig. 5 Construction and validation of CSCLPI. (A) The C-index of a total of 99 prediction models from all datasets is based on 10 integrative machine 
learning algorithms using the LOOCV framework. The RSF method was utilized to construct the model, which had the highest average C-index of 0.659. 
(B) Ranking of variables’ importance. (C) The results of multivariate Cox regression analysis, and independent prognostic factors were determined. (D) The 
result of the KM survival analysis of CSCLPI in the TCGA cohort. (E) The results of the ROC curve for CSCLPI in predicting 1-year, 2-year, and 3-year survival 
in the TCGA cohort. (F) The results of the KM survival analysis of CSCLPI in the validation cohorts. (G) The results of the ROC curve for CSCLPI in predicting 
1-year, 2-year, and 3-year survival in the validation cohorts
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compared against those of a stem cell signature [36] and 
an EMT-related gene signature [37] in BLCA. In Supple-
mentary Fig. 4, it is shown that the 1-year AUC value of 
a stem cell signature and an EMT-related gene signature 
were 0.71 and 0.659, respectively, whereas the CSCLPI 
was 0.749. These findings demonstrated the good per-
formance of the CSCLPI in predicting the prognosis of 
patients with BLCA.

Differences in mRNAsi, gene mutation, small molecular 
drug sensitivity, and functional enrichment between 
CSCLPI subgroups
The OCLR algorithm was employed to calculate mRNAsi 
of each BLCA patient by analyzing their gene expression 
profiles. It was discovered that mRNAsi was significantly 
higher in the low CSCLPI group (P < 0.001) (Fig.  6A), 
and mRNAsi was negatively linked with the CSCLPI 
score (Spearman correlation = − 0.32, P < 0.001) (Fig. 6B). 
According to KM analysis, patients with high-mRNAsi 
in BLCA had a longer OS than those with low-mRNAsi 
(Fig. 6C).

The results from gene mutation analysis demonstrated 
that the gene mutation frequency in the high CSCLPI 

group was higher than that of the low CSCLPI group 
(95.89% vs. 94.59%). The top 10 mutational genes in 
the high CSCLPI group contain TTN, TP53, ARID1A, 
MUC16, KMT2D, KDM6A, RYR2, SYNE1, EP300, and 
KMT2C (Fig.  6D), which also have a mutation rate of 
over 20%. The top 10 mutational genes in the low CSCLPI 
group comprise of TP53, TTN, KMT2D, MUC16, 
KDM6A, SYNE1, ARID1A, PIK3CA, FLG, and KMT2C 
(Fig.  6D), which also have a mutation rate of over 20%. 
The most common mutation type in both groups was 
missense-mutation, followed by nonsense mutation and 
splice site (Fig.  6E). The correlation between mutated 
genes was analyzed in CSCLPI subgroups (Supplemen-
tary Fig. 5A). It was found that in the high CSCLPI group, 
RTK − RAS, NOTCH, Hippo and TP53 signaling path-
ways were highly and abnormally activated, while in the 
low CSCLPI group, RTK − RAS, NOTCH, Hippo, TP53, 
WNT and PI3K signaling pathways were highly and 
abnormally activated (Supplementary Fig. 5B).

We picked 10 drugs with the most significant P-value 
based on the results of small molecular drug sensitivity 
analysis. The findings showed that high CSCLPI group 
was more sensitive to belinostat, blebbistatin, brivanib, 

Fig. 6 Certain characteristics analysis for CSCLPI subgroups. (A) The comparison of the mRNAsi between CSCLPI subgroups. ***: p < 0.001. (B) The Spear-
man correlation of the CSCLPI score with mRNAsi. (C) The KM survival analysis showed that BLCA patients with higher mRNAsi had a better prognosis. (D) 
The waterfall plot demonstrated mutational genes in the high CSCLPI group (upper) and in the low CSCLPI group (low). (E) Summary for mutation in the 
high CSCLPI group (upper) and in the low CSCLPI group (low). (F) Small molecular drug sensitivity analysis between CSCLPI subgroups. (G) GO analysis of 
differential genes between CSCLPI subgroups for the top ten enrichment. (H) KEGG analysis for the top ten enrichment
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and daporinad, while low CSCLPI group was more sensi-
tive to canertinib, dasatinib, gefitinib, ibrutinib, lapatinib, 
and myriocin (Fig. 6F).

Functional enrichment was carried out on the differ-
ential genes (low-CSCLPI vs. high-CSCLPI) between 
CSCLPI subgroups. The results of the GO analysis 
showed that the up-regulated genes were involved in 
regulation of extracellular matrix (Fig. 6G). KEGG anal-
ysis demonstrated that the up-regulated genes were 
available to regulate ECM − receptor interaction, and 
the PI3K − Akt signaling pathway et al. (Fig.  6H). These 
results suggested that there may be a difference in molec-
ular regulation between CSCLPI subgroups.

Impact of tumor microenvironment on biological 
signatures between CSCLPI subgroups
At first, the differences in tumor-infiltrating associ-
ated cells between CSCLPI subgroups were assessed 
using ESTIMATE scores. The findings indicated that 
the high-CSCLPI group had a higher stromal score than 
the low-CSCLPI category, but there were no differences 
in immune score between the subgroups (Fig.  7A). We 
analyzed the types of immune cells infiltrating through 

ssGSEA. It’s surprising that there was no significant dif-
ference in the infiltration of other immune cells between 
the CSCLPI subgroups, aside from macrophages and 
regulatory T cells in the high CSCLPI group were 
higher (Fig.  7B). The immune-related pathways in the 
high CSCLPI group included cell chemokine receptor 
(CCR), MHC class I, para-inflammation, and Type I IFN 
Response, while in the low CSCLPI group, Type II IFN 
Response was found to be involved in immune regula-
tion (Fig. 7C). TIDE can be used to predict the response 
to immunotherapy, and T cell dysfunction score can be 
used to evaluate the function of T cells. The T cell dys-
function score in the high CSCLPI group was found to 
be higher (Fig.  7D). However, there was no distinction 
in TIDE score between CSCLPI subgroups (Supplemen-
tary Fig. 6A). These findings indicated that immunosup-
pression was present in the high CSCLPI group, which 
was one of the causes of poor prognosis in patients with 
BLCA. There may be no significant difference in the effi-
cacy of immunotherapy between CSCLPI subgroups. 
Furthermore, we found out that the high CSCLPI group 
had a higher CAF score than the low CSCLPI group 
(Fig.  7D). The EPIC analysis further showed that the 

Fig. 7 Tumor microenvironment analysis. (A) ESTIMATE analysis between CSCLPI subgroups. The differences in stromal (left) and immune scores (right). 
(B-C) The immune cell infiltration and immune-related pathways made distinctions between CSCLPI subgroups. (D) TIDE analysis between CSCLPI sub-
groups. The differences in the dysfunction score (left) and CAFs score (right). (E) The differences in CAFs score between CSCLPI subgroups were calculated 
using EPIC analysis. (F) CSCLPI subgroups have distinct expression of cancer-associated fibroblast-specific markers. (G) A consensus clustering analysis 
was conducted on BLCA samples using markers specific to cancer-associated fibroblasts. The optimal groups were determined to be two. (H) The tNES 
analysis was based on F1 and F2. (I) The difference in CSCLPI score between F1 and F2. (J) F2 had a higher number of patients in the high CSCLPI group
 NS: not significantly. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001
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high CSCLPI group had a more significant CAF score 
(Fig. 7E). Thus, stromal cells (mainly CAFs) may regulate 
the differences in biological signatures between CSCLPI 
subgroups.

The expression of cancer-associated fibroblast-specific 
markers in BLCA was analyzed. These markers were 
found to be significantly expressed in the high CSCLPI 
group (Fig.  7F). Using consensus clustering analysis, 
TCGA samples were grouped according to cancer-
associated fibroblast-specific markers. The best num-
ber of groups was two (Fig. 7G, Supplementary Fig. 6B), 
referred to as fibroblast group 1 (F1) and fibroblast group 
2 (F2). The tNES analysis indicated that grouping had an 
excellent performance in F1 and F2 (Fig. 7H). By compar-
ing the CSCLPI between F1 and F2, we found that F2 had 
a higher CSCLPI score (Fig.  7I), and the patients in the 
high CSCLPI group were more present in F2 (Fig.  7J). 
The findings indicated that the CAFs were responsible for 
some of the differences in biological signatures between 
CSCLPI subgroups in BLCA.

Construction and testing of a nomogram
Clinical characteristics were crucial in determining prog-
nosis. The heatmap showed the relationship between five 
key genes and clinical characteristics (Fig. 8A). CSCLPI, 
age, gender, tumor stage, T stage, and N stage were evalu-
ated in univariate and multivariate Cox regression anal-
yses in order to uncover independent risk factors that 
influence prognosis (Fig.  8B and C). The multivariate 
Cox regression analysis showed that CSCLPI (HR:3.4305, 
95%CI: 1.5896 − 7.4037, P = 0.0017) and N stage (HR: 
2.3804, 95%CI: 1.1237 − 5.0429, P = 0.0236) were impor-
tant risk factors for the prognosis of patients with BLCA. 
CSCLPI, age, gender, tumor stage, T stage, and N stage 
were the foundations of the nomogram construction, 
which was convenient to comprehensively evaluate the 
1-year, 2-year, 3-year and 5-year prognosis of patients 
with BLCA (Fig.  8D). The calibration curves and DCA 
curves for the nomogram of 1-year, 2-year, 3-year and 
5-year prognostic prediction were depicted (Fig. 8E and 
F). Furthermore, the C-index of the nomogram was 0.743 
(95% CI: 0.665–0.821). According to the results, the 
nomogram was able to predict accurately.

Fig. 8 Construction of a predictive nomogram. (A) The heatmap showed the relationship between five key genes and clinical characteristics. (B-C) 
Univariate and multivariate Cox regression analyses results of age, gender, tumor stage, T stage, N stage, and CSCLPI. (D) A nomogram for predicting the 
prognosis of 1 year, 2, 3, and 5 years for patients with BLCA. The prediction of the second patient in the TCGA cohort was depicted. (E-F) The calibration 
curves and DCA curves of 1-, 2-, 3- and 5-year prognostic prediction for the nomogram. For calibration curves, the more the blue solid line and the black 
dotted line coincide, the more accurate the prediction was. For DCA curves, if the curve exceeded the horizontal and vertical axes, it implied that the 
model had certain clinical predictive utility
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Discussion
CSCs can be found in almost all solid tumors [38], and 
they were involved in regulating multiple cancer hall-
marks, which were closely related to tumorigenesis, het-
erogeneity, progression, recurrence, treatment resistance 
etc. Both the strong plasticity of CSCs and the complex 
interactions between CSCs and the tumor microenvi-
ronment were responsible for the results [39]. CSCs in 
BLCA have been identified for several years. However, 
the characteristics of CSCs and their crosstalk with other 
cells in the microenvironment are still indistinct. In this 
study, we identified CSCs from malignant epithelial cells 
in BLCA using the CytoTRACE method based on single-
cell sequencing data. The activation of transcription fac-
tors and related signaling pathways, as well as changes 
in metabolism within CSCs, were explored. The clusters 
of CAFs and immune cells were identified to reveal the 
crosstalk between CSCs and CAFs, as well as immune 
cells. Then, we screened the hub genes related to CSCs 
using multiple machine learning methods, and con-
structed and validated a CSCs prognostic model called 
CSCLPI. Its biological signatures were investigated and 
was found to have a good performance in predicting 
prognosis. Thus, CSCLPI is a reliable indicator for assess-
ing progression, treatment, and patients’ prognosis of 
BLCA.

The abnormal activation of TFs was an essential step 
in tumor initiation and progression. In the study, E2F1, 
E2F2, E2F3, E2F4, and TFAM were significantly activated 
in CSCs in BLCA. They were discovered to play a role in 
regulating the properties of CSCs in numerous cancers. 
In rectal cancer stem cells, DLGAP1-AS2 can enhance 
radiation resistance by communicating with E2F1, which 
upregulates CD151 expression by activating the AKT/
mTOR/cyclinD1 pathway [40]. In laryngeal squamous 
cell carcinoma, LINC00319 promotes the properties of 
cancer stem cells by upregulating HMGB3 through E2F1 
[41]. In BLCA, lee et al. have discovered that E2F1 is 
strongly linked to the progression from NMIBC to MIBC, 
and the transcriptional events triggered by E2F1-EZH2-
SUZ12 may be responsible for cancer aggressiveness and 
chemotherapy resistance [42]. The activation of E2F1 in 
cells treated with anticancer drugs resulted in the expres-
sion of CSCs-related genes, indicating the important role 
in modulating cancer stem properties. E2F2 participat-
ing in the regulation of cancer stem properties was found 
to be controlled by miRNA [43, 44], but with limited 
mechanisms. Yang et al. have revealed that in colorectal 
cancer, the E2F3-MEX3A-KLF4 axis is crucial in coor-
dinating cancer stem cell self-renewal and differentia-
tion [45]. E2F3 has methylation sites and is required for 
liver CSCs self-renewal and activation of Wnt/β-catenin 
[46]. rtcisE2F acts as a scaffold for IGF2BP2 and E2F3 
mRNA to stabilize the latter, which promotes liver CSCs 

self-renewal and initiates liver tumorigenesis and metas-
tasis by activating Wnt/β-catenin. CD133- osteosar-
coma cells gain cancer-stem-cell-like characteristics by 
being suppressed through the activation of E2F4 signal-
ing [47]. The mechanism behind E2F4 signaling regula-
tion is still unclear. Wen et al. have reported that blocking 
mitochondrial function by silencing TFAM markedly 
reduced tumor-initiating potential of colon cancer cells 
[48]. The expression of cancer stem cells associated with 
genes downstream of Wnt/β-catenin signaling becomes 
decreased by blocking TFAM. These previous studies 
demonstrated that some members of the E2F family were 
involved in the maintenance of CSCs and were associated 
with cancer-related biological signatures. It is important 
to focus on their role in regulating CSCs characteristics 
in BLCA.

In addition, many intracellular signaling pathways and 
extracellular factors have been shown to be very impor-
tant regulators of CSCs. In BLCA, intracellular signal-
ing pathways that have been proven to be implicated in 
modulating the development and progression of bladder 
CSCs include related to epithelial-mesenchymal transi-
tion (EMT) (such as Wnt/β-catenin, Notch, and trans-
forming growth factor-beta (TGF-β)), the sonic hedgehog 
signaling pathway, the PI3K/AKT pathway, MAPKs, 
and the JAK-STAT pathway [49]. These pathways could 
serve as promising therapeutic options for stopping 
BC progression. Our study revealed that the activity of 
PI3K/AKT and MAPK pathways was abnormally high 
in regulating CSCs of BLCA. PRDX2 has been shown 
to be upregulated significantly in bladder tumors and 
cisplatin-resistant bladder tumor cell lines, and it plays a 
role in regulating tumor stemness and EMT through the 
PI3K-AKT pathway [50]. Furthermore, overexpression of 
HER2 triggers the release of IL-8, which promotes stem 
cell-like phenotypes by activating the MAPK signaling 
pathway in BLCA [51]. The mechanism behind the regu-
lation of PI3K/AKT and MAPK pathways needs further 
investigation in BLCA. Tumor-associated macrophages 
(TAMs), myeloid-derived suppressor cells (MDSCs), T 
cells, CAFs, and other immune cells are the main extra-
cellular factors that regulate CSCs [52]. CAFs stimulate 
stemness by activating the WNT and NOTCH pathways. 
Canonical WNT is the primary pathway that governs 
CSCs and promotes stemness, but NOTCH signaling has 
also been implicated in stem cell maintenance in several 
cancers [52]. Our study also found that the WNT signal-
ing pathway was highly activated in CSCs, which was 
secreted by iCAF. In addition, the ANGPTL and THBS 
pathways from myCAF and apCAF, as well as the MK 
pathways from iCAF and myCAF, were determined to 
be involved in modulating CSCs in BLCA. Ma et al. have 
found that interferon secreted from bladder cancer cells 
can induce SLC14A1+ CAFs, which in turn promote 
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stemness of BLCA via WNT5a/β-catenin pathway [53]. 
Myeloid-derived suppressor cells (MDSCs) in the tumor 
microenvironment were responsible for managing the 
effects of myeloid cells on CSCs. Currently, it has been 
discovered that STAT3 and NF-κB signaling pathways 
are very prominent in MDSCs in promoting cancer cell 
stemness [38]. The identities of the MDSC-derived fac-
tors in many cancers are still emerging. In the study, 
we found GALECTIN signaling pathway derived from 
myeloid cells was implicated in inducing CSCs in BLCA. 
However, the mechanism is still indistinct. Different T 
cell subsets are responsible for maintaining CSCs [38]. 
The main pathways comprise PI3K/AKT, EMT, TGF-β, 
NF-κB and p38 MAPK pathways. In the study, we found 
JAM signaling pathway derived from T cells was involved 
in modulating CSCs in BLCA. However, the mechanism 
is still unclear. Our study also determined the interacted 
molecules on the cell surface between CSCs, CAFs, and 
immune cells, providing a deeper insight into the inves-
tigation of regulation on CSCs by factors from the tumor 
microenvironment.

A prognostic model (named CSCLPI) was constructed 
based on machine learning, and five key genes (LSM3, 
S100A10, SPINT1, SPTSSB, and VPS29) were screened 
using the RSF method. Our findings were consistent with 
previous studies that patients with higher mRNAsi indi-
ces had better prognosis [54, 55], despite the common 
understanding that CSCs are responsible for tumori-
genesis, metastasis, and recurrence. We speculate that 
the discrepancy is the result of multiple factors. Firstly, 
the significant heterogeneity in markers and models that 
describe cancers among CSCs is a factor. Secondly, the 
sustainment and activation of CSCs is not only depen-
dent on the tumor itself, but also on the microenviron-
ment. Immune cells and CAFs are important factors. 
In Supplementary Fig.  5, we found the Notch, Wnt and 
Hippo signaling pathways were highly and abnormally 
activated in the low-CSCLPI group, which were asso-
ciated with activation and development of CSCs (that 
may be associated with higher mRNAsi). In addition, we 
found that the differences in the infiltration of immune 
cells (such as regulatory T cells, macrophage) and in the 
CAFs. They were involved in the regulation of biological 
signature of CSCLPI. These results also demonstrated the 
complexity of the tumor development and the impor-
tance of tumor microenvironment regulation. It has 
been established that an increase in S100A10 expression 
is associated with poorer outcomes and/or chemoresis-
tance in multiple cancer types, including lung, breast, 
ovary, pancreas, gallbladder, colorectum, and leukemia 
[56]. Especially in breast, it can induce the expression 
levels of stem cell-related genes [57]. SPINT1 expres-
sion was discovered to be upregulated in breast cancer 
and had a significant correlation with a poorer prognosis 

[58]. S100A10 and SPINT1 expression were identified as 
being linked to the regulation of CSCs in BLCA and the 
prognosis of patients, which can be promising therapy 
targets for CSCs. The CSCLPI constructed and validated 
in the study was found to be linked to prognosis and has 
a good performance in predicting prognosis in BLCA. 
Using multiple methods, it was proven that there were 
no differences in the infiltration of immune cells between 
the CSCLPI subgroups, which resulted in no difference 
in their response to immunotherapy. But our research 
showed that the CSCLPI subgroups had distinct infiltra-
tion of CAFs, which contributed to the difference in bio-
logical signature and drug treatment. Thus, CSCLPI can 
be used in clinic to predict the prognosis and chemother-
apy response of patients with BLCA.

It is inevitable that this study will include several limi-
tations. First, the limited clustering of immune cells pre-
vented us from revealing the interactions between CSCs 
and other immune cells (e.g. Neutrophils, NK cells). Sec-
ond, the data in our research were acquired from pub-
lic databases rather than our own database. It would be 
better to verify CSCLPI using a clinical dataset from our 
own center. Third, the biological functions of S100A10 
and SPINT1 related to CSCs characteristics in BLCA 
should be explored in vivo and in vitro in the future.

Conclusion
Taken together, in the study, cancer stem cells from 
malignant epithelial cells, cancer-associated fibroblasts, 
and immune cells in BLCA were identified, and the char-
acterization of the stem cell landscape was revealed. A 
consensus CSCLPI for BLCA with 10 machine-learning 
algorithms was developed and validated, and its prog-
nostic value and biological signature were revealed. We 
suggest that our stemness model has prospective clinical 
implications for prognosis prediction and drug treatment 
evaluation.
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