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and drug resistance remain high. Precision targeting of 
tumors holds great promise in cancer therapy, leading to 
more in-depth research and analysis of cancer.

Epigenetic modifications are alterations independent of 
the DNA sequence [2], primarily regulating gene expres-
sion at the transcriptional level. Discoveries have been 
made in various aspects, including DNA and RNA meth-
ylation [3, 4], histone modifications [5], transcriptional 
control [6], chromatin remodeling [7], non-coding RNA 
[8], and cancer immunotherapy [9]. Recent research indi-
cated that cancer cells are often regulated by relevant 
epigenetic proteins, which are essential for maintaining 
normal cell growth, inducing differentiation, and initiat-
ing, sustaining, and propagating disease and abnormal 
cell states [10]. There is growing evidence indicating that 
epigenetic modifications, especially RNA modifications 
play a crucial role in tumorigenesis [11, 12].

With the development of high-throughput sequenc-
ing technologies, over 170 RNA modifications have been 

Background
Gastrointestinal cancer is among the most common 
and deadly tumors worldwide, accounting for approxi-
mately one-fourth of the global cancer incidence and 
a mortality rate as high as one-third [1]. Although cur-
rent conventional treatments, such as surgical resection, 
chemotherapy, and radiotherapy, are used for treating 
gastrointestinal cancer, the risks of cancer recurrence 
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Abstract
Gastrointestinal cancer is the most common malignancy in humans, often accompanied by poor prognosis. N6-
methyladenosine (m6A) modification is widely present in eukaryotic cells as the most abundant RNA modification. 
It plays a crucial role in RNA splicing and processing, nuclear export, translation, and stability. Human AlkB homolog 
5 (ALKBH5) is a type of RNA demethylase exhibiting abnormal expression in various gastrointestinal cancers.It is 
closely related to the tumorigenesis, proliferation, migration, and other biological functions of gastrointestinal 
cancer. However, recent studies indicated that the role and mechanism of ALKBH5 in gastrointestinal cancer 
are complicated and even controversial. Thus, this review summarizes recent advances in elucidating the role 
of ALKBH5 as a tumor suppressor or promoter in gastrointestinal cancer. It examines the biological functions of 
ALKBH5 and its potential as a therapeutic target, providing new perspectives and insights for gastrointestinal 
cancer research.

Keywords Gastrointestinal cancer, ALKBH5, m6A, Epigenetics

Complicated role of ALKBH5 
in gastrointestinal cancer: an updated review
Weitong Shu1,2†, Qianying Huang1,2†, Rui Chen1,2†, Huatao Lan1,2, Luxin Yu1,2, Kai Cui1,2, Wanjun He1,2, 
Songshan Zhu1,2, Mei Chen1,2, Li Li1,2, Dan Jiang1,2* and Guangxian Xu1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-024-03480-5&domain=pdf&date_stamp=2024-8-23


Page 2 of 11Shu et al. Cancer Cell International          (2024) 24:298 

identified, and m6A modification is one of the most 
prevalent types [13]. Transcriptome sequencing reveals 
that m6A binding sites are found within the RRACH 
sequence (R = A/G, H = A/C/U), predominantly enriched 
in the 3’ untranslated regions (UTRs) near the termina-
tion codon of mRNA exons [14, 15]. M6A modifica-
tion participates in various RNA metabolism processes, 
including splicing, nuclear export, translation, decay, 
processing, and RNA-protein interactions. Additionally, 
it plays a crucial role in embryonic stem cell differen-
tiation, meiosis, tissue development, circadian rhythm, 
and tumor occurrence[16–20]. M6A modification is a 
dynamic and reversible process, which is primarily led 
by methyltransferases (Writers), demethylases (Erasers), 

and identified and promoted by some specific RNA-bind-
ing proteins (Readers)[21](Fig. 1).

Up to now, methyltransferase-like 3 (METTL3), 
methyltransferase-like 14 (METTL14), methyltrans-
ferase-like 16 (METTL16), Wilms tumor 1 associated 
protein (WTAP), zinc finger CCCH-type containing 
13 (ZC3H13) proteins, RNA-binding motif protein 15 
(RBM15), Vir-like m6 A methyltransferase-associated 
(VIRMA/KIAA1429), Cbl proto-oncogene like1 (CBLL1/
Hakai), and Fl(2)d-associated complex component 
(Flacc) were regarded as Writers, and they can interact 
with each other to form a stable methyltransferase com-
plex (MTC), or plays a supporting role in catalyzing the 
heterodimeric methyltransferase activity [22–31](Fig. 1). 
Erasers, including Fat mass and obesity-associated 

Fig. 1 Molecular mechanism of m6A modification. M6A is mediated by writers, erasers and readers, the details are as follows. METTL14 binds to METTL3 
and forms a stable MTC. WTAP recruits MTC and localizes it in the nuclear speckle, performing a function that aids in catalyzing the activity of methyltrans-
ferases. ZC3H13, RBM15, and VIRMA act on the MTC to regulate the occurrence of m6A methylation. Hakai serves as a core component of the m6A writer 
and interacts with other writers. METTL16, which is a conserved U6 snRNA methyltransferase, controls the homeostasis of S-adenosylmethionine (SAM) 
by post-transcriptionally regulating the expression of SAM synthase genes. FTO and ALKBH5 belong to the family of ketoglutarate-dependent dioxygen-
ases, mediating the reverse process of m6A methylation under the action of Fe(II) and α-ketoglutarate. YTHDF2 is the first discovered m6A reader protein, 
regulating the degradation of mRNA. YTHDF1 can promote the translation of m6A-modified mRNAs by binding to m6A sites and regulating translation 
factors. YTHDF3 can act on YTHDF1 to enhance the translation of mRNAs, and it can also act on YTHDF2 to regulate the degradation of mRNAs. YTHDC1 
regulates the splicing function of mRNAs by recruiting splicing factors, and it also mediates m6A-dependent nuclear export. YTHDC2, as an RNA helicase, 
can enhance the translation efficiency of mRNAs while reducing their RNA abundance. IGF2BPs recognize the GG(m6A)C sequence and promote the 
stability, translation, and storage of targeted mRNAs. HNRNPs regulate the processing, and maturation of miRNAs and the abundance and splicing of 
mRNAs in an m6A-dependent manner. (figure was created with Biorender.com)
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protein (FTO) and ALKBH5, are central to the removal 
of m6A modifications [32, 33]. They are part of the alpha-
ketoglutarate-dependent dioxygenase family, mediating 
the reverse process of m6A methylation under the action 
of Fe(II) and α-ketoglutarate[34]. FTO is involved in the 
regulation of the cell cycle, cell differentiation, splicing, 
cancer development, immunotherapy, and various other 
biological functions [35–38]. Importantly, ALKBH5, as 
another member of the α-ketoglutarate-dependent dioxy-
genase family, was found that knocking out ALKBH5 not 
only increases the m6A levels of RNA inside cells but also 
enhances the export of these RNAs from the nucleus to 
the cytoplasm [33]. Readers mainly include the YT521-
B homology (YTH) domain family, IGF2 mRNA binding 
protein (IGF2BPs), and heterogeneous nuclear ribonu-
cleoproteins (HNRNPs)[39–47]. And they mainly play a 
role in post-transcriptional regulation by identifying and 
binding to m6A-targeted genes, regulating downstream 
functions (Fig. 1).

Among these regulators, ALKBH5, which was first 
discovered in 2013 as a demethylase for m6A, is becom-
ing a hub in the research of epigenetic regulation of the 
development of cancer cells. The complicated biologi-
cal functions of ALKBH5 have been widely found to be 
involved in various gastrointestinal cancers, including 
gastric cancer (GC), colorectal cancer (CRC), liver cancer 
(LC), pancreatic cancer (PC), and esophageal squamous 
cell carcinoma (ESCC). This review will focus on the role 
of ALKBH5 in gastrointestinal cancer and discuss direc-
tions for future research and potential clinical application 
of ALKBH5 for gastrointestinal cancer.

The structure and role of ALKBH5
ALKBH5 is a member of the AlkB family, a 2-oxogluta-
rate and ferrous acid-dependent nucleic acid oxygenase. 
It is located on human chromosome 17p11.2. Human 
ALKBH5 has a full length of 394 amino acids and its 
catalytic core contains features of a double-stranded 
β-helix fold (DSBH). Aik W et al. suggested that the 
DSBH fold of ALKBH5 is composed of eight reverse par-
allel β-strands, with the major β-sheet consisting of β6, 
β8, β11, and β13, and the minor β-sheet being formed 
by β7, β9, β10, and β12 [48]. However, Feng C et al. sug-
gested that the DSBH fold of ALKBH5 does not have the 
typical eight reverse parallel β-strands, where β4, β5, β8, 
and β9 form the major sheet while β6, β7, and a short 
α-helix (α7) plus a long loop (C1) form the minor sheet 
[49]. The unique structural feature of ALKBH5 that plays 
an important role in substrate recognition and catalysis is 
the nucleotide recognition caps called “Flip1” and “Flip2” 
outside the DSBH fold. In addition, a disulfide bond 
formed between Cys-230 and Cys-267 has been identi-
fied in ALKBH5, and this structure is believed to underlie 

the selectivity of ALKBH5 for single-stranded substrates 
[48, 49].

Normally, ALKBH5 is highly expressed in the testis, 
and it has been found that increased m6A expression in 
ALKBH5-deficient male mice affects apoptosis in mid-
meiotic spermatocytes, leading to impaired fertility [33, 
50]. In addition to the fact that ALKBH5 can affect the 
spermatogenesis process, Pollard PJ et al. discovered 
that ALKBH5 is directly regulated by hypoxia-induc-
ible factor 1α (HIF-1α), an oxygenase dependensst on 
2-oxoglutarate (2OG) that is induced under hypoxic con-
ditions. [51]. It has also shown that ALKBH5 can affect 
osteogenesis in ligamentum flavum cells through the 
protein kinase B (AKT) signaling pathway [52], as well 
as the osteogenic process through the NF-κB (nuclear 
factor-κB) signaling pathway [53].

The role of ALKBH5 in gastrointestinal cancer
Increasing evidence suggests that the m6A demethylase 
ALKBH5 is aberrantly expressed in various gastrointesti-
nal cancers, closely associated with tumorigenesis, tumor 
proliferation, migration, invasion, and more (Table  1), 
making it a potential novel target for cancer treatment 
(Fig. 2). In the following section, we discuss the expres-
sion of ALKBH5 in gastrointestinal cancer and the mech-
anisms involved.

Colorectal cancer
CRC is the third deadliest cancer in the world, ranking 
consistently among the top three in both incidence and 
mortality rates among all cancer types. It accounts for 
approximately 10% of all cancer-related deaths each year 
[54]. Despite increasing research and treatment efforts 
dedicated to colorectal cancer each year, many molecular 
mechanisms remain unclear. There is growing evidence 
that m6A modification plays a crucial role in the molecu-
lar regulation of CRC (Fig. 3).

Bioinformatics results revealed a decreased expression 
of ALKBH5 in CRC. Its expression is strongly correlated 
with survival prognosis, staging, distant metastasis, and 
the American Joint Committee on Cancer (AJCC) stage, 
establishing it as one of the independent prognostic 
indicators for CRC. Immune checkpoint inhibitor ther-
apy, as one of the mature approaches in current cancer 
treatment, is often less effective due to the low immu-
nogenicity of cold tumors. ALKBH5, in collaboration 
with YTHDF1, can impact the immune environment, 
promoting the transformation of colon adenocarcinoma 
(COAD) patients from the cold tumor type to the hot 
tumor type [55, 56], greatly enhancing the effectiveness 
of immunotherapy. ALKBH5 can bind to the Wnt path-
way inhibitor AXIN2, inducing its degradation, thereby 
activating Wnt/β-catenin and its associated protein 
Dickkopf-related protein 1 (DKK1). This process induces 
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DKK1 to recruit inhibitory cells derived from the bone 
marrow, driving immune suppression in CRC [57]. Over-
expression of ALKBH5 suppresses CRC cell prolifera-
tion, migration, and invasion. It alleviates the malignant 
progression of CRC by promoting CD8(+) T cell infiltra-
tion in the tumor microenvironment through the NF-κB 
(nuclear factor-κB)-CCL5(C-C motif chemokine ligand 

5) axis [58]. Furthermore, related studies suggest that 
ALKBH5 is downregulated in CRC and is associated with 
poor prognosis in CRC patients. ALKBH5 can suppress 
the occurrence and development of CRC by removing the 
methylation modification of its downstream target gene 
plant homeodomain finger protein 20 (PHF20), thereby 
reducing the mRNA stability of PHF20 [59]. Wu and 

Table 1 The function of ALKBH5 as an m6A methyltransferase in gastrointestinal cancer
Cancer type Expression Role Targets Biological function Reader Ref
Colorectal cancer ↓ Suppressor Inhibits invasion, migration [55]

↓ Suppressor PD1; CTLA4 Transform cold tumors into hot tumors YTHDF1 [56]
↓ Suppressor NF-κB-CCL5 Inhibits proliferation,

migration, invasion; Promotes CD8 + T cell 
infiltration

[58]

↓ Suppressor PHF20 Inhibits proliferation, migration, invasion IGF2BP3 [59]
↓ Suppressor JMJD8; PKM2 Promotes glycolysis IGF2BPs [60]
↓ Suppressor FOXO3/miR-21/ SPRY2 Inhibits proliferation and migration [63]

/ circAFF2/Cullin-NEDD8 Enhances the radiosensitivity of CRC cells YTHDF2 [64]
↓ Suppressor SLC7A11 Promotes ferroptosis of CRC cells [65]
↑ Oncogene AXIN2; Wnt; DKK1 Promotes immune suppression IGF2BP1 [57]
↑ Oncogene RAB5A Promotes proliferation, migration, invasion YTHDF2 [61]
↑ Oncogene lncRNA NEAT1 Promotes proliferation and migration; Promotes 

cell apoptosis
[62]

Hepatocellular 
carcinoma

↑ Oncogene MAP3K8 Promotes proliferation, and migration; Promotes 
macrophage recruitment

YTHDF2 [67]

↓ Oncogene Promotes migration [70]
Oncogene LINC02551 Promotes growth and migration of HCC cells IGF2BP1 [71]

↓ Suppressor PAQR4 Inhibits proliferation, migration, invasion IGF2BP1 [72]
↓ Suppressor LYPD1 Inhibits proliferation, invasion IGF2BP1 [73]

TIRAP/NF-Κb; CCL5 Promotes HSC activation; Promotes monocyte 
recruitment and M2 polarisation; Decreases
radiosensitivity of hepatocellular carcinoma

YTHDF2 [74]

Intrahepatic 
cholangiocarcinoma

PD-L1 Accelerates the degradation of PD-L1 mRNA; 
Decreasing
the infiltration of myeloid-derived suppressor-
like cells

YTHDF2 [68]

Liver cancer stem cells ↑ Oncogene SOX4;SHH Promotes proliferation,
migration and invasion

[69]

Pancreatic cancer ↓ Suppressor PER1 Inhibits proliferation, migration, invasion YTHDF2 [76]
↓ Suppressor KCNK15-AS1 Inhibits migration and invasion [77]
↓ Suppressor KCNK15-AS1; PTEN/AKT 

signaling
Inhibits proliferation, migration, and epithelial-
mesenchymal transition (EMT); Promotes cell 
apoptosis

[78]

Pancreatic ductal 
adenocarcinoma

↓ Suppressor FBXL5 Inhibits migration, and invasion; Reduces iron 
metabolism and EMT

YTHDF1 [79]

↓ Oncogene WIF-1; Wnt signaling Promotes proliferation, migration, invasion [80]
Oncogene DDIT4-AS1; mTOR

pathway
Maintains
pancreatic cancer stemness; Suppresses
chemosensitivity

[81]

Gastric cancer ↑ Oncogene JAK1 Promotes proliferation and migration YTHDF2 [83]
Oncogene Nanog Promotes proliferation and tumorigenicity of 

GC cells
[84]

Oncogene lncRNA NEAT1 Promotes invasion and metastasis [85]
↓ Suppressor PKMYT1 Inhibits invasion and migration IGF2BP3 [86]

Esophageal squa-
mous cell carcinoma

↓ Suppressor Inhibits proliferation, migration and
invasion

[88]

↓: downregulated; ↑: Upregulated;
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colleagues discovered that improving the identification 
and delivery system for CRC treatment can effectively 
alleviate the development of CRC. They confirmed the 
effectiveness of this approach in mitigating CRC devel-
opment by synthesizing folate-modified exosome-lipo-
some hybrid nanoparticles loaded with ALKBH5 mRNA 
and utilizing nano therapy to modulate the ALKBH5/
JMXD8/PKM2 (Pyruvate kinase M2) axis and suppress 
glycolysis [60].

It is worth noted that experimental results from some 
scholars indicate that ALKBH5 can act as an oncogene, 
promoting the occurrence and development of CRC. 
That suggests that ALKBH5 may have a dual regulatory 
role in CRC. Shen et al. discovered that ALKBH5 can 
function as an upstream target of a Rab GTPase family 
protein (RAB5A), and through m6A-YTHDF2-depen-
dent mechanisms, reduce the mRNA degradation effi-
ciency of RAB5A, increasing the expression of RAB5A, 

thereby promoting the progression of CRC [61]. The reg-
ulation of CRC by ALKBH5 in non-coding RNA has also 
been reported. The ALKBH5-LncRNA NEAT1 (lncRNA 
nuclear paraspeckle assembly transcript 1) axis may 
serve as a potential therapeutic target for CRC. NEAT1 
is upregulated in CRC and is associated with poor prog-
nosis, and ALKBH5 promotes the progression of COAD 
by reducing the methylation of lncRNA NEAT1 [62]. 
ALKBH5 can decrease the m6A modification of Fork-
head box O3 (FOXO3), and enhance the RNA stabil-
ity of FOXO3. Thus, it targets miR-21 through FOXO3 
and increases sprouty2 (SPRY2) expression, forming the 
FOXO3/miR-21/SPRY2 axis to regulate the progression 
of CRC [63]. Research indicates that CircRNA AFF2 is 
highly expressed in radiation-sensitive colorectal can-
cer patients, and those with high expression have a bet-
ter prognosis. Its regulation is closely associated with the 
ALKBH5/YTHDF2 m6A-dependent pathway. CircAFF2 

Fig. 2 Biological functions of ALKBH5 in gastrointestinal cancer. ALKBH5 regulates tumor cell proliferation, migration, and invasion. ALKBH5 also con-
trols monocyte recruitment and M2 polarization, as well as cellular autophagy. ALKBH5 also plays a role in tumor immune infiltration, hot/cold tumor 
transition, and the enhancement or attenuation of tumor radiosensitivity. It can also regulate epithelial-mesenchymal transition, stemness maintenance, 
glycolysis, and RNA degradation. (figure was created with Biorender.com)
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can reverse the radiation sensitivity induced by ALKBH5 
or YTHDF2 and may serve as a potential target for radio-
therapy in CRC [64]. Luo et al. discovered that ALKBH5 
is downregulated in CRC. ALKBH5 removes m6A mod-
ification on the mRNA of solute carrier family 7 mem-
bers 11 (SLC7A11), reducing mRNA stability, thereby 
decreasing SLC7A11 transcription and expression, pro-
moting ferroptosis in CRC cells [65].

In summary, these studies confirm the close association 
of ALKBH5 with the progression of CRC, suggesting that 
ALKBH5 may hold significant clinical significance as a 
target for drug therapy in CRC.

Liver cancer
LC is the sixth most common cancer globally, ranking 
fourth in mortality among all cancers [66]. Studies sug-
gest that ALKBH5 is highly expressed in hepatocellular 

carcinoma (HCC) and correlates with poor prognosis in 
HCC patients. Tumor-associated macrophages (TAMs) 
play a critical role in establishing the tumor microenvi-
ronment. ALKBH5, through an m6A-dependent mech-
anism, regulates the expression of mitogen-activated 
protein kinase kinase kinase 8 (MAP3K8), mediating 
the activation of downstream c-Jun N-terminal kinase 
(JNK) and extracellular regulated kinase (ERK) path-
ways, and promoting HCC cell proliferation, migration, 
and the recruitment of programmed death-ligand 1 (PD-
L1) + macrophages [67]. Related studies have reported 
interactions of ALKBH5 with PD-L1 mRNA in intrahe-
patic cholangiocarcinoma (ICC). Through the ALKBH5-
PD-L1 axis, it maintains the expression of PD-L1 in 
tumor cells, suppressing T-cell proliferation and cyto-
toxicity, and regulating the occurrence of ICC [68]. Liver 
cancer stem cells (LCSCs) are closely associated with the 

Fig. 3 ALKBH5 promotes or inhibits the progression of gastrointestinal cancer by targeting related molecules in concert with reader proteins. (A) ALKBH5 
regulates the molecular mechanism of CRC. (B) ALKBH5 regulates the molecular mechanism of HCC, ICC, and LCSCs. (C) ALKBH5 regulates the molecular 
mechanism of PC and PDAC. (D) ALKBH5 regulates the molecular mechanism of GC. (figure was created with Biorender.com)
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treatment and recurrence of LC. ALKBH5 regulates the 
expression of SRY-related HMG box (SOX4) through 
demethylation, thereby activating the sonic hedgehog 
(SHH) signaling pathway and promoting the progression 
of LCSCs [69]. Extracellular vesicles (EVs) play a cru-
cial role in the intercellular transfer of various bioactive 
substances that promote tumor proliferation, migration, 
invasion, and development. Han et al. discovered that 
bone-metastasized HCC-derived EVs (BM-EVs) can pro-
mote the progression of HCC by transferring miR-3190 
targeting ALKBH5 [70]. Recently, Zhang et al. found 
that LINC02551 serves as a target of ALKBH5, disrupt-
ing the combination between DEAD-box RNA helicase 
(DDX24) and E3 ubiquitin ligase tripartite motif-contain-
ing 27 (TRIM27) to reduce the ubiquitination of DDX24 
and subsequent degradation, ultimately promoting HCC 
growth and metastasis [71].

Some studies suggest that ALKBH5 is downregulated 
in HCC compared to normal liver cells and may act as 
a tumor suppressor to inhibit cancer development pro-
cesses such as proliferation, migration, and invasion 
in HCC. Therefore, further exploration of the role of 
ALKBH5 in HCC is warranted. Wang et al. found that 
ALKBH5 is downregulated in HCC, through interac-
tion with the m6A reader protein IGF2BP1, downregu-
lates the expression of its target gene AdipoQ Receptor 
4 (PAQR4) at the transcriptional and translational levels, 
thereby inhibiting the activation of the PI3K/AKT path-
way and the growth of LC [72]. Research indicates that 
LY6/PLAUR Domain Containing 1 (LYPD1) can act as an 
oncogene to promote the occurrence and development of 
HCC. ALKBH5, through an m6A-dependent mechanism, 
diminishes the expression of LYPD1 and strengthens the 
inhibitory effect of ALKBH5 on LYPD1 under the recog-
nition and stabilization of IGF2BP1[73]. Hepatic stellate 
cells (HSCs) can induce radiation-induced liver fibrosis 
(RILF) under radiotherapy for HCC. ALKBH5 can regu-
late the hepatic microenvironment and serve as a radio-
sensitization target for HCC, providing new insights into 
the radiotherapy and prognosis of HCC [74] (Fig. 3).

Overall, the role of ALKBH5 expression in LC is com-
plex and diverse. It can either promote or inhibit LC pro-
gression, and these contradictory findings may be due to 
different pathways regulated by ALKBH5.

Pancreatic cancer
PC is a prevalent malignancy of the digestive tract, 
marked by challenging early diagnosis, concealed symp-
toms, and high mortality, with a 5-year survival rate 
of less than 10% [75]. Research suggests that ALKBH5 
is downregulated in PC. Kaplan-Meier survival analy-
sis demonstrates a significant correlation between low 
ALKBH5 expression and overall survival in PC patients. 
ALKBH5 interacts with the YTHDF2 reading protein to 

upregulate the expression of the period circadian regu-
lator 1 (PER1) gene in an m6A-dependent manner. The 
upregulation of PER1 activates the P53-related signaling 
pathway, suppressing the growth of PC cells [76]. Anti-
sense LncRNA is closely linked to tumor development. 
He et al. discovered that Potassium two pore domain 
channel subfamily K member 15 and WISP2 antisense 
RNA 1 (KCNK15-AS1) is downregulated in PC cells 
and tissues, leading to the suppression of migration and 
invasion in PC cells. Mechanistically, ALKBH5 enhances 
the expression of KCNK15-AS1 by demethylating m6A 
modification. It recruits the proto-oncogene mouse 
double minute 2 (MDM2) to facilitate the ubiquitination 
of RE1-silencing transcription factor (REST), leading to 
the transcriptional upregulation of phosphatase and ten-
sion homolog (PTEN) to deactivate the AKT signaling 
pathway [77, 78]. Iron metabolism plays a crucial role in 
multiple aspects of cancer cells, including DNA synthe-
sis, mitochondrial respiration, cell proliferation, and the 
tumor microenvironment. In pancreatic ductal adeno-
carcinoma (PDAC), ALKBH5 regulates the stability of 
F-box and leucine-rich repeat protein 5 (FBXL5) RNA. 
Overexpression of ALKBH5 results in a marked decrease 
in intracellular iron levels, along with reduced cell migra-
tion and invasion capabilities. FBXL5, through the regu-
lation of iron proteins such as iron regulatory protein 2 
(IRP2), contributes to the control of PDAC occurrence 
and progression [79]. Tang and colleagues discovered that 
overexpression of ALKBH5 enhances the sensitivity of 
PDAC cells to chemotherapy. Reduced levels of ALKBH5 
are linked to poor prognosis in PDAC and various other 
cancers. ALKBH5 can impact the Wnt signaling pathway, 
decrease RNA methylation of Wnt inhibitory factor 1 
(WIF-1), and inhibit PC tumorigenesis [80]. Studies sug-
gest that ALKBH5-mediated m6A modification results in 
the upregulation of DNA damage-inducible transcript 4 
(DDIT4-AS1) expression in PDAC. DDIT-AS1, by stabi-
lizing DDIT4 and activating the mechanistic target of the 
rapamycin (mTOR) pathway, enhances cancer stem cells 
and inhibits chemosensitivity to gemcitabine (GEM) [81]. 
M6A methylation is closely associated with the tumor 
hypoxic microenvironment. Methylated RNA immuno-
precipitation sequencing (MeRIP-seq) results reveal that 
histone deacetylase type 4 (HDAC4) is an m6A-targeted 
gene in the tumor-hypoxic environment, and it modu-
lates the tumor-hypoxic microenvironment through the 
ALKBH5/HDAC4 /HIF1α pathway [82] (Fig. 3). In sum-
mary, ALKBH5 is downregulated in PC, and could influ-
ence the growth, migration, invasion, and chemotherapy 
sensitivity of PC cells through multiple mechanisms.

Gastric cancer
GC is presently among the most common cancers, 
ranking fifth in the incidence of various cancers [54]. 
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Significant attention should be given to the diagnosis and 
treatment of GC. Experimental evidence from in vivo 
and in vitro studies indicates that ALKBH5 is upregu-
lated in GC and correlates with clinical poor prognosis 
and low survival rates. LINC00659 facilitates the bind-
ing and upregulation of ALKBH5 with Janus kinase 1 
(JAK1) mRNA in a m6A-YTHDF2-dependent man-
ner, thereby promoting the development of GC [83]. 
Wang and colleagues discovered that lncRNA NRON 
is highly expressed in GC and promotes the occurrence 
and development of GC by binding with demethylase 
ALKHB5 to mediate Nanog (homeobox domain tran-
scription factor) mRNA decay. It is anticipated to be a 
prognostic factor and potential therapeutic target for GC 
patients [84]. Studies suggest a close association between 
lncRNA NEAT1 and ALKBH5. MeRIP experiments and 
rescue experiments confirm that ALKBH5 can bind to 
lncRNA NEAT1, mediating the demethylation process 
of NEAT1 in an m6A-dependent manner. This process 
influences the expression of EZH2 (a subunit of the poly-
comb repressive complex) and contributes to the inva-
sion and metastasis of GC [85]. Bioinformatics results 
indicate that ALKBH5 acts as an upstream target of Pro-
tein kinase, membrane-associated tyrosine/threonine 
1 (PKMYT1), negatively regulating PKMYT1 expres-
sion. In collaboration with the reading protein IGF2BP3, 
PKMYT1’s mRNA stability is increased. Depletion of 
ALKBH5 results in the upregulation of PKMYT1 expres-
sion, consequently promoting the invasion and migra-
tion of GC [86](Fig.  3). In conclusion, the expression 
of ALKBH5 is upregulated in GC. ALKBH5 promotes 
the invasion and metastasis of GC cells through various 
mechanisms, and is associated with poor prognosis and 
low survival rates of GC patients.

Esophageal squamous cell carcinoma
ESCC is the seventh most common cancer globally, and 
it stands as the sixth most common cause of cancer-
related deaths. Notably, ESCC exhibits high recurrence 
rates, leading to an unfavorable prognosis over the long 
term [87]. Xiao et al. discovered reduced expression 
of ALKBH5 in ESCC. The overexpression of ALKBH5 
suppresses the proliferation, migration, and invasion of 
ESCC cells. Simultaneously, it induces a certain degree 
of G1 phase arrest in ESCC cells, suggesting that the 
deficiency in ALKBH5 expression is one of the con-
tributing factors to the malignancy of ESCC tumors. In 
vivo, experiments confirm that the loss of ALKBH5 sig-
nificantly inhibits the tumor growth of ESCC cells trans-
planted subcutaneously in BALB/c nude mice. ALKBH5 
acts as an independent prognostic factor for patient 
survival and is correlated with poor prognosis in ESCC 
patients [88].

Currently, research on ALKBH5 in ESCC is relatively 
scarce, and more substantial research is needed for mak-
ing the role and mechanism clearer.

Future perspectives
In recent years, with the confirmed demethylase activity 
of ALKBH5 and the rapid development of high-through-
put sequencing for m6A methylation, research on the 
demethylase ALKBH5 has steadily advanced world-
wide. The dysregulation of m6A demethylase ALKBH5 
is observed in various gastrointestinal cancers and can 
directly or indirectly function as a regulatory gene in 
multiple cancers, regulating processes such as tumor 
cell proliferation, migration, invasion, metastasis, and 
drug resistance, thereby influencing the progression of 
cancer. However, it is worth noting that ALKBH5 plays 
a dual role in inhibiting or promoting cancer develop-
ment in certain digestive tract tumors. For example, in 
CRC, ALKBH5 inhibits CRC development by reducing 
the mRNA stability of PHF20 [54], while lncRNA NEAT1 
promotes CRC progression under the demethylation 
effect of ALKBH5 [57]. This may be related to the hetero-
geneity of tumors, differences in the clinical samples col-
lected by researchers, differences in research models, and 
so on. Therefore, further in-depth research and analysis 
of the genes regulated by ALKBH5 in specific cancers are 
needed. Additionally, multiple studies indicate that in the 
process of regulating the occurrence and development 
of cancer through downstream target genes, reader pro-
teins often play an auxiliary modifying role. Reader pro-
teins enhance the binding ability between ALKBH5 and 
target genes by regulating the stability of downstream 
gene mRNA, mediating the demethylation process of tar-
get genes. This provides a new direction for the research 
on the regulatory mechanism of ALKBH5 in cancer and 
the development of targeted therapeutic drugs that affect 
tumor progression through the m6A-dependent regula-
tion of related genes.

Conclusions
ALKBH5 has emerged as an important regulator and 
promising therapeutic target for the treatment of gas-
trointestinal cancer. However, the current research on 
the mechanism of ALKBH5 in gastrointestinal cancer is 
still in the preliminary stage, and there is a significant gap 
that needs to be filled in understanding the mechanisms 
of ALKBH5 in regulating metabolism, angiogenesis, and 
related signaling pathways, which may be the causes of 
the dual or controversial role of ALKBH5 in gastrointes-
tinal cancer. More efforts in advanced studies will hold 
great potential and promote our understanding of the 
role of ALKBH5 in gastrointestinal cancer as well as lead 
to the development of more effective and personalized 
treatments for patients with gastrointestinal cancer.
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