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Abstract 

Background  Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20–30%) and lacks of effec-
tive treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle 
at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 
is the first reported drug with inhibitory activity against both Wee1 and PKMYT1.

Methods  Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell 
colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evalu-
ated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet 
assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, 
a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein–
protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public 
database and assessed their prognostic implications with Kaplan–Meier curves.

Result  PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. More-
over, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 
regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apop-
tosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apop-
totic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation 
and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased 
levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 
and γ-H2AX in LUSCs, suggesting involvement in DNA damage.

Conclusions  In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin 
and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight 
the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.
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Introduction
Lung cancer is a leading cause of cancer-related mor-
tality worldwide, resulting in 1.8 million deaths in 2020 
[1–3]. Approximately 80% of cases classified as non-small 
cell lung cancer (NSCLC), include lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) two 
subtypes [1, 2]. Around 20%-30% of NSCLC diseases 
belong to the lung squamous cell carcinoma (LUSC) sub-
type [1, 4]. Unlike LUAD, patients with LUSC have not 
experienced similar benefits from targeted therapies.. 
Despite breakthroughs in early diagnosis and cancer 
treatments for lung cancer patients, LUSC are still associ-
ated with high mortality and a lack of therapies specific 
to this disease [5, 6]. Still, platinum-based chemotherapy 
remains the cornerstone of the current treatment for 
LUSCs [5].

Since tumor growth is largely driven by cell cycle 
checkpoints and DNA damage response (DDR) pro-
cesses, we investigate the responsible signaling pathways 
as potential targets for LUSC therapy [7–9]. Wee1 and 
PKMYT1 are considered potential candidates within the 
Wee1 kinase family for targeted cancer therapies [10]. 
Wee1 and PKMYT1 kinases at the G2-M phase are mem-
brane-associated tyrosine- and threonine-specific cdc2-
inhibitory kinases, which play critical roles at the G2-M 
cell cycle checkpoint [10, 11]. Wee1 can phosphorylate 
cyclin-dependent kinase 1 (CDK1) on phospho-CDK1 
(Tyr15), and PKMYT1 can activate both on Tyr15 and 
Thr14 [12]. Inhibition of Wee1 kinase causes a signifi-
cant reduction in Tyr15 levels, which in turn promotes 
the accumulation of the active CDK1/Cyclin B1 complex, 
thereby facilitating mitotic entry [13]. Inhibition of Wee1 
and PKMYT1 kinases leads to the override of the G2/M 
cell cycle checkpoint, resulting in premature entry into 
mitosis and subsequent cell death during mitosis. This 
process is commonly referred to as mitotic catastrophe 
[10].

Cells expressing wild-type TP53 arrest at the G1 
checkpoint to be able to repair damaged DNA [14, 15]. 
Tumor cells that typically lack TP53 are dependent on 
the G2 checkpoint to repair DNA damage [6]. Thus, tar-
geting the G2 checkpoint in TP53-deficient tumor cells 
is a promising therapeutic avenue [16, 17]. Inhibition of 
Wee1, can abolish the G2 checkpoint and therefore lead 
to cell death [18, 19].

LUSC tumor cells frequently harbor mutations in the 
TP53, CDKN2A, PTEN, PIK3CA, KEAP1, MLL2, HLA-
A, NFE2L2, NOTCH1, and RB1 genes [1, 20]. A major-
ity of LUSCs exhibit somatic mutations in the TP53 gene 
[20–22]. The inhibition of Wee1 has been shown to aug-
ment the efficacy of cisplatin, thereby improving clini-
cal outcomes in cancer patients, albeit with mechanisms 

not fully elucidated for all compounds [14, 23]. Several 
small-molecule inhibitors of Wee1 have been devel-
oped, including AZD-1775, PD0166285, and PD0407824. 
Among these, PD0166285, a co-inhibitor of Wee1 and 
Myt1, has demonstrated effectiveness across a spectrum 
of cancers including cervical cancer, colon cancer, lung 
cancer, melanoma, ovarian cancer, esophageal squamous 
cell carcinoma, hepatocellular carcinoma, as well as in 
glioblastoma cell lines and xenografts [24–27]. AZD-1775 
is currently in the clinical trial phase to determine its effi-
cacy against tumors with high Wee1 expression. How-
ever, AZD1775 exerts its single-agent cytotoxicity not 
only by inhibiting Wee1 but also by interacting with addi-
tional targets, independent of TP53 status [28]. Common 
adverse events associated with Wee1 inhibitors include 
hematologic events, nausea, vomiting, and fatigue [27]. 
Numerous studies have reported that PD0166285 exhib-
its enhanced sensitivity specifically in TP53-mutated 
cancers compared to other Wee1 inhibitors [10, 29]. 
Currently, Wee1 inhibitors are recognized as chemo-
sensitizing agents, with numerous studies demonstrating 
their synergistic activity with DNA-damaging agents in 
preclinical models [10, 30, 31]. On the other hand, plati-
num agents were among the initial agents tested in phase 
I trials in combination with Wee1 inhibitors [32]. While, 
the research investigating the combination of PD0166285 
with cisplatin in LUSC remains unclear.

Stat1 is a pivotal transcription factor belonging to the 
Signal Transducer and Activator of Transcription (Stat) 
protein family. It plays integral roles in various cellular 
functions, such as proliferation, differentiation, migra-
tion, apoptosis, homeostasis, immune signaling, and 
immune response [33, 34]. Stat1 is implicated in the 
pathogenesis of pancreatic cancer, breast cancer, osteo-
sarcoma, and small cell lung cancers (SCLCs) [34–36]. 
Triparna Sen and Hui Wen Lo et  al. cl have indicated 
that inhibiting Wee1 could affect the JAK/Stat signal-
ing and STING pathways in breast cancer and SCLCs 
[34, 37]. Due to the anti-tumor effect of Stat1, it has 
been identified as a therapeutic target [33]. Another 
study demonstrated that treatment with AZD1775 sig-
nificantly increased Stat1 phosphorylation [37]. How-
ever, the relationship between Wee1 and Stat1 remains 
unclear.

Thus, in the current study, we investigated that Wee1 as 
a promising therapeutic target in LUSC. We discovered 
that PD0166285 in combination with cisplatin can inhibit 
the growth of LUSCs and promote apoptosis. Moreover, 
we elucidated the relationship between Wee1 and Stat1 
and identified potential mechanisms by which Wee1 
mediates chemo-sensitization to cisplatin in LUSC.
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Materials and methods
Cell culture and drugs
The human lung bronchus epithelial cell lines BEAS-2B, 
A549, H226, H520 and Calu1 cell lines were cultured at 
37 ℃ with 5% CO2 in 90% DMEM (HyClone, USA) or 
RPMI1640 medium (HyClone, USA) supplemented with 
10% fetal bovine serum (HyClone, US) and 1% penicil-
lin/streptomycin (Life Technologies, Grand Island, NY).
All cell lines were obtained from the Shanghai Institute 
of Biochemistry and Cell Biology (Shanghai, China). 
Cisplatin (HY-17394) and PD0166258 (HY-13925) were 
obtained from MedChemExpress (MCE, America), dis-
solved in dimethyl formamide (DMF) and dimethyl sul-
foxide (DMSO) (Sigma), respectively, and added to the 
medium at a final concentration of up to 0.1% DMF/
DMSO.

Western blot analysis
The cells were inoculated in 6-well plates at a den-
sity of 2×105 cells per well and lysed with RIPA buffer 
(Beyotime, China) supplemented with 1× protease 
inhibitor (Solarbio, China) and phosphatase inhibitor 
(Solarbio, China). Then the bicinchoninic acid (BCA) 
protein detection kit (Thermo, USA) was used to deter-
mine the protein concentration. The proteins were 
denatured by boiling in 1.5× SDS loading buffer. Equal 
amounts of proteins were separated by SDS-PAGE and 
transferred to NC membranes. 5% non-fat milk was used 
to block the membranes at room temperature, and then 
the membranes were incubated overnight at 4  °C with 
primary antibodies. After washing in Tris-buffered saline 
containing Tween 20 (TBST), the membranes were incu-
bated with secondary antibodies at room temperature for 
1 h. The membrane were washed and ECL reagent, before 
analyzing with the Bio-Rad molecular Imager ChemiDoc 
XRS + system (BioRad, USA).

ATM (#2873), phospho-H2AX (S139, #9718), Wee1 
(#13084S), CyclinB (#12231t), Phospho-CDK1 T14 
(#AP1465), Phospho-CDK1 Y15 (#ab76146), β-Actin 
(#EM2001-07), PARP (#9532s), Cleaved PARP (#5625s), 
Caspase 3 (#9662s), Cleaved Caspase 3 (#9661s), Caspase 
9 (#ab202068), Bcl-2 (#3498S), Bcl-XL (2764S), Mre11 
(#4847T), Rad51 (#ab133534), Rad50 (#3427T), Stat1 
(#14994S), Phospho-Stat1 (#9167S), Socs3 (#2932s) pri-
mary antibodies as well as anti-rabbit (#7074) and anti-
mouse (#7076) secondary antibodies were purchased 
from Cell Signaling Technology (Danvers, MA), Abclonal 
(Wuhan, China), Huabio (Hangzhou, China), and Abcam 
(Cambridge, UK).

Cell viability assay
The cells were seeded into 96-well plates at a density of 
3500 cells per well and incubated overnight in complete 

medium. Following drug treatment for 48 h, cell viability 
was measured using Cell Counting Assay Kit-8 (CCK8) 
(MCE, USA) and measured with a microplate reader 
(BioRad, USA) at an absorbance of 450  nm. All experi-
ments were repeated three times.

Colony formation assay
The efficacy of PD0166285 combined with cisplatin was 
assessed using clonogenic assays. Briefly, the cells were 
incubated in 6-well plates and treated with various drugs 
for 2  weeks until visible colonies formed. Cells were 
fixed with 4% paraformaldehyde (PFA, Solarbio, Beijing, 
China) for 15 min, and then stained with 0.1% crystal vio-
let for 20 min at room temperature. After washing with 
PBS, colonies consisting more than 50 cells were counted 
using ImageJ software. Each experiment was conducted 
in triplicate.

Cell cycle assay
After exposure to PD0166258 with or without cisplatin 
for 48 hours, the cells were harvested, washed three times 
with PBS, fixed in 70% prepared pre-cooled ethanol, and 
incubated overnight at – 20 ℃. After washing with PBS 
three times, the cells were stained with propidium iodide 
(PI)/RNase solutions using a commercial cell cycle detec-
tion kit (BD Biosciences) at room temperature for 15 
minutes in the dark. The stained cells were then analyzed 
using BD FACS Canto II (BD Biosciences) within 1 hour. 
Data analysis was performed using ModFit LT version 
5.0 software (Verity Software House, Topsham, ME). All 
assays were performed three times.

Cell apoptosis assay
The cells were cultivated in 6-well plates, and treated 
with cisplatin, PD0166285, and PD0166285 combined 
with cisplatin for 48 hours. Then all the samples were 
washed in PBS, and double-stained using the Annexin 
V-Phycoerythrin (PE) kit and the FITC apoptosis detec-
tion kit (BD Biosciences, Erembodegem, Belgium) for 30 
minutes. Apoptotic cells were detected by flow cytometry 
within 1  h (BD Biosciences), and the results were ana-
lyzed using the FlowJo version 10.8.1 software (FlowJo, 
Oregon). All assays were performed three times.

Immunofluorescence staining assay
Cells at a density of approximately 10,000 cells/ml were 
seeded on a 14 mm glass slides in 24-well plates (NEST, 
Jiangsu, China) and incubated overnight. Then the sam-
ples were treated with respective compounds. Subse-
quently, the cells were immobilized with 4% PFA for 
10 minutes, followed by permeabilized with 0.5% Tri-
ton X-100 (Amresco, Solon, OH) for 20  minutes and 
blocked with 5% bull serum albumin (BSA) (A8020, 
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Solarbio,Beijing, China) at room temperature for 30 min-
utes. Then the primary antibody against γH2AX (1:100) 
was stained overnight at 4 °C. After that, cells were incu-
bated with Alexa Fluor 488-conjugated goat anti-rabbit 
immunoglobulin G (IgG) (Molecular Probes, Eugene, 
OR, 1:100) in the dark for 30 minutes at room tempera-
ture. Finally, Hoechst (Beyotime, Jiangsu, China, 1:3,000) 
was used for stained in the dark for 5 minutes. Images 
were captured with the Leica TCS SP8 confocal micro-
scope. All samples were washed with PBS and all images 
were acquired using the same exposure parameters.

siRNA transfection
For protein knockdown, NCI-H226 and NCI-H520 cells 
were transfected with Jetprime Reagent (Polyplus-trans-
fection, France) according to manufacturer’s instructions, 
using final siRNA concentrations of 50 nM. The day after 
siRNA transfection, cells were re-seeded and incubated 
until 48 hours after transfection and collected for anal-
ysis. The siRNAs targeting Wee1 were synthesized by 
GenePharm (China). The sequences of siRNAs were as 
follows:

si wee1#1: GCA​GCC​AGG​AAU​AUG​UUC​UTT.
si wee1#2: GGC​ACA​AGA​AGA​AUC​AAG​ATT.
si wee1#1: GGC​AAU​AUG​UCU​AUU​CUA​AGGTT.

Comet assay
A comet assay kit (Trevizen, USA) was used to assess the 
DNA damage. A total of 2×104 cells were suspended in 
low-melting agarose and spread on a comet slide followed 
by solidification at 37 °C. Then the slides were immersed 
in the pre-cooled lysis buffer at 4 ℃, and then transferred 
to an alkaline solution (0.3 M NaOH, 1 mM EDTA) and 
neutralized in TBE buffer (Tris Base 108  g, Boric Acid 
55 g, EDTA 9.3 g, ddH2O 1 L). The slides were fixed in 
70% ethyl alcohol and stained with SYBR Green I. All the 
images were captured by Olympus IX71 inverted micro-
scope (Tokyo, Japan). The percentage of “tailed” DNA in 
at least 50 cells and the tail “moment” (TM = percentage 
of DNA in the tail × tail length) were measured using the 
CASP software, and at least 50 cells were counted.

Co‑immunoprecipitation assay
The cells were inoculated in a 10 cm dish for the corre-
sponding before lysis with NP-40 lysis buffer added with 
PMSF (1:1000) for 30 minutes and centrifuged at 12000 g 
at 4 ℃ for 10 minutes. Then the specific antibodies were 
added to the supernatant and the samples were incubated 
overnight at 4 ℃. The antibody-bound proteins were then 
incubated with protein A/G magnetic beads for 1 hour 
at 4 ℃. Subsequently, the beads were washed three times 
with washing buffer, with each wash lasting 5 minutes. 

The N beads were boiled with 1.5× loading buffer for 
western blot analysis.

Nude mouse model
Suspensions containing 5×16 cells in a 1:1 mixture of 
serum-free medium were injected into the flanks of 
6-week-old female nude mice (Hangzhou Medical Col-
lege Experimental Animal Center, Hangzhou, China). 
Once the mean tumor volume reached approximately 
100–150 mm3, the mice were randomly assigned to four 
groups of six in each group, and each group received a 
different treatment (normal saline, cisplatin, PD0166285, 
and PD0166285+cisplatin). The size of the tumors was 
measured every 2 days using calipers and volumes were 
calculated using the formula: width2 × length × 0.5. 
After 2 weeks of treatment, the mice were sacrificed, and 
tumors, livers, and kidneys were collected for subsequent 
experiments.

Immunohistochemistry (IHC) assay
Tissues were fixed with formalin, embedded in paraf-
fin, and cut into 4 mm sections. Then the slides were 
dewaxed in xylene and dehydrated in graded alcohols. 
Antigen retrieval was performed by boiling the slides 
in 10  mM citrate buffer using a microwave for 20 min-
utes, followed by cooling to room temperature for 2  h. 
After treating with 3% H2O2 and 5% goat serum, all sam-
ples were incubated with primary anti-phos-CDK1 Y15 
(1:100) and γH2AX (1:100) overnight at 4℃. After the 
sections were washed with PBS, they were incubated 
with secondary biotinylated antibody and DAB stain 
(GeneTech. USA). Images were captured using a Motic 
EasyScan microscope (Motic, USA).

Statistical analysis
Our results were expressed as the mean ± SD and ana-
lyzed using GraphPad Prism (GraphPad Software Inc, 
USA). Each experiment was conducted independently at 
least three times. The significance level was indicated as 
*p<0.05, **p<0.01, ***p<0.001.

Results
Wee1 inhibitor PD0166285 inhibited Wee1 and PKMYT1 
activities in LUSC
We initially assessed the expression of Wee1 and 
PKMYT1 in human cancer using public databases. From 
the public database (UALCAN (uab.edu), we found that 
Wee1 and PKMYT1 were highly expressed in LUSCs 
(Fig. 1a). Expression of Wee1 and PKMYT1 in the data-
base is associated with poor patient outcomes (Fig. 1b). 
Compared to pan-cancer tissues, cancer tissues exhibited 
significantly higher levels of Wee1 and PKMYT1 expres-
sion (Fig.  1c). Moreover, overexpression of Wee1 and 
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PKMYT1 was notably associated with TP53-mutated 
LUSCs (Fig. 1d).

To explore the therapeutic potential of PD0166285, 
NCI-H226, NCI-H520 and Calu1 cell lines were treated 
with different concentrations of PD0166285 (0  nM, 
200  nM, 400  nM, 800  nM). PD0166285 treatment 
led to a significant decrease in both the number and 
size of cell colonies (Fig.  1e). The anti-tumor efficacy 
of PD0166285 was further assessed using the CCK8 
assay. TP53-mutated LUSCs cells displayed differential 
responses to PD0166285 and cisplatin, with IC50 val-
ues for PD0166285 ranging from 641 to 1204  nM. Pre-
vious studies have shown that TP53-mutated cells are 
more sensitive to the Wee1 inhibitor [7, 10, 38]. The 
IC50 values of cisplatin in LUSCs ranged from 1.520 
to 2.579  μM (Fig.  1f ). Then NCI-H226, NCI-H520 cell 
lines were treated with 400  nM PD0166285 for various 
durations to examine the expression of Wee1, CyclinB, 
p-CDK T14 and p-CDK Y15. Our findings demonstrated 
a time-dependent inhibition of Wee1 and PKMYT1 at 
the protein level within 0-48 hours post-treatment with 
PD0166285 (Fig. 1g).

PD0166285 arrested LUSC cells at the G2–M phase 
of the cell cycle
To assess the impact of PD0166285 on mitosis in LUSCs, 
NCI-H226 and NCI-H520 cells were treated with varying 
concentrations of PD0166285 for 48  h (0  nM, 200  nM, 
400 nM, 800 nM). Flow cytometry analysis revealed a sig-
nificant decrease in the proportion of cells in the G2/M 
phase following treatment (Fig.  2a, b). Consistent with 
these findings, the expression levels of cell cycle-related 
proteins were also altered (Fig. 2c, d). Overall, our results 
suggest that PD0166285 inhibits the growth of LUSC 
cells by arresting them in the G2/M phase.

PD0166285 induces apoptosis in LUSC cells
To determine if treatment with PD0166285 and cisplatin 
triggered apoptosis in LUSC cells, Annexin-V staining 
was performed. As shown in the Fig.s, the proportion of 
apoptotic cells significantly increased in a dose-depend-
ent manner (Fig. 3a, b), which was further corroborated 
by an increase in protein level (Fig. 3c).

PD0166285 augments the efficacy of cisplatin in LUSC cells 
by blocking the G2/M phase
PD0166285 demonstrated a dose-dependent effect on 
the proliferation of LUSC cells. To evaluate the effect 
of PD0166285 on cell proliferation, LUSC cells were 
treated with 400  nM of PD0166285 and 1  μM of cis-
platin (Fig. 4a). Given that DNA damage is a prerequi-
site for Wee1 inhibitor efficacy, cells were pre-treated 
with cisplatin (1  μM) for four hours before adding 
PD0166285. After 14 days, the cells were fixed and 
stained with 0.1% crystal violet solution. The combina-
tion of cisplatin with PD0166285 showed significantly 
higher antiproliferative efficacy compared to mono-
therapy (Fig. 4b).

Cells deficient in TP53 are more dependent on 
G2/M checkpoints, and TP53 mutations are prevalent 
in LUSCs tumor cells. Therefore, we investigated the 
effect of PD0166285 in TP53 mutant cells. As expected, 
the anti-tumor effects of the PD0166285-cisplatin com-
bination therapy were enhanced in TP53 mutant LUSC 
cells, as evidenced by both flow cytometry and protein 
analysis. We found that PD0166285 can arrest the cell 
cycle at the G2/M phase, and that the expression levels 
of p-CDK1 T14 and p-CDK1 Y15 were decreased in the 
combination treatment (Fig. 4c, d).

PD0166285 potentiates chemo‑sensitization of cisplatin 
through induction of apoptosis
The combination of PD0166285 and cisplatin induced 
greater apoptosis compared to either compound alone 
(Fig.  5a). Western blot analysis further demonstrated 
that, compared to PARP, caspase3, and caspase9, the 
expression levels of their cleaved forms—cleaved-
PARP, cleaved-caspase3, and cleaved-caspase9—were 
increased (Fig.  5b). These findings indicate that the 
combination therapy of PD0166285 and cisplatin signif-
icantly increases apoptosis in LUSC cells Interestingly, 
a similar significant effect, determined using TUNEL 
assay, was also observed in nude mice (Fig. 5c).

Fig. 1  Wee1 and PKMYT1 expression in LUSCs tissues at mRNA and protein levels. a Differential mRNA expression of Wee1 and PKMYT1 
in pan-cancer analysis from TCGA data obtained from the UALCAN. Wee1 and PKMYT1 exhibit high expression levels in LUSCs. b Overall survival 
of patients with LUSCs after successful surgery. KM survival curves for overall survival in LUSC patients from the Kaplan–Meier plotter online 
database. Grouping by” auto select best cutoff”. c Expression of Wee1 and PKMYT1 in LUSC tissues (TCGA, n = 503) compared to healthy lung tissues 
(TCGA, n = 52) assessed by RNASeq. d Western blot analysis of Wee1 and PKMYT1 expression in BEAS-2B cells, A549, Calu1, NCI-H226, and NCI-H520 
cells. e Colony formation assay of LUSC cells treated with various concentrations (0 nM, 200 nM, 400 nM, and 800 nM) of PD0166285. f The CCK-8 
assay revealing the IC50 values of PD0166285 and cisplatin in LUSCs. g Time-dependent inhibition of Wee1 and PKMYT1 by PD0166285 at different 
concentrations. *p < 0.05, **p < 0.01, ***p < 0.001

(See figure on next page.)
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PD0166285 decreased the DNA damage level 
and attenuated DNA damage repair by inhibiting 
the function of Rad51
We found that PD0166285 attenuated the levels of 
γ-H2AX in NCI-H226 and NCI-H520 cells (Fig.  6a). 
Co-administration of cisplatin and PD0166285 resulted 
in elevated γ-H2AX expression, indicating activation of 
the Wee1-mediated DNA damage response, consistent 
with previous studies [39]. An alkaline comet assay was 
conducted to directly evaluate the effect of PD0166285 
on DNA damage repair. As shown in Fig.  6b, follow-
ing four hours of cisplatin treatment, combination with 
PD0166285 significantly increased the ’comet tail’ length 
and tail moment, indicative of impaired DNA damage 
repair in LUSC cells.

To further explore the underlying mechanism of the 
DNA damage repair pathway, we examined relevant pro-
teins (ATM, P95, MRE11, Rad50, Rad51, γ-H2AX). We 

found a down-regulation of Rad51 expression, with no 
significant changes in other proteins (Figs. 6c).

Stat1 interacts with Wee1 in LUSCs
Previous studies have indicated that cellular stress arising 
from DNA replication levels is associated with genomic 
instability and micronucleus formation. According to 
the TCGA database, Stat1 is highly expressed in cancers 
(Fig. 7a, b). To determine the effect of Stat1 expression on 
the survival of LUSC patients, we conducted a prognostic 
analysis using TCGA data. The Kaplan-Meier (KM) curve 
demonstrated a significant correlation between Stat1 
expression and poorer overall survival (OS) in LUSC 
patients (Fig. 7c). Previous research has implicated Stat1 
in apoptosis and our study also found that PD0166285 
induces apoptosis. To explore the interaction of Stat1 
and Wee1, we performed the co-immunoprecipitation 
assay, which showed that Stat1 and Wee1 interacted 
(Fig. 7d). We also observed that in the absence of Wee1, 

Fig. 2  PD0166285 blocks G2/M phase of the cell cycle in a dose-dependent manner. a, b Flow cytometry analysis showing PD0166285-induced 
blockade of G2/M phase in LUSCs. c, d Western blot analysis demonstrating PD0166285-mediated inhibition of the cell cycle-related proteins 
in LUSCs. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3  PD0166285 and cisplatin induce apoptosis in a dose-dependent manner. a, b Flow cytometry analysis showing PD0166285 
and cisplatin-induced apoptosis in LUSCs. c Western blot analysis of apoptotic proteins in the presence and absence of PD0166285 and cisplatin 
in LUSCs. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4  PD0166285 sensitizes LUSC cancer cells to cisplatin. a Calculation of the combination index (CI) for PD0166285 and cisplatin treatment. b The 
inhibitory effect on colony formation following treatment with PD0166285 combined with cisplatin in LUSCs. c PD0166285 combined with cisplatin 
blocks the G2/M phase of cell cycle. d Alteration of cell cycle related proteins by PD0166285 combined with cisplatin. *p < 0.05, **p < 0.01, 
***p < 0.001
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Fig. 5  Combination therapy of PD0166285 and cisplatin enhances apoptosis in LUSCs. a The combination of PD0166285 and cisplatin enhances 
the apoptosis ratio in LUSC tumor cells. b PD0166285 combined with cisplatin alters the protein levels of apoptosis-related proteins. c PD0166285 
combined with cisplatin accelerates apoptosis in vivo. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 6  PD0166285 enhances the DNA damage caused by cisplatin in LUSCs. a γ-H2AX foci increase following treatment with PD0166285 
in combination with cisplatin. Scale bar = 10 μM. b Alkaline comet assay of LUSC tumor cells with control, cisplatin, PD0166285 alone 
and in combination with cisplatin. Comet tails and tail moments are measured in different groups. Scale bar = 100 μM. c PD0166285 modulates DNA 
damage repair through Rad51 in LUSCs. *p < 0.05, **p < 0.01, ***p < 0.001
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the expression of Stat1 remained unchanged, while the 
expression of the p-Stat1 was up-regulated, while Socs3 
was down-regulated. This indicates that the Stat1 sign-
aling pathway is activated following Wee1 inhibition 
(Fig. 7e).

PD0166285 inhibits the growth and increases 
the chemosensitivity of LUSC to cisplatin in vivo
We established a nude mouse model using LUSCs cells. 
When the tumor size reached 100–150  mm3, the nude 
mice were randomly assigned to different treatment 
groups: control (no treatment), cisplatin alone (5  mg/
kg), PD0166285 alone (10  mg/kg), and combination 
therapy with cisplatin and PD0166285. Treatment with 

cisplatin plus PD0166285 demonstrated significantly 
enhanced suppression of tumor growth compared to 
either treatment alone (Fig.  8a). Western blot analy-
sis of mouse tumor samples showed consistent results 
with our in  vitro findings, with altered expression of 
Wee1, Phospho-Stat1, cleaved-PARP, Cyclin B, Rad51, 
Phospho-CDK1 T14, and phospho-CDK1 Y15 (Fig. 8b). 
To evaluate the toxicity of PD0166285, liver and kidney 
tissues were examined using hematoxylin and eosin 
(HE) staining, revealing no significant cellular dam-
age (Fig.  8c). Immunohistochemical staining of LUSC 
tumor samples revealed upregulated expression levels 
of Phospho-Y15, γ-H2AX and Phospho-Stat1 (Fig. 8).
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Discussion
The development of novel drugs for LUSC is highly chal-
lenging due to the complex tumor genomics and limited 
understanding of the oncogenic pathways [2]. Despite sig-
nificant advancements in cancer therapeutics, including 
immunotherapy, effective treatments tailored for LUSC 
remain scarce, leaving patients with advanced-stage dis-
ease with limited therapeutic options [1]. In our recent 
study, we have shown that PD0166285, a Wee1 inhibi-
tor, effectively disrupts the G2/M phase of the cell cycle. 
Moreover, when PD0166285 is used in combination with 
cisplatin, PD0166285 induces apoptosis. We investigated 
the underlying mechanisms of this combination therapy 
from two perspectives: first, PD0166285 combined with 
cisplatin induces DNA damage by decreasing the expres-
sion of Rad51 and causing mitotic catastrophe. Second, 
this combination therapy induces apoptosis via activation 
of the Stat1 pathway. Our study elucidates the specific 
mechanisms of PD0166285 in combination with cisplatin 
in the treatment of LUSC, providing an effective basis 
for optimizing therapeutic strategies for this challenging 
disease.

PD0166285 is the first drug reported to have inhibitory 
activity at low doses against Wee1, PKMYT1, and sev-
eral other kinases including c-Src, EGFR, FGFR1, CHK1, 
and PDGFRβ [10]. Previous research indicated that the 
non-selective action of PD0166285 at low concentrations 
limited its therapeutic use. However, recent studies have 
demonstrated that combining PD0166285 with bort-
ezomib selectively induces cell death in various types of 
solid tumor cells [40, 41]. In our studying, consistent with 
these findings, PD0166285, at nanomolar concentrations, 
effectively arrests cells at the G2 phase, inducing apop-
tosis in a time-dependent and concentration-dependent 
manner. Additionally, the combination of PD0166285 
with cisplatin significantly showed synergistic effects. It is 
well established that the regulation of the G2 checkpoint 
is critical for TP53-mutant cells [42]. Recent studies dem-
onstrate that WEE1 exhibits a significant synthetic lethal 
effect on TP53-mutated tumors [43, 44]. Unlike other 
Wee1 inhibitors, PD0166285’s effectiveness appears to 
be correlated with the functional status of TP53, whereas 
AZD1775 inhibits Wee1 independent of TP53 status [27, 
29]. Our study also showed that PD0166285 was more 

effective in sensitizing TP53-deficient tumor cells [10, 
45].

To investigate the mechanism of PD0166285 in induc-
ing DNA damage, we conducted a series of assays. Wee1 
is a critical protein kinase that regulates the G2/M cell 
cycle checkpoint, a pivotal stage in the cell cycle where 
DNA damage is assessed before cells enter mitosis [46]. 
Previous studies have shown that Wee1 inhibition mark-
edly reduces the expression of Rad51, a protein involved 
in DNA damage repair [46, 47]. Consistent with these 
findings, our data also demonstrated a similar trend in 
LUSC. Rad51 is a member of the Rad52 epistasis group 
and plays a key role in homologous recombination (HR) 
and the maintenance of genomic stability [48, 49]. When 
treated with DNA-damaging agents, Rad51 is upregu-
lated, further indicating its crucial role in HR [48]. Con-
sistent with this, our experiments revealed a significant 
upregulation of Rad51 expression during cisplatin treat-
ment. Additionally, we detected other proteins associ-
ated with DNA damage; however, the expression levels 
of these proteins remained unchanged. Therefore, further 
studies are needed to fully elucidate the mechanism by 
which Wee1 regulates Rad51.

In addition to inducing DNA damage, we found that 
the combination of PD0166285 with cisplatin signifi-
cantly increased the rate of apoptosis. Analysis of data 
from The Cancer Genome Atlas (TCGA) revealed an 
interaction between Wee1 and Stat1, further validated 
through co-immunoprecipitation (CO-IP) assays. Stat1 
plays a crucial role in regulating cell apoptosis and 
modulating the immune cell landscape [34]. Further-
more, a study has reported that tannic acid can increase 
the levels of phosphorylated Stat1 (p-Stat1), thereby 
enhancing apoptosis in breast cancer cells. This report 
suggested a potential mechanism by which PD0166285 
and cisplatin may exert their effects [34]. Another study 
demonstrated that treatment with 1 μM AZD1775 sig-
nificantly increased phosphorylated signal transducer 
and activator of p-Stat1 levels in small cell lung cancer 
(SCLC) cell lines [37]. We observed an upregulation of 
p-Stat1 upon inhibition of Wee1 in LUSC cell lines. Sup-
pressors of cytokine signaling (SOCS) proteins serve as 
critical negative feedback regulators in cytokine signal-
ing via the Janus kinase (JAK)-Stat pathway. Notably, 
SOCS1 and SOCS3 play pivotal roles in the development 

(See figure on next page.)
Fig. 8  PD0166285 sensitizes the LUSC to cisplatin in vivo. a Inhibition of tumor growth in vivo following PD0166285 plus cisplatin treatment. 
b Expression analysis of Wee1, Stat1, Phospho-Stat1, cleaved-PARP, CyclinB, Rad51, Phospho-CDK1 T14 and Phospho-CDK1 Y15 in vivo 
after PD0166285 treatment. c Assessment of hepatorenal toxicity in vivo using HE staining. Scale bar = 200 μM in 5 × . d IHC assay to demonstrate 
expression of Phospho-CDK1 Y15 and γ-H2AX after PD0166285 treatment. Scale bar = 50 μM in 20 × , Scale bar = 25 μM in 40 × . ns > 0.05, *p < 0.05, 
**p < 0.01, ***p < 0.001
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Fig. 8  (See legend on previous page.)
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and progression of cancers [50, 51]. The Src homology 
2 (SH2) domain competitively binds to phosphorylated 
tyrosine sites on cytokine receptors, thereby preventing 
Stat activation [52]. SOCS1 and SOCS2 play critical roles 
in regulating Stat3 and Stat5 activation, SOCS3 regulates 
additional Stat pathways including Stat1 and Stat4 [53–
56]. In our studying, upon silencing the expression of 
Wee1, we observed activation of p-Stat1 and subsequent 
downregulation of SOCS3. Further investigation into the 
underlying mechanisms, particularly involving immune 
responses, is warranted.

Several clinical trials have developed Wee1 inhibitors. 
In Phase I and Phase II trials, PD0166285 in combina-
tion with carboplatin improved outcomes in advanced 
TP53 mutant solid tumors [57]. PD0166285 targets both 
Wee1 and PKMYT1, making it a suitable pharmacologi-
cal candidate for combination strategies in cancer treat-
ment [10]. Some studies suggest that inhibition of Wee1 
may enhance the cytotoxic effects of DNA-damaging 
drugs [58]. Among several DDR inhibitors, Wee1 inhibi-
tors have been highlighted as particularly effective, dem-
onstrating comparatively lower off-target toxicity [10]. 
In our analysis of liver and kidney toxicity in a mouse 
model, we observed that combination therapy resulted in 
low toxicity. Currently, numerous ongoing clinical trials 
are investigating combinations of Wee1 inhibitors with 
DNA damaging agents [40].

PD0166285 is notoriously promiscuous, not limiting 
its interaction with Wee1, which poses a challenge for its 
clinical application and is considered a limitation of this 
study. Consequently, future development efforts for Wee1 
inhibitors will likely focus on optimizing their structural 
properties to address these challenges. Meanwhile, the 
mechanism of PD0166285 in immunity remains poorly 
understood and requires further detailed investigation.

In conclusion, our study reaffirms the sensitizing 
effect of PD0166285, underscoring the critical role of 
the G2/M checkpoint in cellular response to chemo-
therapy. These findings highlight Wee1 as a promising 
therapeutic target for future adjuvant therapy in TP53-
mutated LUSC. Our results demonstrate that Wee1 
responds to DNA damage through the Rad51 pathway 
and induces apoptosis via Stat1 activation. Addition-
ally, we discovered an interaction between Wee1 and 
Stat1, offering a new direction for selecting drugs for 
combined immunotherapy in the future. Furthermore, 
the combination therapy of a Wee1 inhibitor and cispl-
atin significantly lowers the IC50 of cisplatin compared 
to monotherapy, demonstrating enhanced clinical effi-
cacy and reduced toxicity, thereby providing a foun-
dation for drug optimization. Importantly, our study 
addresses a gap in the research on Wee1 inhibitors in 

TP53-mutated LUCS, as there has been limited explo-
ration of the functions of Wee1 and Stat1 in LUSC. 
Moving forward, further exploration of the interaction 
mechanism between Wee1 and Stat1 is warranted.
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