
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Chen et al. Cancer Cell International          (2024) 24:311 
https://doi.org/10.1186/s12935-024-03496-x

Cancer Cell International

†Yi-Chao Chen, Wei-Zhong Zheng and Chun-Peng Liu contributed 
equally to this work.

*Correspondence:
Feng Pan
panfengbio@126.com
Si-Qi Qiu
s_patrick@163.com
1Clinical Research Center, Shantou Central Hospital, Shantou  
515041, China
2School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The 
University of Hong Kong, Hong Kong 999077, China

3Department of Pathology, Shantou Central Hospital, Shantou  
515041, China
4Surgical Oncology Department, Shantou Central Hospital,  
Shantou 515041, China
5Radiation Oncology Department, The Cancer Hospital of Shantou 
University Medical College, Shantou 515041, China
6Department of Thyroid and Breast Surgery, The First Affiliated Hospital of 
Shantou University Medical College, Shantou 515041, China
7Diagnosis and Treatment Center of Breast Diseases, Shantou Central 
Hospital, Shantou 515041, China

Abstract
Background Currently, there are no optimal biomarkers available for distinguishing patients who will respond to 
immune checkpoint inhibitors (ICIs) therapies. Consequently, the exploration of novel biomarkers that can predict 
responsiveness to ICIs is crucial in the field of immunotherapy.

Methods We estimated the proportions of 22 immune cell components in 10 cancer types (6,128 tumors) using the 
CIBERSORT algorithm, and further classified patients based on their tumor immune cell proportions in a pan-cancer 
setting using k-means clustering. Differentially expressed immune genes between the patient subgroups were 
identified, and potential predictive biomarkers for ICIs were explored. Finally, the predictive value of the identified 
biomarkers was verified in patients with urothelial carcinoma (UC) and esophageal squamous cell carcinoma (ESCC) 
who received ICIs.

Results Our study identified two subgroups of patients with distinct immune infiltrating phenotypes and differing 
clinical outcomes. The patient subgroup with improved outcomes displayed tumors enriched with genes related to 
immune response regulation and pathway activation. Furthermore, CCL5 and CSF2 were identified as immune-related 
hub-genes and were found to be prognostic in a pan-cancer setting. Importantly, UC and ESCC patients with high 
expression of CCL5 and low expression of CSF2 responded better to ICIs.

Conclusion We demonstrated CCL5 and CSF2 as potential novel biomarkers for predicting the response to ICIs in 
patients with UC and ESCC. The predictive value of these biomarkers in other cancer types warrants further evaluation 
in future studies.
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Introduction
Immunotherapies using immune checkpoint inhibitors 
(ICIs) have revolutionized cancer treatments over the 
past decade, demonstrating significant therapeutic ben-
efits across various types of malignancies [1–3]. Immu-
notherapies of ICIs, which target the tumor-immune 
cell interaction, can significantly prolong the survival of 
a subset of patients with solid tumors, including mela-
noma, triple-negative breast cancer, and non-small-cell 
carcinoma, among others [4–7]. Factors that may influ-
ence the therapeutic efficacy of ICIs include the type of 
cancer, the treatment stage, and the use of different treat-
ment combinations [8]. A widely adopted strategy to 
enhance the effectiveness of ICIs involves combining one 
ICI with other anticancer agents, such as chemotherapy 
and targeted therapies [9].

A major limitation of tumor immunotherapy is that 
only a fraction of cancer patients respond to the therapy 
[7, 10]. Consequently, the development of biomarkers to 
evaluate a patient’s responsiveness to ICIs is crucial for 
the successful application of immunotherapy. Several 
biomarkers have been proposed, including tumor muta-
tional burden (TMB) and microsatellite instability (MSI) 
[11, 12], the overexpression of programmed death-ligand 
1 (PD-L1) [13, 14], gut microbiota [15], and the compo-
sition of tumor-infiltrating immune cells [16, 17], among 
others. However, the predictive power of these biomark-
ers in distinguishing patients who would benefit from 
ICIs has been unsatisfactory. The application of TMB 
remains limited to clinical trials and has not yet been 
well validated [18]. Assessing PD-L1 in current practice 
presents several issues, such as the use of different cut-off 
thresholds and antibody clones [19], leading to inconsis-
tent predictive values of PD-L1 expression for ICIs across 
different trials [20, 21]. Therefore, novel predictive bio-
markers are warranted to better identify the most suit-
able candidates for ICIs.

Recent studies have suggested that the composition 
of immune cell types is associated with responses to 
immunotherapies [22–26]. Guven DC et al. evaluated the 
association between the neutrophil-to-lymphocyte ratio 
(NLR) and survival in ICI-treated patients [27]. Due to 
the technical limitations, these studies generally focus 
on only one or two immune cell types. However, evaluat-
ing just one or two types of immune cells may not always 
predict the response to immunotherapies [28]. The inter-
actions between multiple immune cell types may be more 
closely associated with the efficacy of immunotherapies.

With the help of the bioinformatics tool CIBERSORT 
(Cell type Identification by Estimating Relative Subsets 
Of known RNA Transcripts), we can reconstruct the 
proportions of immune cell types from bulk transcrip-
tome data and further investigate their impact on patient 
outcomes. It has been reported that the proportions of 

immune cell types derived from gene expression data 
can predict the responsiveness to immunotherapy and 
the prognosis of patients with breast cancer [24, 25, 29], 
colorectal cancer, and renal cell carcinoma patients [29, 
30]. As a result, the model exhibits high prediction accu-
racy at the tumor type-specific level [24, 25, 29, 30]. How-
ever, a comprehensive analysis of immuno-subtyping and 
its predictive power for immunotherapy responsiveness 
in a pan-cancer setting remain unclear.

Therefore, we conducted a comprehensive pan-cancer 
analysis in an extensive dataset of 6,128 patients from 10 
cancer types, using CIBERSORT to estimate the propor-
tions of 22 tumor-infiltrating immune cells within each 
tumor. We further classified malignancies based on their 
immune cell components. After classification, differen-
tially expressed immune-related biomarkers of immune 
subtypes were explored. Finally, the predictive value of 
the identified biomarkers for immunotherapy was evalu-
ated in two cohorts of patients with urothelial carcinoma 
(UC) and esophageal squamous cell carcinoma (ESCC) 
who received ICIs.

Materials and methods
RNA data acquisition and clinicopathological data 
collection
RNA data and clinicopathological data for newly diag-
nosed primary tumors from patients with 10 cancer types 
and corresponding normal tissues were collected from 
The Cancer Genome Atlas (TCGA) via the GDC por-
tal (https://portal.gdc.cancer.gov/). The 10 cancer types 
included triple-negative breast cancer (TNBC; TCGA 
term: BRCA), non-small cell lung cancer (NSCLC; TCGA 
term: LUAD, LUSC), head and neck squamous cell car-
cinoma (HNSC; TCGA term: HNSC), cervical squa-
mous cell carcinoma and endocervical adenocarcinoma 
(CESC; TCGA term: CESC), stomach adenocarcinoma 
(STAD; TCGA term: STAD), renal cell carcinoma (RCC; 
TCGA term: KICH, KIRP, KIRC), bladder urothelial car-
cinoma (BLCA; TCGA term: BLCA), cutaneous skin 
melanoma (SKCM; TCGA term: SKCM), colon adeno-
carcinoma/rectum adenocarcinoma (COREAD; TCGA 
term: COAD, READ), and Liver hepatocellular carci-
noma (LIHC; TCGA term: LIHC).

Estimation of the infiltrating immune cell fraction
We used CIBERSORT to estimate the fractions of 22 
immune cell types in the 10 cancer types [31]. The sum 
of all estimated immune cell type fractions equaled 
1. Specifically, we extracted the mRNA expression 
“FPKM” data from the total RNA data using Perl. Sub-
sequently, we used “CIBERSORT R script v1.03” to 
estimate the immune cell proportions from the mRNA 
expression data. The CIBERSORT p-value reflects 
the proportion of immune cells versus non-immune 

https://portal.gdc.cancer.gov/
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cells within a sample [24]. A larger p-value indicate a 
greater proportion of non-immune cells within a sam-
ple [24].

Immune cytolytic activity test
Immune cytolytic activity is another in silico measure 
of immune infiltration, as described by Rooney et al. 
[32]. High cytolytic activity indicates a high concen-
tration of immune cells in a sample [33]. The cytolytic 
immune activity of samples was determined by cal-
culating the geometric mean of the expression quan-
tities of GZMA (granzyme A) and PRF1 (perforin 1). 
To compare the cytolytic activity in samples with dif-
ferent p-values derived from CIBERSORT, all samples 
were divided into three groups based on the p-value: 
p < 0.01, p < 0.05 and p ≥ 0.05, after which the cytolytic 
activity of the samples in these three groups was calcu-
lated respectively.

Clustering analysis based on fractions of immune cells
To investigate whether tumors of different cancer types 
share the same distinct patterns of immune cell infil-
tration and whether these immune patterns are asso-
ciated with patient prognosis, we conducted K-means 
clustering, Gaussian Mixture Model, and Hierarchical 
clustering of immune cell fractions of the pan-cancer 
dataset. The ratio of explained variance, reflecting the 
ratio of between-group variance to the total variation, 
was used to determine the optimal clustering method 
as well as the optimal number of clusters. The optimal 
number of distinct clusters maximally demonstrated 
intra-cluster similarity.

Functional and signal pathway enrichment analysis
Samples were divided into groups based on the clus-
tering analysis. Then, the gene expression data of 
cluster 2 were compared with those of cluster 1&3. 
Differentially expressed genes (DEGs), defined as |log-
2FoldChange| ≥ 1 and p < 0.05, were identified using 
the limma package of R. Then, the related signaling 
pathways of the DEGs were obtained by gene ontology 
(GO) analyses and Kyoto encyclopedia of genes and 
genomes (KEGG) analyses using the clusterProfiler 
package of R. In addition, gene set enrichment analysis 
(GSEA) was applied based on the expression data of all 
genes to identify the key signaling pathways involved 
in different patient subgroups derived from the clus-
tering analysis.

Identification of immune-related differentially expressed 
hub genes
Immune-related genes was downloaded from the 
Innate DB dataset (https://www.innatedb.ca/). By 
intersecting all immune-related genes with the DEGs, 

the immune-related DEGs were screened, meaning 
that these genes are not only significantly different in 
their expression levels, but also related to immunity. 
The protein-protein interaction (PPI) network was 
constructed using STRING v11.5 (https://www.string-
db.org/). The PPI network was then subjected to Cyto-
scape v3.8.2 and cytoHubba plugin, where the degree 
of nodes was calculated as the direct number of edges 
linking to the node gene. The top 10 genes, determined 
by degree, were defined as hub genes.

Identification of potential predictive biomarkers for 
immunotherapy
The prognostic value of the immune-related differ-
entially expressed genes was assessed by the COX 
regression analysis. The median expression level of 
the genes was used as cutoff to define high and low 
expression levels. The genes that were significantly 
associated with patient outcomes and were identi-
fied as hub genes in the above-mentioned PPI analysis 
were considered as potential predictive biomarkers for 
immunotherapy.

Verification of the predictive value of identified biomarkers 
in UC and ESCC
RNA-seq data and clinicopathological data 
(IMvigor210) from 348 patients with metastatic UC 
receiving immunotherapy (anti-PD-L1), were extracted 
using the R package IMvigor210CoreBiology (http://
researchpub.gene.com/IMvigor210CoreBiology). The 
patients were divided into CCL5 or CSF2 high-expres-
sion groups and CCL5 or CSF2 low-expression groups 
according to the optimal cutoff values generated from 
the X-tile software [34]. Kaplan-Meier curves were 
drawn using the R package Survminer.

Esophageal cancer tissue slides and clinicopatho-
logical information from 36 patients with ESCC who 
received neoadjuvant immunotherapy (anti-PD-1) 
were obtained from Shantou Central Hospital. Ethical 
approval was obtained from the Ethical Committee of 
the Shantou Central Hospital. The expression of bio-
markers (CCL5 and CSF2) in tumor tissue was assessed 
by immunohistochemistry (IHC), which was per-
formed as previously described [35]. Briefly, the slides 
were incubated with the primary antibodies (anti-
CCL5: E9S2K, Cell Signaling Technology, 1:150; anti-
CSF2: 17762-1-AP, Proteintech, 1:200). The PV-9001 
two-step Polymer Detection System (ZSGB-BIO) was 
performed according to the manufacturer’s instruc-
tions. The staining score: 0, no staining; 1+, weak 
staining; 2+, strong staining. Subsequently, H-scores 
were calculated by combining the staining intensity 
and percentage, using the following formula: (1 × per-
centage of cells with weak staining) + (2 × percentage 

https://www.innatedb.ca/
https://www.string-db.org/
https://www.string-db.org/
http://researchpub.gene.com/IMvigor210CoreBiology
http://researchpub.gene.com/IMvigor210CoreBiology
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of cells with strong staining). The H-score of each bio-
marker was used to define its high and low expression.

Statistical analysis
The categorical variables were described by percent-
ages, and continuous variables by the median and 
interquartile range (IQR). The prognostic value of 
immune cell components was determined using uni-
variable and multivariable Cox regression analysis. 
Survival analysis was conducted using the Kaplan-
Meier method, with a log-rank test assessing differ-
ences. The p-values below 0.05 for two-sided tests 
were considered statistically significant. Statistical 
analysis was performed using the Statistical Package 
for the Social Sciences (SPSS) version 18.0 (SPSS. Inc.) 
and R version 3.6.3.

Results
CIBERSORT analysis revealed the cytolytic activity of 
tumor-infiltrating immune cells in a pan-cancer setting
RNA sequencing data from 6,128 tumors and 5,365 
corresponding clinicopathological data from 10 can-
cer types were obtained from the TCGA (Fig.  1 and 
S1, Table  S1). The cytolytic immune activity of the 
samples was determined by the expression levels of 
GZMA (granzyme A) and PRF1 (perforin 1). The 
CIBERSORT p-value reflects the cytolytic activity 

of the tumor-infiltrating immune cell in the samples 
(Fig.  S2 A). The cytolytic activity was significantly 
higher in samples with a CIBERSORT p-value < 0.01 
or p < 0.05 compared to those with a p-value ≥ 0.05, 
while no significant difference was observed between 
samples with p-values < 0.01 and < 0.05 (Fig.  S2 B). 
These results indicate that the cytolytic activity of 
tumor-infiltrating immune cells in samples with p-val-
ues < 0.05 was significantly higher than that in samples 
with p-value ≥ 0.05. TNBC and LIHC had the highest 
and lowest proportions of samples with p-values < 0.05 
(90.7% and 16.5%, respectively). Overall, 58.7% of the 
samples had a p-value < 0.05 (Fig.  S2A). CIBERSORT 
analysis reveals that nearly 60% of cancers exhibit high 
cytotoxicity from tumor-infiltrating immune cells, 
indicating the abundance of cytotoxic immune cells in 
the tumor microenvironment. Unless otherwise speci-
fied, further analyses were restricted to samples with a 
CIBERSORT p-value < 0.05 in the pan-cancer setting, 
including patients from 10 types of cancers.

Immune cell components as independent prognostic 
factors in the pan-cancer setting
Figure  2 shows the prognostic association of immune 
cell components in the pan-cancer patients. A higher 
proportion of macrophages M0, T cells CD4 naive, 
neutrophils, and activated mast cells was associated 

Fig. 1 Flow diagram of the study. The 10 cancer types downloaded from TCGA for analysis, included triple-negative breast cancer (TNBC), non-small 
cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), 
stomach adenocarcinoma (STAD), renal cell carcinoma (RCC), bladder urothelial carcinoma (BLCA), cutaneous skin melanoma (SKCM), colon/rectum 
adenocarcinoma (COREAD), and Liver hepatocellular carcinoma (LIHC). The cancer types used for verification of the predictive value of hub-genes were 
urothelial carcinoma (UC) and esophageal squamous cell carcinomas (ESCC)
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with worse disease-free survival (DFS), with macro-
phages M0 remaining significant in the multivariable 
analysis (Fig.  2A and C). A high proportion of mac-
rophages M2, T cells CD8, resting mast cells, T cells 
follicular helper, monocytes, and T cells gamma delta 
was found to be associated with prolonged DFS, and 
with T cells follicular helper confirmed as an indepen-
dent prognostic predictor by multivariable analysis 
(Fig. 2A and C). For overall survival (OS) analysis, we 
observed the association of a high proportion of acti-
vated mast cells, neutrophils, resting NK cells, acti-
vated dendritic cells, and macrophages M0 with worse 
OS, and with activated mast cells remaining significant 
after adjusting for other features in the multivariable 
analysis (Fig. 2B and C). Conversely, a high proportion 
of macrophages M2, T cells CD8, resting mast cells, 
monocytes, T cells follicular helper, and T cells gamma 
delta was association with prolonged OS (Fig. 2B). The 
prognostic value of the immune cell subsets in indi-
vidual cancer types is shown in Fig.  S3. Additionally, 
a higher tumor stage and older age at diagnosis were 
independent prognostic factors for worse DFS and OS 
(Fig.  2C and Table  S2). Taken together, tumor-infil-
trating immune cells demonstrate different prognos-
tic values in the pan-cancer setting, highlighting the 
importance of considering the entire immune land-
scape when assessing their influence on patient sur-
vival or treatment response.

Immune clusters were associated with patient outcomes in 
the pan-cancer setting
The proportions of immune cells varied among differ-
ent cancer types (Fig.  3A, Fig.  S4). In the pan-cancer 

sample set, the proportions of immune cells differed 
between tumor and normal tissues. The proportions 
of T cells CD8, gamma delta T cells, NK cells, macro-
phages M2, resting dendritic cells, mast cells, eosino-
phils, and neutrophils were significantly higher in 
cancer tissues than in normal tissues (Fig.  S5). Con-
versely, B cells naive, T cells follicular helper, macro-
phages M0, and M1 were significantly lower in cancer 
tissues. At the individual patient level within each can-
cer type, diversity in the proportions of immune cell 
components was also observed (Fig.  S6). To identify 
the optimal method for patient classification based 
on the 22 immune cell proportions in the pan-cancer 
setting, we selected k-means clustering as the opti-
mal method (Fig. S7A). Three clusters were identified 
through k-means clustering, enabling the optimal clas-
sification of intra-cluster similarity in the pattern of 
immune infiltration (Fig. S7B).

The proportions of different immune cells in each 
cluster are depicted in Fig. 3B. Figure S8 shows the dis-
tribution of pan-cancer cases by clustering, and indi-
vidual patients with each cancer type. The number of 
patients with each cancer type by clustering is detailed 
in Table  S3. Clusters 1 and 3 were characterized by a 
high level of macrophages and a low level of T cells 
CD8, whereas cluster 2 was enriched for T cells CD8 
but lacked macrophages infiltration (Fig.  3B, Fig.  S9). 
More importantly, patients in cluster 2 demonstrated 
prolonged DFS and OS compared with those in clus-
ters 1 and 3 (Fig. 3C). No significant difference in DFS 
and OS was observed between patients in the two 
clusters (1 and 3). Based on these data, we combined 
clusters 1 and 3, dividing the patients into two groups 

Fig. 2 Prognostic association of immune cell subsets in the pan-cancer setting. (A&B) Unadjusted HRs and 95% CI limited to patients with CIBERSORT 
p-value < 0.05. (C) HRs and 95% CI adjusted for clinicopathological features. CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; OS, overall 
survival; *, p < 0.05
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with different immune profiles and patient progno-
sis, namely cluster 2 and the combined cluster 1&3 
(Fig.  3D). In conclusion, tumor-infiltrating immune 
clustering is associated with patient prognosis in a 
pan-cancer setting.

Immune-related pathways were enriched in the tumors of 
patients with superior prognosis in the pan-cancer setting
When comparing the gene expression data of cluster 2 
with cluster 1&3, a total of 1,536 DEGs were obtained, 
with 422 up-regulated and 1114 down-regulated 

Fig. 3 K-means clustering of the pan-cancer samples based on immune cell proportions and survival analysis based on patient clustering. (A) Bar charts 
of immune cell proportions in the individual cancer types and the pan-cancer sample set. (B) Three clusters were identified based on immune cell pro-
portions within the tumor using k-means clustering. (C&D) Kaplan-Meier analysis of DFS and OS classified by patient clustering in the pan-cancer setting. 
Cancer types used for analysis included triple-negative breast cancer (TNBC), non-small cell lung cancer (NSCLC), head and neck squamous cell carci-
noma (HNSC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), stomach adenocarcinoma (STAD), renal cell carcinoma (RCC), 
bladder urothelial carcinoma (BLCA), cutaneous skin melanoma (SKCM), colon/rectum adenocarcinoma (COREAD), and Liver hepatocellular carcinoma 
(LIHC). DFS, disease-free survival; HR, hazard ratio; OS, overall survival
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(Fig.  4A). Functional and signal pathway enrichment 
analysis showed that 742 GO terms and 100 KEGG 
pathways were significantly enriched (p < 0.05) (Sup-
plemental Table  S4). The down-regulated genes were 
significantly enriched in metabolism-related pathways 
(Supplemental Table S4). As shown in Fig. 4B and D-F, 
for the up-regulated genes, most of the top 10 GO 
terms and 10 KEGG pathways were immune-related, 
such as “T cell activation” in biological process terms, 
“MHC protein binding” in molecular function terms, 
“T cell receptor complex” in cellular components 
terms, and “Antigen processing and presentation” in 
KEGG pathways.

GSEA was performed to validate the results of the 
GO and KEGG analyses. The whole gene set of sam-
ples was enriched in 114 pathways (p < 0.05) (Supple-
mental Table  S5). The top 10 immune-related KEGG 
pathways were all significantly enriched in the GSEA 
(Fig.  4B and Supplemental Table  S5), with some of 
these pathways being showed in Fig.  4C. The results 
of GO/KEGG and GSEA analyses indicate that the 
patient subgroup with improved prognosis has tumors 
significantly enriched in genes related to immune 
response regulation and pathway activation.

CCL5 and CSF2 were identified as immune-related hub 
genes
Based on the results from the GO, KEGG and GSEA 
analyses, we focused on identifying immune-related 
hub genes as potential predictive biomarkers for 
immunotherapy. A total of 240 genes were obtained by 
intersecting the DEGs with the immune-related gene 
list downloaded from the Innate DB dataset (https://
www.innatedb.ca/), which contained 135 up-regulated 
genes and 105 down-regulated genes (Table  S6). PPI 
network of the 240 immune-related DEGs is showed 
in Fig. 5A, and the 10 hub genes is showed in Fig. 5B. 
These hub genes are CD8A (CD8 Subunit Alpha), 
IFNG (Interferon, Gamma), PRF1 (Perforin 1), GZMB 
(Granzyme B), KLRK1 (Killer Cell Lectin Like Recep-
tor K1), CCL5 (C-C chemokine ligand 5), KLRD1 
(Killer Cell Lectin Like Receptor D1), CSF2 (Colony 
stimulating factor 2), CD247 and KLRC1 (Killer Cell 
Lectin Like Receptor C1).

Univariate Cox regression analysis of the 240 
immune-related DEGs demonstrated that 70 DEGs 
were correlated with DFS and 73 DEGs with OS 
(Table  S7). CCL5 and CSF2 were selected as poten-
tial predictive biomarkers for immunotherapy, as 
they were both prognostic and identified as immune-
related hub genes (Fig.  5B-H). As shown in Table  S9, 

Fig. 4 Differentially expressed genes and their associated enriched signal pathways in the pan-cancer analysis. (A) Volcano plot of differentially expressed 
genes (DEGs) (|log2FoldChange| ≥ 1, p-value < 0.05). (B–F) Enriched signal pathways of differentially expressed genes in KEGG (B), GSEA (C) and GO (D–F) 
analysis
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we analyzed the relationship between CCL5/CSF2 
expression and clinical staging in pan-cancer patients. 
The expression of CCL5 in stage IV is higher than that 
in stages I-III. However, the expression of CSF2 was 
not correlated with clinical staging.

CCL5 and CSF2 were predictive for immune checkpoint 
inhibitors in UC and ESCC
Patients in the IMvigor 210 cohort were divided into high 
and low expression groups using optimal expression cut-
off values of the biomarkers, with 3.01 for CCL5 and 0.52 
for CSF2 in their mRNA expression, respectively. A total 
of 75 patients had CCL5 high expression tumors and 273 
patients had CCL5 low expression tumors. There were 
88 patients with tumors exhibiting high CSF2 expression 

Fig. 5 Protein-protein interaction analysis and survival analysis of hub-genes in the pan-cancer setting. (A) Protein-protein interaction (PPI) analysis result. 
Each single point represents an individual protein, lines indicate the interaction between proteins. (B) Bar plots of degree of the top 10 genes. (C–F) DFS or 
OS curve base on expression of CCL5 or CSF2. (G&H) DFS or OS curve base on expression of CCL5 and CSF2. DFS, disease-free survival; OS, overall survival; 
Red star, candidate biomarkers
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and 260 patients with tumors exhibiting low CSF2 
expression. A lower proportion of patients with progres-
sive disease was observed in the CCL5 high-expression 
group compared to the CCL5 low-expression group 
(Fig.  6A). Conversely, a higher proportion of patients 
with progressive disease was observed in the CSF2 high-
expression group compared to those in the CSF2 low-
expression group (Fig. 6C). Furthermore, the expression 

of CCL5 and CSF2 was prognostic in this patient cohort. 
Patients with CCL5 high-expression tumors had pro-
longed OS compared to those with CCL5 low-expression 
tumors (Fig.  6B). However, patients with CSF2 high-
expression tumors had shortened OS compared to those 
with CSF2 low-expression tumors (Fig. 6D). These results 
indicate that the tumor expression of CCL5 and CSF2 

Fig. 6 The predictive and prognostic value of CCL5 and CSF2 in urothelial carcinoma. (A&C) The therapeutic response to anti-PD-L1 treatment base on 
expression of CCL5 or CSF2. (B&D) OS curve base on expression of CCL5 or CSF2. CR, complete response; DFS, disease-free survival; OS, overall survival, PD, 
progression disease; PR, partial response; SD, stable disease
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is associated with the response to immunotherapy and 
patient survival in UC patients.

The clinicopathological characteristics of the 36 
patients with ESCC are shown in Table  S8. All patients 
received neoadjuvant ICIs in combination with che-
motherapy. A total of 12 patients were classified as 
responders and 24 patients as non-responders (Table S8). 
Representative images of negative, weak, or strong 
staining of CCL5 and CSF2 are shown in Fig. 7A-F. The 
median H-scores were 3.0 (IQR, 1.0-5.1) and 22.5 (IQR, 
17.5–30.6) for CCL5 and CSF2, respectively (Fig.  7G). 
Tumors with low expression of CSF2 and high expression 
of CCL5 demonstrated the highest response rate (57%) to 
ICIs. This was slightly higher than those with low expres-
sion of both CSF2 and CCL5 (50%). However, for tumors 
with high expression of CSF2, the response rates were 

low regardless of the CCL5 expression status (Fig.  7H). 
Thus, our results indicate that CCL5 and CSF2 are poten-
tially novel predictive biomarkers for ICIs in patients 
with ESCC.

Discussion
From this pan-cancer analysis of 10 solid tumors types 
that are indicated for immunotherapy, we have identi-
fied CCL5 and CSF2 as potential novel biomarkers for 
predicting response to immunotherapy. This finding is 
particularly significant given the recent developments in 
immune-modulating therapies.

Firstly, we observed striking differences in the relative 
composition of immune cells across various cancer types. 
We also noted variations in immune cell components 
within individual tumors of the same cancer type. These 

Fig. 7 Immunohistochemical staining of CCL5 and CSF2 in esophageal squamous cell carcinoma and their predictive value for immune checkpoint 
inhibitors. (A–F) Examples of negative, weak, and strong staining of CCL5 and CSF2. (G) H-Score of CCL5 and CSF2. (H) Distribution of responders and non-
responders in the subgroups classified by the expression of CCL5 and CSF2. Resp, responder; Non-resp, non-responder
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findings highlight the heterogeneity and complexity of 
the tumor immune microenvironment both between dif-
ferent cancer types and among individual tumors of the 
same type. Notably, tumors from different cancer types 
can share similar immune characteristics. Importantly, 
as demonstrated in this study, distinct immune subsets 
were associated with varying patient outcomes in the 
pan-cancer setting. The variation in patient outcomes is 
due to the differing biological roles these immune sub-
sets play within the tumor microenvironment [36–41]. 
The interactions among different immune subsets may 
be even more critical than simply assessing their pres-
ence. Thus, a more comprehensive understanding of the 
heterogeneity and similarities of immune subsets across 
a pan-cancer setting is crucial for classifying patients into 
subgroups with different response to ICIs, despite having 
different tissue origins.

Based on the proportions of 22 immune cell compo-
nents within tumors, we classified pan-cancer patients 
into two subgroups with distinct outcomes. Interest-
ingly, the subgroup with superior prognosis had tumors 
enriched with T cells CD8 and is lacked infiltration by 
tumor-associated macrophages. Similarly, Thorsson et 
al. also found that patients with the lowest macrophage 
levels and highest lymphocyte infiltration had a superior 
prognosis [42]. Furthermore, differential gene expres-
sion analysis revealed that genes related to the immune 
activation pathways were up-regulated in these tumors. 
These results indicate that patients in this subgroup may 
be more responsive to ICIs. Conversely, tumors in the 
subgroup with worse prognosis were characterized by a 
high level of macrophages and low level of T cells CD8 
infiltration. Genes related to immune activation path-
ways were down-regulated, while those related to the 
metabolism pathways were up-regulated in these tumors. 
Consequently, patients in this subgroup may be resistant 
to ICIs.

To facilitate the clinical application, we further 
explored biomarkers that can be easily evaluated by IHC 
and may predict responses to ICIs. We found that the 
immune-related hub genes CCL5 was up-regulated and 
CSF2 was down-regulated in the subgroup of patients 
with a good prognosis. Finally, these two genes were 
identified and validated as potential predictive biomark-
ers for ICIs, using data from patients with UC and ESCC 
who were treated with ICIs. This is the first study to dem-
onstrate the predictive value of CCL5 and CSF2 for ICIs. 
Mechanistically, CCL5 regulates the deubiquitination 
and stability of PD-L1, inhibiting CD8 + T cell responses 
and leading to immune escape [43]. CSF2, also known 
as granulocyte-macrophage colony stimulating factor 
(GM-CSF), has been shown to inhibit the functions of 
CD8 + T cells by recruiting the myeloid-derived suppres-
sor cells (MDSCs) in the tumor microenvironment [44]. 

Additionally, CSF2 mediates immune escape by upregu-
lating PD-L1 expression [45]. Our findings could be 
important for clinical practice. The tumor expression of 
CCL5/CSF2 can be easily obtained in the pre-treatment 
setting and most metastatic setting. Therefore, the treat-
ment response to ICIs in individual patients could be 
potentially determined. This would be crucial for opti-
mizing treatment strategies.

As a validation dataset, we selected IMvigor 210 uro-
thelium cancer cohort and our hospital’s ESCC cohort 
to evaluate the predictive value of biomarkers in popu-
lation benefiting from ICIs. Our study has some limita-
tions. First, the sample size for assessing the predictive 
value of CCL5 and CSF2 is small. Therefore, our results 
are preliminary and need to be validated in future studies 
with a larger sample size, as well as in other cancer types. 
Second, post-treatment samples were used for immuno-
histochemical staining of CCL5 and CSF2 in the pres-
ent study. The expression of these two biomarkers may 
change after treatment. The pre-treatment samples will 
be used in future study to validate their predictive value 
for ICIs.

Conclusions
In conclusion, we have demonstrated CCL5 and CSF2 as 
potential novel biomarkers for predicting the response 
to ICIs in patients with UC and ESCC. Their predictive 
value for ICIs in other cancer types warrants evaluation 
in future studies.
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