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Abstract

Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their
invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have
emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor
progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma
development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This compre-
hensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their
potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limi-
tations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging
exosomal miRNAs in precision oncology for glioma management.
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Introduction

The World Health Organization (WHO) CNS5 classi-
fication of central nervous system tumors categorizes
gliomas into grades I to IV, with higher grades indicat-
ing higher malignancy [1-3]. Grades I and II gliomas are
classified as low-grade gliomas, while grades III and IV
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are classified as high-grade gliomas. Low-grade brain
gliomas primarily refer to diffuse astrocytomas, oligo-
dendrogliomas, and oligoastrocytomas. High-grade
brain gliomas primarily refer to anaplastic astrocytomas,
anaplastic oligodendrogliomas, glioblastomas, and dif-
fuse midline gliomas. Gliomas, the most common and
malignant primary brain neoplasms, originate from glial
or precursor cells in the central nervous system (CNS)
neuroectoderm [4, 5]. They are characterized by their
undesirable prognosis and poor survival rate, encom-
passing astrocytomas, oligodendrogliomas, and epend-
ymomas [6, 7], posing a serious threat to human health
and lives. While computed tomography (CT) and mag-
netic resonance imaging (MRI) are routine techniques for
diagnosing disease stages and monitoring tumor growth
and therapeutic response, they are often cumbersome
and expensive. Conventional surgical, radiation, and
chemotherapy treatments can delay tumor progression
but are often ineffective and do not provide significant
improvement [8]. Therefore, there is an urgent need for a
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new method that can both diagnose and treat gliomas, as
well as detect the prognosis of gliomas. Recently, increas-
ing evidence suggests that diagnostic biomarkers, such
as exosomal miRNAs, would be clinically meaningful for
the early detection of the tumor and for cases in which
surgery is contraindicated or biopsy results are inconclu-
sive [9, 10].

Exosomes, small vesicles with round or cup shapes,
were first isolated from sheep erythrocyte supernatant in
1983 by JohnStone et al. during a study on the transfor-
mation of immature erythrocytes to mature erythrocytes
[11]. These vesicles, which have a diameter of 40-160 nm,
originate from endosomes and consist of lipid bilayer
membranes [12, 13]. They are actively released by most
cells, circulating stably in body fluids [14, 15]. Besides
their roles in cell-to-cell communication and tumo-
rigenesis, exosomes safeguard the substances they carry,
including DNA, RNA, lipids, and proteins, from degrada-
tion [16-20], while also regulating the activity of recipi-
ent cells and influencing the tumor microenvironment by
transporting nucleic acids [21].

Exosomal miRNAs, a subset of circulating miRNAs,
have gained attention for their characteristics as endog-
enous, double-stranded, non-coding small molecule
RNAs, typically 18-25 nucleotides in length, with over
1000 different exosomal miRNAs identified through
RNA sequencing [22, 23]. The discovery of the first
miRNA dates back to 1993 when Lee and Ambros iden-
tified one in Caenorhabditis elegans, and their presence
in exosomes was first demonstrated by Valadi et al. in
2007 [24-27]. Originating from single-stranded miRNA
gene transcripts, they are processed by the ribonucle-
ase III enzyme, Dicer, integrated into the RNA-induced
silencing complex, enabling them to repress the transla-
tion of target RNA by binding to partially complementary
sequences in the 3" untranslated region (UTR) of mes-
senger RNA (mRNA) [28-30] (Fig. 1). Exosomal miR-
NAs may play roles in gene activation in certain contexts,
affecting biological processes, exerting significant influ-
ence on cell differentiation, proliferation, and survival,
exhibiting both tumor-suppressive and oncogenic effects
[31-34]. Notably, Calin et al. observed a loss or down-
regulation of miR-15/16 cluster expression in chronic
lymphocytic leukemia in 2002, highlighting the potential
role of miRNAs in tumorigenesis [35]. Studies have also
demonstrated the effectiveness of exosomal miRNAs as
potential biomarkers in liquid biopsy for cancer diag-
nosis, treatment monitoring, and prognosis prediction,
emerging as valuable disease markers [36—43]. Notably,
the effects of exosomal miRNAs on gliomas primarily
involve the inhibition or promotion of their downstream
target genes, thereby exerting their respective biological
functions (Tables 1, 2).
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In this review, we summarize the latest findings on
the fundamental roles of exosomal miRNAs implicated
in the diagnosis, treatment, and prognosis of gliomas,
considering the complex molecular mechanisms and the
expanding research field. We also discuss the research
limitations and provide future perspectives.

Exosomal miRNAs and the occurrence

and development of gliomas

Exosomal miRNA biogenesis is tightly regulated tem-
porally and spatially, with dysregulation implicated in
glioma development [44—49]. Current research suggests
that dysregulation of exosomal miRNAs could be piv-
otal in glioma growth, angiogenesis, metastasis, and cell
migration. For example, several studies have reported
that miR-375 inhibits proliferation and invasion in glio-
blastoma, while miR-16-1 inhibits migration and pro-
liferation in glioma cells [50, 51]. Additionally, Li et al.
demonstrated that microglial exosome miR-7239-3p pro-
motes glioma progression by regulating Circadian genes
[52]. These research findings indicate a close associa-
tion between exosomal miRNAs and the occurrence and
development of gliomas, suggesting their potential appli-
cation in clinical diagnosis, treatment, and prognosis.

Application of exosomal miRNAs in the diagnosis
of gliomas

A variety of circulating biomarkers are present in the
blood of glioma patients, including circulating tumor
cells, nucleic acids, and proteins [53]. Among these, exo-
somal miRNAs have garnered considerable attention due
to their significant distinctions between glioma patients
and healthy counterparts. Lu et al. conducted a system-
atic analysis of 217 mammalian miRNAs across 334 sam-
ples, revealing a prevailing downregulation of miRNAs
in tumors compared to normal tissues [54]. Their find-
ings enabled the successful classification of poorly dif-
ferentiated tumors using miRNA expression profiling,
highlighting the diagnostic potential of miRNA analysis
in cancer. Furthermore, Wang et al. discovered signifi-
cantly higher levels of miR-766-5p and miR-376b-5p in
the serum of patients with high-grade glioma compared
to healthy controls, suggesting their potential as auxiliary
diagnostic biomarkers [55].

Glioblastoma (GBM), or glioblastoma multiforme, is
the most malignant and common type of glioma. It is
classified as a Grade IV glioma, characterized by its rapid
growth, high invasiveness, and poor prognosis. Dong
et al. identified elevated expressions of miR-576-5p, miR-
340, and miR-626, alongside decreased expressions of
miR-320, miR-7-5p, and let-7g-5p in the peripheral blood
of GBM patients compared to normal subjects using gene
microarray analysis [56]. In another study by Manterola,
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Fig. 1 The process of production and functions of mature exosomal miRNAs in animals. Mature miRNA is secreted out of the cells after entering
endosomes formed by the cell membrane, thus resulting in the formation of exosomal miRNA. Mature miRNAs are produced in two stages:

in the nucleus, genes encoding miRNAs are transcribed into pri-miRNAs by the action of RNA polymerase RNA pol Il, which are then processed

by Drosha RNase Il nucleic acid endonuclease into 60-70 nt stem-loop intermediates, i.e. pre-miRNAs (miRNA precursors). Subsequently, pre-miRNA
is transported into the cytoplasm by Exportin-5 bound to Ran-GTP, and the stem-loop structure is cleaved away by Dicer RNase IIl nuclease, leaving
two incompletely paired strands called miRNA:miRNA* complexes, where miRNA is the mature miRNA and miRNA* is the relative arm with a short
lifetime. Then, the double strand is loaded onto the argonaute protein, and nucleotide base pairing between the miRNA in the double strand

and the complementary sequence in the 3” untranslated region (3" UTR) of the target mRNA forms the miRNA effector miRNA-induced silencing
complex (miRISC) to inhibit translation and/or promote mMRNA degradation, while miRNAs are released and degraded
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Table 1 Exosomal miRNAs that are down-regulated, their target genes and biological functions, and their roles in glioma diagnosis,
treatment and prognosis

MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic Ref
pathway biological function significance significance
MiR-1 ANXA2/MET Downregulated Reducing the tumo-  Promising Potential Unclear [34]
in human GBM rigenicity, angio-
genesis, invasion
and progression
of glioblastoma
multiforme
MiR-7 EGFR Downregulated Decreasing inva- Unclear Potential Unclear [131,132]
in GBM siveness of GBM
and enhancing
the sensitivity of GBM
to TRAIL
MiR-15a CCND1 Downregulated Suppressing migra-  Unclear Potential Unclear [102]
tion and invasion
of glioma
MiR-15b CCNE1/NRP-2 Downregulated Inhibiting angiogen-  Unclear Potential Unclear [133,134]
esis and proliferation
of gliomas cells
MiR-29a-3p  ROBO1 Downregulated Inhibiting migration  Unclear Potential Unclear [98]
in glioma cells and vasculogenic
mimicry formation
in glioma
MiR-29¢ SP1 Downregulated Increasing temozo- Unclear Potential Unclear [135]
in glioma lomide sensitivity
by targeting MGMT
MiR-34a PDGFRA/c-Met/ Downregulated Inhibiting prolifera- ~ Unclear Potential Unclear [79,80, 136, 137]
Notch/MYCN in glioma tion and tumorigen-
esis in glioma cells
MiR-101 EZH2 Downregulated Inhibiting prolif- Unclear Potental Unclear [138]
in GBM eration, migration,
and angiogenesis
of GBM
MiR-106a E2F2 Downregulated Inhibiting growth Potential Potential Unclear [139]
in glioma of glioma cells
MiR-124 CDK6/STAT3 Downregulated Suppressing prolif- Potential Potentail Unclear [91,94]
in glioma eration, migration
and increasing
chemosensitivity
to TMZ
MiR-124a IQGAP1/LAMC1/ Downregulated Suppressing migra-  Unclear Potential Unclear [95, 140]
[TGB1/FOXA2 in GBM tion and invasion
in GBM
MiR-125b E2F2 Downregulated Inhibiting the prolif-  Unclear Potential Unclear [141]
in CD133 positive eration of glioblas-
GSCs toma stem cells
MiR-128 RTK Downregulated Blocking GBM stem Unclear Potential Potential [142]
in glioma cells self-renewal
and growth
MiR-133b Wnt Downregulated Suppressing Unclear Potential Unclear [143]
in glioma proliferation, inva-
sion and migration
in glioma cells
MiR-136 AGE1/Bcl2 Downregulated Promoting the apop- Unclear Potential Unclear [144]
in glioma cell tosis of glioma cells
MiR-137 CDKé Downregulated Inhibiting the prolif-  Unclear Potential Unclear [145]

in high-grade glioma

eration of glioblas-
toma multiforme
cells
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Table 1 (continued)
MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic  Ref
pathway biological function significance significance
MiR-139 Mcl-1 Downregulated Suppressing Unclear Potential Unclear [146]
in GBM the proliferation
and enhancing
temozolomide-
induced apoptosis
MiR-143 N-RAS Downregulated Suppressing growth  Potential Potential Unclear [147]
in glioma and enhancing
temozolomide-
induced apoptosis
in glioma
MiR-146b EGFR Downregulated Suppressing the inva-  Unclear Potential Unclear [148]
in glioma cells sion and migration
in glioma
MiR-152 MMP-3 Downregulated Reducing invasion Unclear Potential Unclear [134]
in glioma cells and angiogenesis
in glioma
MiR-199a AGAP2 Downregulated Enhancing che- Unclear Potential Unclear [89]
in glioma tissue mosensitivity to TMZ
in glioma
MiR-302-367 Cyclin D1/CyclinA/ Downregulated Suppressing migra-  Unclear Potential Unclear [149, 150]
E2F1/CXCR4 tion, proliferation
and chemosensitivity
of GBM
MiR-410 MET Downregulated Inhibiting prolif- Unclear Potential Unclear [151]
in glioma cells eration and invasion
of glioma
MiR-433 HMGB3 Downregulated Inhibiting the pro- Unclear Potential Unclear [152]
in glioma tissue liferation ability
of glioma cells
MiR-451 AMPK/c-Myc/PI3K/ Downregulated Promoting prolif- Unclear Potential Unclear [153-156]
AKT eration and immu-
nosuppression
in glioma cells
MiR-454-3p  ATG12 Downregulated Inhibiting cell Yes Unclear Yes [113]
in glioma cells proliferation,
migration, invasion,
and autophagy
in glioma
MiR-483-5p  ERK1 Downregulated Suppressing the pro-  Unclear Potential Unclear [157]
in glioma liferation of glioma
cells
MiR-491 CDK6 Downregulated Inhibiting the pro- Unclear Potential Unclear [158]
in GBM liferation of glioma
cell lines
MiR-512-5p  JAGI Downregulated Suppressing glioblas-  Unclear Potential Unclear [159]
in glioblastoma toma proliferation
MiR-520/302  AKT1/PIK3CA/SOS1 Downregulated Enhancing glioblas-  Unclear Potential Unclear [160]
toma cell susceptibil-
ity to tyrosine kinase
inhibitors
MiR-580-3p  WEE1 Downregulated Suppressing the pro-  Unclear Potential Unclear [1e1]
in GBM liferation and drug
resistance of glioma
cells
MiR-584 PTTG1IP/CYP2J2 Downregulated Inhibiting cancer cell  Unclear Potential Unclear [99,162]

in glioma

proliferation, invasion
and migration
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Table 1 (continued)
MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic  Ref
pathway biological function significance significance
MiR-584-5p  CYP2J2/MMP-2/Bcl-2  Downregulated Suppressing metas-  Unclear Potential Unclear [99]
and Bax tasis, proliferation,
migration and induc-
ing glioma cells
apoptosis
MiR-873 Bcl-2 Downregulated Decreasing the resist- Unclear Potential Unclear [163]
in glioma tissue ance of the glioma
cells to cisplatin
MiR-885-5p  MMP9 Downregulated Inhibiting cellular Unclear Potential Unclear [164]
in glioma invasion in glioma
cells
MiR-944 VEGFC Downregulated Suppressing prolif- Unclear Potential Unclear [165]
eration, migration
and angiogenesis
in glioma
MiR-2276-5p Rab13 Downregulated Inhibiting the growth Potential Unclear Potential [117]
in glioma glioma cells
MiR-4686 Unclear Downregulated Suppressing the pro-  Unclear Potential Unclear [166]
by exo-RORTAS1 gression glioma cells
MiR-4709-3p  GRB14/PDGFRa Downregulatede Enhancing glioblas-  Unclear Potential Unclear [167]

in glioblastoma

toma progression
and radioresistance

analysis of exosomal miRNAs from 161 GBM patients
and 110 healthy subjects revealed that the combina-
tion of miR-320/miR-574-3p/RNU6-1 (RNA, U6 Small
Nuclear 1) serves as promising biomarker candidates for
distinguishing between GBM patients and healthy con-
trols [57]. Similarly, elevated levels of miR-103 and miR-
125 were detected in the serum of GBM patients [58].
Numerous studies have reported a significant upregu-
lation of exosomal miR-21 expression in the serum of
glioma patients, a dysregulation that may contribute to
the initiation and progression of GBM by influencing
various cellular and molecular targets [59, 60]. Santan-
gelo et al. observed that post-surgery, levels of exoso-
mal miR-21 isolated from patient serum were notably
higher in individuals with high-grade glioma compared
to those with low-grade glioma [61]. They further iden-
tified three serum exosome-associated miRNAs (miR-21,
miR-222, miR-124-3) that could aid in glioma detection
and grading through the analysis of 141 serum samples
and accompanying clinical data [40]. The utilization of
these three miRNA-based diagnostics was demonstrated
to enhance diagnostic efficiency for high-grade glioma
patients. Additionally, Akers et al. noted significantly ele-
vated levels of miR-21 in the cerebrospinal fluid of GBM
patients during their examination of cerebrospinal fluid
from both healthy subjects and GBM patients for miRNA
analysis [62]. Consequently, exosomal miR-21 emerges as
a reliable biomarker for the diagnosis of glioma patients.

In addition to exosomal miR-21, several exosomal
miRNAs have shown potential as biomarkers for glioma
diagnosis. MiR-10, which is absent in normal brain tis-
sue but elevated in gliomas, has been linked to tumor cell
stasis, apoptosis, and autophagy [63]. MiR-449 and miR-
5194 are promising for GBM diagnosis, while miR-210
is already confirmed as a biomarker for GBM patients
[64]. Additionally, miR-221 was found to be significantly
upregulated in GBM tissues, while miR-128 and miR-
181 expressions were decreased, suggesting that elevated
miR-221 expression could serve as a potential diagnostic
biomarker for glioma [65, 66].

Tumor metastasis is a critical stage of tumor progres-
sion and a major therapeutic challenge. Exosomal miR-
NAs play an important role in the development of distant
metastasis of primary tumor cells [67]. Studies have dem-
onstrated a significant elevation in miR-148a levels in
both the serum and tumor tissues of GBM patients. Fur-
thermore, miR-148a has been implicated in promoting
glioma metastasis, proliferation, and migration by target-
ing Cell Adhesion Molecule 1(CADM1), Mitogen-induc-
ible gene 6(MIG6), and Epidermal growth factor receptor
(EGFR) [68, 69]. Additionally, Teplyuk et al. also observed
significant elevations in miR-10b and miR-21 levels in the
cerebrospinal fluid of GBM patients, whereas miR-200
levels were notably increased in the cerebrospinal fluid
of patients with glioma metastases [70]. Furthermore,
Emilliya and colleagues discovered that miR-491 not only
differentiates glioma brain metastasis but also exhibits
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Table 2 Exosomal miRNAs that are upregulated, their target genes and biological functions, and their roles in glioma diagnosis,
treatment and prognosis

MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic Ref
pathway biological function  significance significance
MiR-9 COL18A1/THBS2/ Upregulated in human Promoting tumo- Unclear Potential Unclear [90, 168, 169]
PTCH1/PHD3 glioma rigenesis, angiogen-
esis and enhancing
chemosensitivity,
proliferation of glioma
cells
MiR-10a Rora/IkBa/NF-kB Upregulated Promoting the expan-  Unclear Potential Unclear [104]
in H-GDEs sion and function
of myeloid-derived
suppressor cells
MiR-10b BCL2L11/TFAP2C/ Upregulated in human Reducing growth Unclear Potential Potential [63,115]
CDKNTA/CDKN2A GBM and inhibiting the pro-
liferation of glioblas-
toma
MiR-10b-5p  TFAP2A Upregulated Inducing glioma Potential Potential Potential [107]
in H-GDEs migration and inva-
sion
MiR-21 VEGF/PTEN Upregulated in GBM Promoting prolifera- Potential Potential Unclear [47,60, 104]
tion, migration, nva-
sion and angiogenesis
of glioma
MiR-21-5p SPRY1 Upregulated in GBM Unclear Yes Unclear Yes
MiR-9-5p NAP1L1/FREM2 Upregulated in GBM Unclear Yes Unclear Yes
stem cell
MiR-23a PTEN Upregulated in glioma  Promoting gliom- Unclear Potential Unclear [170]
agenesis
MiR-23b VHL Upregulated in glioma  Promoting prolif- Unclear Potential Unclear [171]
cells eration and invasion
of glioma
MiR-24 ST7L Upregulated in glioma  Promoting prolif- Unclear Promising Unclear [172]
cells eration, invasion
and inducing apopto-
sis in glioma
MiR-25-3p FBXW?7 Upregulated in GBM Promoting the pro- Potential Unclear Unclear [88]
liferation and temo-
zolomide resistance
of glioblastoma
MiR-26a RB1 Upregulated in glioma  Promoting the prolif-  Unclear Yes Unclear [173-175]
cells eration and angiogen-
esis in glioma cells
MiR-92b NLK Upregulated in glioma  Promoting invasion, Unclear Potential Unclear [176]
cells growth and inhibiting
apoptosis in glioma
cells
MiR-145 SIGAP1 Upregulated in IM3 Regulating theinva-  Unclear Potential Unclear [177]
cell lines sion of glioblastoma
cells
MiR-148a CADM1/MIG6/BIM/ Upregulated in GBM  Promoting prolif- Yes Potential Unclear [68, 69]
EGFR cells eration, invasion
and migration
in glioma cells
MiR-148a-3p ERRFI Upregulated in glioma Promoting angiogen-  Unclear Potential Unclear [178]
cells esis and proliferation
MiR-151a XRCC4 Upregulated in glioma Enhancing chemosen- Unclear Potential Unclear [179]

tissue

sitivity to TMZ in drug-
resistant glioblastoma
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Table 2 (continued)
MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic  Ref
pathway biological function  significance significance
MiR-181b/d ~ MGMT Upregulated in GBM  Stimulating the cell Yes Unclear Yes [110]
patients proliferation, migra-
tion, and invasion
MiR-182-5p  KLF2/4 Upregulated in glioma  Promoting glioblas- Potential Potential Potential [112,180]
cells toma angiogen-
esis and leading
to the accumulation
of VEGFR
MiR-195 SIAH1/WEE1/RANBP3  Upregulated in GBM Enhancing temozo- Unclear Potential Unclear [181]
cells lomide resistance
in glioblastoma
multiforme cells
MiR-210 PTBP3 Upregulated in GBM Involving survival, Yes Potential Yes [182]
patients serum differentiation, angio-
genesis, metabolism
and cell cycle control
MiR-214-5p  CXCR5 Upregulated in GBM  Promoting cell prolif-  Unclear Potential Yes [183]
eration and migration
MiR-221 DNM3/PUMA Upregulated in GBM Promoting temozo- Yes Yes Unclear [65, 66]
lomide resistance
and progression
in glioma
MiR-222 PUMA/PTPU/AKT Upregulated in HGG Associating with gli-  Yes Potential Yes [40, 184]
patients oma progression
MiR-223 PAX6 Upregulated in GBM Promoting the growth  Unclear Potential Unclear [48]
and invasion of tumor
cells
MiR-301a TCEAL7 Upregulated in glioma Promoting radiation ~ Yes Unclear Yes [106]
tissue resistance, prolif-
eration and invasion
in glioma cells
MiR-328 SFRP1 Upregulated in glioma  Promoting the inva- Unclear Potential Yes [185]
cells sion of glioma cells
MiR-381 LRRC4 Upregulated Promoting the prolif-  Promising Potential Unclear [186]
eration of glioma cells
MiR-423-5p  FOXP4 Upregulated in MB Inhibiting MB tumori- ~ Unclear Potential Unclear [187]
patients exosomes genesis, proliferation,
migration and inva-
sion
MiR-603 MGMT Upregualted Enhancing the TMZ Unclear Potential Unclear [188]
sensitivity of GBM
MiR-634 CYR61 Upregulated Decreasing the pro- Unclear Potential Unclear [189]
liferation and growth
of glioblastoma cells
MiR-889 Notch/Jak-STAT Upregulated Promoting glioma Unclear Potential Unclear [190]
proliferation and radi-
ation resistance
MiR-1238 CAV1/EGFR Upregulated in GBM Promoting resistance  Yes potentail Unclear [87]
patients to TMZ and enhanc-
ing anti-apoptosis
MiR-1298-5p MSH2/Setd7 Upregulated Promoting immuno-  Unclear Potential Unclear [103]
suppressive effects
of MDSCs and sup-
pressing the progres-
sion in glioma
MiR-1587 NCOR1 Upregulated Increasing the tumo-  Unclear Potential Unclear [93]

rigenicity of glioma
stem-like cells
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Table 2 (continued)
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MicroRNA  Target genes/ Dysregulation Mechanism/ Diagnostic  Clinic treatment Prognostic  Ref
pathway biological function  significance significance
MiR-5096 Kir4.1 Upregulated Promoting the inva- Unclear Potential Unclear [191]
siveness of glioma
cells
MiR-7239-3p Bmal1 Upregulated Promoting prolif- Unclear Potential Unclear [52]
eration and invasion
in glioma
MiR-7239-4p Bmal2 Upregulated Promoting prolif- Unclear Potential Unclear [52]

eration and invasion

in glioma

lower expression in high-grade gliomas compared to
low-grade gliomas [71]. Meanwhile, the findings of Bao
et al. indicate that elevated expression of miR-155-5p in
the plasma of glioma patients is positively correlated with
glioma grading [72]. These studies suggest that miRNAs
in exosomes have the potential to serve as diagnostic
markers for glioma metastasis and to distinguish between
different grades of gliomas, such as low-grade and high-
grade gliomas.

Application of exosomal miRNAs for the treatment
of gliomas

Traditional glioma treatments, like surgical resection and
chemotherapy with radiotherapy, often lead to signifi-
cant side effects and poor prognosis [73, 74]. For exam-
ple, temozolomide (TMZ), a primary antitumor agent in
clinical chemotherapy, induces DNA damage in glioma
cells while also causing a multitude of chemotherapy side
effects [75]. Furthermore, the limitations of traditional
treatments underscore the urgent need for alternative
therapeutic approaches. Nucleic acid therapy, currently
promising in various human diseases, has attracted atten-
tion. Research accumulation indicates potential utiliza-
tion of exosomal miRNAs in treating malignant tumors.
[76, 77]. These exosomal miRNAs regulate gene expres-
sion post-transcriptionally and intricately connect with
the glioma microenvironment through targeting multiple
signaling pathways such as EGFR, Phosphatidylinositide
3-kinases/protein kinase B (PI3K/AKT), p53, Notch, and
others [78-81].

Targeted therapy refers to a treatment strategy that
specifically targets molecules or molecular pathways
involved in the growth, progression, or spread of diseases
such as cancer. Unlike traditional chemotherapy, which
can affect both cancerous and healthy cells, targeted ther-
apies are designed to interfere with specific molecules
that play crucial roles in disease development. Mean-
while, exosomal miRNAs possess dual characteristics,
with both tumor suppressive and oncogenic activities,

endowing them with potential for tumor therapy [82—84].
Dysregulation of exosomal miRNAs significantly impacts
glioma tumorigenesis, proliferation, migration, invasion,
angiogenesis, immunosuppression, and drug resistance,
suggesting a potentially innovative clinical treatment
approach for glioma (Fig. 2).

Exosomal miRNAs for drug-resistant glioma treatment
Glioma resistance to clinical chemotherapy drugs often
results in frequent disease recurrence and a poor prog-
nosis [85]. Numerous studies have demonstrated the
involvement of exosomal miRNAs in glioma chemo-
therapy drug resistance, including alkylating drug TMZ,
suggesting a novel treatment approach to enhance drug
sensitivity by regulating the expression of exosomal miR-
NAs [86].

Yin et al. identified high expression of miR-1238 in
TMZ-resistant GBM cells and tissues, suggesting the
miR-1238/CAV1 (Caveolin 1) axis as a potential tar-
get for future anti-tumor drugs [87]. Additionally,
Wang et al. demonstrated that miR-25-3p promotes
glioma development and resistance to TMZ by down-
regulating F-Box And WD Repeat Domain Containing
7(FBXW?7) [88]. Furthermore, overexpression of miR-
199a enhances chemosensitivity to TMZ and inhibits
glioma progression by downregulating ArfGAP With
GTPase Domain, Ankyrin Repeat And PH Domain
2(AGAP2) [89]. Moreover, Munoz et al. demonstrated
that targeted delivery of exosome-derived functional
anti-miR-9 from bone marrow stem cells enhances sen-
sitivity of GBM to TMZ [90]. Meanwhile, Sharif et al.
discovered that exogenous miR-124 delivered through
Wharton’s Jelly-derived MSCs (W]J-MSCs) efficiently
affects cell migration and proliferation in GBM cells,
increasing sensitivity to TMZ, suggesting a potential
combination therapy for GBM [91].

Although the above studies have shown that exosomal
miRNAs can enhance the sensitivity of glioma to chemo-
therapy drugs, most experiments are currently limited to
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Fig. 2 The relationship between exosomal miRNAs, their target genes and biological functions. Exosomal miRNAs mediate their biological
effects by targeting downstream genes, playing a pivotal role in shaping the glioma microenvironment. These effects include influencing glioma
angiogenesis, progression, proliferation, invasion, migration, and the development of treatment resistance

the cell level. Whether it has the same effect in living ani-
mals and clinical trials still requires further exploration
and research.

Stem cell-derived exosomal miRNAs for the treatment

of gliomas

Stem cell-derived exosomal miRNAs are pivotal in gli-
oma, affecting tumor growth, drug resistance, and treat-
ment outcome [92, 93]. They regulate gene expression and
cell behavior, influencing tumor progression and treat-
ment outcomes. Ongoing research aims to pinpoint spe-
cific miRNAs, elucidate their mechanisms, and explore

their potential as biomarkers and therapeutic targets for
improved glioma management [94, 95].

Glioma stem cells (GSCs) play a pivotal role in GBM,
with GSC-derived exosomes (GSC-Exs) shown to
enhance endothelial cell angiogenic ability via the miR-
21/VEGF/Vascular Endothelial Growth Factor(VEGFR2)
signaling pathway [96]. Jiang et al. demonstrated that
GSC-derived exosomal miR-944 suppresses Vascu-
lar Endothelial Growth Factor C(VEGFC) expression
and the AKT/ERK signaling pathway, inhibiting glioma
growth, progression, and angiogenesis, offering poten-
tial for GBM therapeutic targeting [97]. Additionally,
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targeting Roundabout Guidance Receptor 1(ROBOL1),
miR-29a-3p delivered via exosomes from engineered
human mesenchymal stem cells suppresses tumor migra-
tion and vasculogenic mimicry in glioma, presenting
potential for anti-VM (Vasculogenic mimicry) therapy
and as supplements for anti-angiogenic therapy [98]. Kim
et al. found that exosomal miRNA-584 inhibits glioma
metastasis, suggesting MSC-derived exosomal miRNAs
as an alternative strategy for malignant glioma treatment
[99].

Although stem cell-derived exosomal miRNAs are
closely related to the therapeutic application of glioma,
further research is still needed to understand their pre-
cise mechanisms, ensure effective delivery, and verify
safety. These include optimizing miRNA-based therapies,
using advanced delivery systems, conducting rigorous
preclinical and clinical evaluations, and combining these
methods with existing treatment modalities to improve
their efficacy and targeting accuracy.

Type Il macrophage-derived exosomal miRNAs

for the treatment of gliomas

It has been shown that M2-type macrophages promote
glioma proliferation and migration [100, 101]. Yao et al.
found that miR-15a and miR-92a, lowly expressed in M2
macrophage-derived exosomes, inhibit glioma metas-
tasis and infiltration by binding to Cyclin D1(CCND1)
and RAP1B (RAP1B, Member Of RAS Oncogene Fam-
ily) to activate the PI3K/AKT/mTOR (mammalian tar-
get of rapamycin) signaling pathway [102]. This suggests
that miR-15a and miR-92a might be a novel biomarker
for GBM diagnosis in the glioma patients, and target-
ing miR-15a or miR-92a could contribute to anti-tumor
immunotherapy.

At present, the specific mechanism of action of
M2-type macrophage-derived exosomal miRNAs in gli-
oma is not fully understood and has been less studied. At
the same time, their detection methods need to improve
sensitivity and specificity, and their biological functions
need to be further verified. In addition, there are also ver-
ification and safety issues in the transformation process
from the research stage to actual clinical application.

Cellular hypoxia-derived exosomal miRNAs

for the treatment of gliomas

Myeloid-derived suppressor cells (MDSCs) constitute
a heterogeneous population of bone marrow-derived
cells crucial for tumor immune escape mechanisms due
to their ability to significantly suppress immune cell
responses [103]. Meanwhile, hypoxia has been reported
to play a critical role in miRNA release from exosomes
and the differentiation progression of MDSCs.
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Gou et al. conducted miRNA sequencing, reveal-
ing upregulation of miR-10a and miR-21 expressions in
Hypoxia-induced glioma exosomes (H-GDEs) compared
to normoxia [104]. These miRNAs enhanced MDSC
proliferation by targeting Rora and PTEN genes, respec-
tively. Knockdown experiments of miR-10a and miR-21
in glioma cells further confirmed these findings. Guo
et al. demonstrated that hypoxia-induced glioma cell
exosomes stimulated the differentiation of functional
MDSCs by transporting miR-29a and miR-92a, target-
ing Hbp1 and Prkarla, respectively [105]. This promoted
MDSC proliferation, thereby regulating the immunosup-
pressive tumor microenvironment.

Additionally, hypoxic glioma cells secrete exosomal
miR-301a, which activates the Wnt/p-catenin signaling
pathway and enhances radiation resistance by target-
ing Transcription Elongation Factor A Like 7(TCEAL?7).
The exo-miR-301a/TCEAL7-signaling axis presents a
novel target for cellular resistance to cancer therapeutic
radiation in GBM patients [106]. Furthermore, exosomal
miR-1246 and miR-10b-5p from hypoxic glioma directly
target Fyn Related Src Family Tyrosine Kinase(FRK) and
Transcription Factor AP-2 Alpha(TFAP2A), respectively
[107]. These miRNAs are delivered to normoxic glioma
cells, promoting cell migration and invasion, thus offer-
ing a new avenue for antitumor therapy development.

Application of exosomal miRNAs in the prognosis
of gliomas

Recent research highlights the crucial role of exosomal
miRNAs in determining glioma prognosis. Their expres-
sion levels serve as potential biomarkers for predicting
clinical outcomes and guiding therapeutic strategies.

For example, Guessous et al. analyzed TCGA data and
found that miR-10b levels were negatively correlated with
the prognosis of glioma patients. Shi et al. observed an
association between elevated exosomal miR-21 levels
in the cerebrospinal fluid of glioma patients and poor
prognosis [108]. In addition, serum exosomal miR-301a
levels were significantly elevated in glioma patients
compared to healthy controls. After surgical resection
of the primary tumor, serum exosomal miR-301a levels
decreased, but increased again upon tumor recurrence
[109]. Hence, serum adventitial miR-301a expression
may serve as a novel potential biomarker for predict-
ing prognosis in advanced glioma cases. Furthermore,
Stakaitis et al. reported that high levels of miR-181b were
linked to shorter postoperative survival, and that exoso-
mal miR-181 levels decreased during glioma progression
[110]. This suggests that exosomal miR-181 may serve as
a potential biomarker for prognosis in glioma patients.

Studies have identified several exosomal miRNAs as
potential prognostic markers for glioblastoma GBM.
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In GBM patients, an inverse relationship was observed
between miR-125b/miR-182-5p and nestin expression,
which correlated with overall survival and implied their
utility as a potential biomarker for predicting GBM prog-
nosis [111, 112]. High expression of miR-454-3p/miR-
10b in exosomes or miR-628-3p downregulation in GBM
patients’ blood suggests its potential as a poor progno-
sis biomarker [113—-115]. Zottel et al. found that GBM
patients with high miR-5p and miR-138-5p expressions,
particularly with Isocitrate dehydrogenase (IDH) muta-
tions, had significantly shorter median survival and worse
prognosis [116]. Additionally, Sun et al. observed that
miR-2276-5p was significantly lower in GBM patients
compared to non-glioma individuals, correlating with
poorer survival, while its target gene RAB13 (RABI13,
Member RAS Oncogene Family) was elevated and asso-
ciated with worse outcomes [117]. Moreover, Qiu et al.
conducted bioinformatics analysis on 480 GBM sam-
ples, revealing strong associations between high levels of
miR-326/-130a and low levels of miR-323/329/155/210
with long overall survival and progression-free survival
in GBM patients [118]. These findings suggest that these
miRNAs could serve as valuable prognostic biomarkers
for GBM.

Conclusion

Gliomas, a type of brain tumor, can be broadly clas-
sified into two categories: localized gliomas, which
are typically benign and often amenable to complete
removal through surgical resection, and diffuse glio-
mas, which are malignant and carry a generally poor
prognosis, posing significant challenges in post-surgery
treatment [119]. As medical science progresses, the
pursuit of such innovative approaches becomes cru-
cial in enhancing patient care and outcomes in glioma
cases. Exosomal miRNAs, small non-coding RNAs
pivotal in regulating gene expression, have emerged
as key players in various biological processes, includ-
ing the pathogenesis of cancers, notably gliomas [120,
121]. Exosomal miRNAs present promising prospects
for glioma research and treatment, offering potential
for early diagnosis and prognostic assessment through
liquid biopsies [53]. However, challenges include poten-
tial immune responses, off-target effects, and cytotox-
icity, which could impact normal cells. In addition, the
financial costs are substantial, encompassing isolation,
extraction, and detection expenses, with overall devel-
opment and clinical trials potentially costing several
million dollars. Despite these hurdles, their value in
glioma diagnostics, treatment and prognosis under-
scores their significance in ongoing research and clini-
cal applications.
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As the same time, the integration of big data analysis
in exosomal miRNAs detection offers a groundbreaking
perspective on gliomas [122]. With rapid advancements
in bioinformatics and computational biology, big data
analytics enable a deeper understanding of the intricate
roles of exosomal miRNAs in glioma, driving the pro-
gress of personalized medicine [123]. For example, dis-
tinct exosomal miRNA patterns could serve as diagnostic
markers, allowing physicians to diagnose and subtype
gliomas via blood tests without invasive surgeries [124,
125]. Furthermore, in-depth analysis of miRNA expres-
sion patterns can inform treatment decisions, offering
patients more personalized therapy options.

Additionally, exosomal miRNAs are prepared using
various techniques, including ultracentrifugation, den-
sity gradient centrifugation, and immunoaffinity cap-
ture. Extraction is typically performed with commercial
RNA kits, and detection is conducted using methods
such as qRT-PCR and next-generation sequencing [126,
127]. These miRNAs are promising as non-invasive
biomarkers for early cancer detection and prognosis,
including gliomas, due to their ability to reflect tumor
biology and facilitate liquid biopsy [128, 129]. How-
ever, several challenges persist, including the lack of
standardized methods, ensuring high specificity and
sensitivity, validating biomarkers across diverse patient
cohorts, and addressing issues related to delivery and
safety [130]. Future research should aim to standardize
protocols, improve detection technologies, validate bio-
markers through extensive clinical trials, and advance
exosome engineering to enhance therapeutic applica-
tions. Collaboration among researchers, clinicians, and
industry stakeholders will be essential for overcoming
these challenges and advancing personalized medicine.
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