
Yang et al. Cancer Cell International          (2024) 24:323  
https://doi.org/10.1186/s12935-024-03507-x

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Cancer Cell International

Exploring the clinical implications 
and applications of exosomal miRNAs 
in gliomas: a comprehensive study
Liang Yang1†, Zhen Niu1†, Zhixuan Ma1, Xiaojie Wu1, Chi Teng Vong3,4, Ge Li2*   and Ying Feng1*   

Abstract 

Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their 
invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have 
emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor 
progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma 
development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This compre-
hensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their 
potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limi-
tations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging 
exosomal miRNAs in precision oncology for glioma management.
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Introduction
The World Health Organization (WHO) CNS5 classi-
fication of central nervous system tumors categorizes 
gliomas into grades I to IV, with higher grades indicat-
ing higher malignancy [1–3]. Grades I and II gliomas are 
classified as low-grade gliomas, while grades III and IV 

are classified as high-grade gliomas. Low-grade brain 
gliomas primarily refer to diffuse astrocytomas, oligo-
dendrogliomas, and oligoastrocytomas. High-grade 
brain gliomas primarily refer to anaplastic astrocytomas, 
anaplastic oligodendrogliomas, glioblastomas, and dif-
fuse midline gliomas. Gliomas, the most common and 
malignant primary brain neoplasms, originate from glial 
or precursor cells in the central nervous system (CNS) 
neuroectoderm [4, 5]. They are characterized by their 
undesirable prognosis and poor survival rate, encom-
passing astrocytomas, oligodendrogliomas, and epend-
ymomas [6, 7], posing a serious threat to human health 
and lives. While computed tomography (CT) and mag-
netic resonance imaging (MRI) are routine techniques for 
diagnosing disease stages and monitoring tumor growth 
and therapeutic response, they are often cumbersome 
and expensive. Conventional surgical, radiation, and 
chemotherapy treatments can delay tumor progression 
but are often ineffective and do not provide significant 
improvement [8]. Therefore, there is an urgent need for a 
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new method that can both diagnose and treat gliomas, as 
well as detect the prognosis of gliomas. Recently, increas-
ing evidence suggests that diagnostic biomarkers, such 
as exosomal miRNAs, would be clinically meaningful for 
the early detection of the tumor and for cases in which 
surgery is contraindicated or biopsy results are inconclu-
sive [9, 10].

Exosomes, small vesicles with round or cup shapes, 
were first isolated from sheep erythrocyte supernatant in 
1983 by JohnStone et al. during a study on the transfor-
mation of immature erythrocytes to mature erythrocytes 
[11]. These vesicles, which have a diameter of 40–160 nm, 
originate from endosomes and consist of lipid bilayer 
membranes [12, 13]. They are actively released by most 
cells, circulating stably in body fluids [14, 15]. Besides 
their roles in cell-to-cell communication and tumo-
rigenesis, exosomes safeguard the substances they carry, 
including DNA, RNA, lipids, and proteins, from degrada-
tion [16–20], while also regulating the activity of recipi-
ent cells and influencing the tumor microenvironment by 
transporting nucleic acids [21].

Exosomal miRNAs, a subset of circulating miRNAs, 
have gained attention for their characteristics as endog-
enous, double-stranded, non-coding small molecule 
RNAs, typically 18–25 nucleotides in length, with over 
1000 different exosomal miRNAs identified through 
RNA sequencing [22, 23]. The discovery of the first 
miRNA dates back to 1993 when Lee and Ambros iden-
tified one in Caenorhabditis elegans, and their presence 
in exosomes was first demonstrated by Valadi et  al. in 
2007 [24–27]. Originating from single-stranded miRNA 
gene transcripts, they are processed by the ribonucle-
ase III enzyme, Dicer, integrated into the RNA-induced 
silencing complex, enabling them to repress the transla-
tion of target RNA by binding to partially complementary 
sequences in the 3ʹ untranslated region (UTR) of mes-
senger RNA (mRNA) [28–30] (Fig.  1). Exosomal miR-
NAs may play roles in gene activation in certain contexts, 
affecting biological processes, exerting significant influ-
ence on cell differentiation, proliferation, and survival, 
exhibiting both tumor-suppressive and oncogenic effects 
[31–34]. Notably, Calin et  al. observed a loss or down-
regulation of miR-15/16 cluster expression in chronic 
lymphocytic leukemia in 2002, highlighting the potential 
role of miRNAs in tumorigenesis [35]. Studies have also 
demonstrated the effectiveness of exosomal miRNAs as 
potential biomarkers in liquid biopsy for cancer diag-
nosis, treatment monitoring, and prognosis prediction, 
emerging as valuable disease markers [36–43]. Notably, 
the effects of exosomal miRNAs on gliomas primarily 
involve the inhibition or promotion of their downstream 
target genes, thereby exerting their respective biological 
functions (Tables 1, 2).

In this review, we summarize the latest findings on 
the fundamental roles of exosomal miRNAs implicated 
in the diagnosis, treatment, and prognosis of gliomas, 
considering the complex molecular mechanisms and the 
expanding research field. We also discuss the research 
limitations and provide future perspectives.

Exosomal miRNAs and the occurrence 
and development of gliomas
Exosomal miRNA biogenesis is tightly regulated tem-
porally and spatially, with dysregulation implicated in 
glioma development [44–49]. Current research suggests 
that dysregulation of exosomal miRNAs could be piv-
otal in glioma growth, angiogenesis, metastasis, and cell 
migration. For example, several studies have reported 
that miR-375 inhibits proliferation and invasion in glio-
blastoma, while miR-16-1 inhibits migration and pro-
liferation in glioma cells [50, 51]. Additionally, Li et  al. 
demonstrated that microglial exosome miR-7239-3p pro-
motes glioma progression by regulating Circadian genes 
[52]. These research findings indicate a close associa-
tion between exosomal miRNAs and the occurrence and 
development of gliomas, suggesting their potential appli-
cation in clinical diagnosis, treatment, and prognosis.

Application of exosomal miRNAs in the diagnosis 
of gliomas
A variety of circulating biomarkers are present in the 
blood of glioma patients, including circulating tumor 
cells, nucleic acids, and proteins [53]. Among these, exo-
somal miRNAs have garnered considerable attention due 
to their significant distinctions between glioma patients 
and healthy counterparts. Lu et al. conducted a system-
atic analysis of 217 mammalian miRNAs across 334 sam-
ples, revealing a prevailing downregulation of miRNAs 
in tumors compared to normal tissues [54]. Their find-
ings enabled the successful classification of poorly dif-
ferentiated tumors using miRNA expression profiling, 
highlighting the diagnostic potential of miRNA analysis 
in cancer. Furthermore, Wang et  al. discovered signifi-
cantly higher levels of miR-766-5p and miR-376b-5p in 
the serum of patients with high-grade glioma compared 
to healthy controls, suggesting their potential as auxiliary 
diagnostic biomarkers [55].

Glioblastoma (GBM), or glioblastoma multiforme, is 
the most malignant and common type of glioma. It is 
classified as a Grade IV glioma, characterized by its rapid 
growth, high invasiveness, and poor prognosis. Dong 
et al. identified elevated expressions of miR-576-5p, miR-
340, and miR-626, alongside decreased expressions of 
miR-320, miR-7-5p, and let-7g-5p in the peripheral blood 
of GBM patients compared to normal subjects using gene 
microarray analysis [56]. In another study by Manterola, 
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Fig. 1 The process of production and functions of mature exosomal miRNAs in animals. Mature miRNA is secreted out of the cells after entering 
endosomes formed by the cell membrane, thus resulting in the formation of exosomal miRNA. Mature miRNAs are produced in two stages: 
in the nucleus, genes encoding miRNAs are transcribed into pri-miRNAs by the action of RNA polymerase RNA pol II, which are then processed 
by Drosha RNase III nucleic acid endonuclease into 60-70 nt stem-loop intermediates, i.e. pre-miRNAs (miRNA precursors). Subsequently, pre-miRNA 
is transported into the cytoplasm by Exportin-5 bound to Ran-GTP, and the stem-loop structure is cleaved away by Dicer RNase III nuclease, leaving 
two incompletely paired strands called miRNA:miRNA* complexes, where miRNA is the mature miRNA and miRNA* is the relative arm with a short 
lifetime. Then, the double strand is loaded onto the argonaute protein, and nucleotide base pairing between the miRNA in the double strand 
and the complementary sequence in the 3′ untranslated region (3′ UTR) of the target mRNA forms the miRNA effector miRNA-induced silencing 
complex (miRISC) to inhibit translation and/or promote mRNA degradation, while miRNAs are released and degraded
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Table 1 Exosomal miRNAs that are down-regulated, their target genes and biological functions, and their roles in glioma diagnosis, 
treatment and prognosis

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-1 ANXA2/MET Downregulated 
in human GBM

Reducing the tumo-
rigenicity, angio-
genesis, invasion 
and progression 
of glioblastoma 
multiforme

Promising Potential Unclear [34]

MiR-7 EGFR Downregulated 
in GBM

Decreasing inva-
siveness of GBM 
and enhancing 
the sensitivity of GBM 
to TRAIL

Unclear Potential Unclear [131, 132]

MiR-15a CCND1 Downregulated Suppressing migra-
tion and invasion 
of glioma

Unclear Potential Unclear [102]

MiR-15b CCNE1/NRP-2 Downregulated Inhibiting angiogen-
esis and proliferation 
of gliomas cells

Unclear Potential Unclear [133, 134]

MiR-29a-3p ROBO1 Downregulated 
in glioma cells

Inhibiting migration 
and vasculogenic 
mimicry formation 
in glioma

Unclear Potential Unclear [98]

MiR-29c SP1 Downregulated 
in glioma

Increasing temozo-
lomide sensitivity 
by targeting MGMT

Unclear Potential Unclear [135]

MiR-34a PDGFRA/c-Met/
Notch/MYCN

Downregulated 
in glioma

Inhibiting prolifera-
tion and tumorigen-
esis in glioma cells

Unclear Potential Unclear [79, 80, 136, 137]

MiR-101 EZH2 Downregulated 
in GBM

Inhibiting prolif-
eration, migration, 
and angiogenesis 
of GBM

Unclear Potental Unclear [138]

MiR-106a E2F2 Downregulated 
in glioma

Inhibiting growth 
of glioma cells

Potential Potential Unclear [139]

MiR-124 CDK6/STAT3 Downregulated 
in glioma

Suppressing prolif-
eration, migration 
and increasing 
chemosensitivity 
to TMZ

Potential Potentail Unclear [91, 94]

MiR-124a IQGAP1/LAMC1/
ITGB1/FOXA2

Downregulated 
in GBM

Suppressing migra-
tion and invasion 
in GBM

Unclear Potential Unclear [95, 140]

MiR-125b E2F2 Downregulated 
in CD133 positive 
GSCs

Inhibiting the prolif-
eration of glioblas-
toma stem cells

Unclear Potential Unclear [141]

MiR-128 RTK Downregulated 
in glioma

Blocking GBM stem 
cells self-renewal 
and growth

Unclear Potential Potential [142]

MiR-133b Wnt Downregulated 
in glioma

Suppressing 
proliferation, inva-
sion and migration 
in glioma cells

Unclear Potential Unclear [143]

MiR-136 AGE1/Bcl2 Downregulated 
in glioma cell

Promoting the apop-
tosis of glioma cells

Unclear Potential Unclear [144]

MiR-137 CDK6 Downregulated 
in high-grade glioma

Inhibiting the prolif-
eration of glioblas-
toma multiforme 
cells

Unclear Potential Unclear [145]



Page 5 of 18Yang et al. Cancer Cell International          (2024) 24:323  

Table 1 (continued)

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-139 Mcl-1 Downregulated 
in GBM

Suppressing 
the proliferation 
and enhancing 
temozolomide-
induced apoptosis

Unclear Potential Unclear [146]

MiR-143 N-RAS Downregulated 
in glioma

Suppressing growth 
and enhancing 
temozolomide-
induced apoptosis 
in glioma

Potential Potential Unclear [147]

MiR-146b EGFR Downregulated 
in glioma cells

Suppressing the inva-
sion and migration 
in glioma

Unclear Potential Unclear [148]

MiR-152 MMP-3 Downregulated 
in glioma cells

Reducing invasion 
and angiogenesis 
in glioma

Unclear Potential Unclear [134]

MiR-199a AGAP2 Downregulated 
in glioma tissue

Enhancing che-
mosensitivity to TMZ 
in glioma

Unclear Potential Unclear [89]

MiR-302–367 Cyclin D1/CyclinA/
E2F1/CXCR4

Downregulated Suppressing migra-
tion, proliferation 
and chemosensitivity 
of GBM

Unclear Potential Unclear [149, 150]

MiR-410 MET Downregulated 
in glioma cells

Inhibiting prolif-
eration and invasion 
of glioma

Unclear Potential Unclear [151]

MiR-433 HMGB3 Downregulated 
in glioma tissue

Inhibiting the pro-
liferation ability 
of glioma cells

Unclear Potential Unclear [152]

MiR-451 AMPK/c-Myc/PI3K/
AKT

Downregulated Promoting prolif-
eration and immu-
nosuppression 
in glioma cells

Unclear Potential Unclear [153–156]

MiR-454-3p ATG12 Downregulated 
in glioma cells

Inhibiting cell 
proliferation, 
migration, invasion, 
and autophagy 
in glioma

Yes Unclear Yes [113]

MiR-483-5p ERK1 Downregulated 
in glioma

Suppressing the pro-
liferation of glioma 
cells

Unclear Potential Unclear [157]

MiR-491 CDK6 Downregulated 
in GBM

Inhibiting the pro-
liferation of glioma 
cell lines

Unclear Potential Unclear [158]

MiR-512-5p JAG1 Downregulated 
in glioblastoma

Suppressing glioblas-
toma proliferation

Unclear Potential Unclear [159]

MiR-520/302 AKT1/PIK3CA/SOS1 Downregulated Enhancing glioblas-
toma cell susceptibil-
ity to tyrosine kinase 
inhibitors

Unclear Potential Unclear [160]

MiR-580-3p WEE1 Downregulated 
in GBM

Suppressing the pro-
liferation and drug 
resistance of glioma 
cells

Unclear Potential Unclear [161]

MiR-584 PTTG1IP/CYP2J2 Downregulated 
in glioma

Inhibiting cancer cell 
proliferation, invasion 
and migration

Unclear Potential Unclear [99, 162]
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analysis of exosomal miRNAs from 161 GBM patients 
and 110 healthy subjects revealed that the combina-
tion of miR-320/miR-574-3p/RNU6-1 (RNA, U6 Small 
Nuclear 1) serves as promising biomarker candidates for 
distinguishing between GBM patients and healthy con-
trols [57]. Similarly, elevated levels of miR-103 and miR-
125 were detected in the serum of GBM patients [58].

Numerous studies have reported a significant upregu-
lation of exosomal miR-21 expression in the serum of 
glioma patients, a dysregulation that may contribute to 
the initiation and progression of GBM by influencing 
various cellular and molecular targets [59, 60]. Santan-
gelo et  al. observed that post-surgery, levels of exoso-
mal miR-21 isolated from patient serum were notably 
higher in individuals with high-grade glioma compared 
to those with low-grade glioma [61]. They further iden-
tified three serum exosome-associated miRNAs (miR-21, 
miR-222, miR-124-3) that could aid in glioma detection 
and grading through the analysis of 141 serum samples 
and accompanying clinical data [40]. The utilization of 
these three miRNA-based diagnostics was demonstrated 
to enhance diagnostic efficiency for high-grade glioma 
patients. Additionally, Akers et al. noted significantly ele-
vated levels of miR-21 in the cerebrospinal fluid of GBM 
patients during their examination of cerebrospinal fluid 
from both healthy subjects and GBM patients for miRNA 
analysis [62]. Consequently, exosomal miR-21 emerges as 
a reliable biomarker for the diagnosis of glioma patients.

In addition to exosomal miR-21, several exosomal 
miRNAs have shown potential as biomarkers for glioma 
diagnosis. MiR-10, which is absent in normal brain tis-
sue but elevated in gliomas, has been linked to tumor cell 
stasis, apoptosis, and autophagy [63]. MiR-449 and miR-
5194 are promising for GBM diagnosis, while miR-210 
is already confirmed as a biomarker for GBM patients 
[64]. Additionally, miR-221 was found to be significantly 
upregulated in GBM tissues, while miR-128 and miR-
181 expressions were decreased, suggesting that elevated 
miR-221 expression could serve as a potential diagnostic 
biomarker for glioma [65, 66].

Tumor metastasis is a critical stage of tumor progres-
sion and a major therapeutic challenge. Exosomal miR-
NAs play an important role in the development of distant 
metastasis of primary tumor cells [67]. Studies have dem-
onstrated a significant elevation in miR-148a levels in 
both the serum and tumor tissues of GBM patients. Fur-
thermore, miR-148a has been implicated in promoting 
glioma metastasis, proliferation, and migration by target-
ing Cell Adhesion Molecule 1(CADM1), Mitogen-induc-
ible gene 6(MIG6), and Epidermal growth factor receptor 
(EGFR) [68, 69]. Additionally, Teplyuk et al. also observed 
significant elevations in miR-10b and miR-21 levels in the 
cerebrospinal fluid of GBM patients, whereas miR-200 
levels were notably increased in the cerebrospinal fluid 
of patients with glioma metastases [70]. Furthermore, 
Emilliya and colleagues discovered that miR-491 not only 
differentiates glioma brain metastasis but also exhibits 

Table 1 (continued)

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-584-5p CYP2J2/MMP-2/Bcl-2 
and Bax

Downregulated Suppressing metas-
tasis, proliferation, 
migration and induc-
ing glioma cells 
apoptosis

Unclear Potential Unclear [99]

MiR-873 Bcl-2 Downregulated 
in glioma tissue

Decreasing the resist-
ance of the glioma 
cells to cisplatin

Unclear Potential Unclear [163]

MiR-885-5p MMP9 Downregulated 
in glioma

Inhibiting cellular 
invasion in glioma 
cells

Unclear Potential Unclear [164]

MiR-944 VEGFC Downregulated Suppressing prolif-
eration, migration 
and angiogenesis 
in glioma

Unclear Potential Unclear [165]

MiR-2276-5p Rab13 Downregulated 
in glioma

Inhibiting the growth 
glioma cells

Potential Unclear Potential [117]

MiR-4686 Unclear Downregulated 
by exo-ROR1AS1

Suppressing the pro-
gression glioma cells

Unclear Potential Unclear [166]

MiR-4709-3p GRB14/PDGFRα Downregulatede 
in glioblastoma

Enhancing glioblas-
toma progression 
and radioresistance

Unclear Potential Unclear [167]
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Table 2 Exosomal miRNAs that are upregulated, their target genes and biological functions, and their roles in glioma diagnosis, 
treatment and prognosis

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-9 COL18A1/THBS2/
PTCH1/PHD3

Upregulated in human 
glioma

Promoting tumo-
rigenesis, angiogen-
esis and enhancing 
chemosensitivity, 
proliferation of glioma 
cells

Unclear Potential Unclear [90, 168, 169]

MiR-10a Rora/IkBa/NF-kB Upregulated 
in H-GDEs

Promoting the expan-
sion and function 
of myeloid-derived 
suppressor cells

Unclear Potential Unclear [104]

MiR-10b BCL2L11/TFAP2C/
CDKN1A/CDKN2A

Upregulated in human 
GBM

Reducing growth 
and inhibiting the pro-
liferation of glioblas-
toma

Unclear Potential Potential [63, 115]

MiR-10b-5p TFAP2A Upregulated 
in H-GDEs

Inducing glioma 
migration and inva-
sion

Potential Potential Potential [107]

MiR-21 VEGF/PTEN Upregulated in GBM Promoting prolifera-
tion, migration, nva-
sion and angiogenesis 
of glioma

Potential Potential Unclear [47, 60, 104]

MiR-21-5p SPRY1 Upregulated in GBM Unclear Yes Unclear Yes [116]

MiR-9-5p NAP1L1/FREM2 Upregulated in GBM 
stem cell

Unclear Yes Unclear Yes [116]

MiR-23a PTEN Upregulated in glioma Promoting gliom-
agenesis

Unclear Potential Unclear [170]

MiR-23b VHL Upregulated in glioma 
cells

Promoting prolif-
eration and invasion 
of glioma

Unclear Potential Unclear [171]

MiR-24 ST7L Upregulated in glioma 
cells

Promoting prolif-
eration, invasion 
and inducing apopto-
sis in glioma

Unclear Promising Unclear [172]

MiR-25-3p FBXW7 Upregulated in GBM Promoting the pro-
liferation and temo-
zolomide resistance 
of glioblastoma

Potential Unclear Unclear [88]

MiR-26a RB1 Upregulated in glioma 
cells

Promoting the prolif-
eration and angiogen-
esis in glioma cells

Unclear Yes Unclear [173–175]

MiR-92b NLK Upregulated in glioma 
cells

Promoting invasion, 
growth and inhibiting 
apoptosis in glioma 
cells

Unclear Potential Unclear [176]

MiR-145 srGAP1 Upregulated in IM3 
cell lines

Regulating the inva-
sion of glioblastoma 
cells

Unclear Potential Unclear [177]

MiR-148a CADM1/MIG6/BIM/
EGFR

Upregulated in GBM 
cells

Promoting prolif-
eration, invasion 
and migration 
in glioma cells

Yes Potential Unclear [68, 69]

MiR-148a-3p ERRFI1 Upregulated in glioma 
cells

Promoting angiogen-
esis and proliferation

Unclear Potential Unclear [178]

MiR-151a XRCC4 Upregulated in glioma 
tissue

Enhancing chemosen-
sitivity to TMZ in drug-
resistant glioblastoma

Unclear Potential Unclear [179]
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Table 2 (continued)

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-181b/d MGMT Upregulated in GBM 
patients

Stimulating the cell 
proliferation, migra-
tion, and invasion

Yes Unclear Yes [110]

MiR-182-5p KLF2/4 Upregulated in glioma 
cells

Promoting glioblas-
toma angiogen-
esis and leading 
to the accumulation 
of VEGFR

Potential Potential Potential [112, 180]

MiR-195 SIAH1/WEE1/RANBP3 Upregulated in GBM 
cells

Enhancing temozo-
lomide resistance 
in glioblastoma 
multiforme cells

Unclear Potential Unclear [181]

MiR-210 PTBP3 Upregulated in GBM 
patients serum

Involving survival, 
differentiation, angio-
genesis, metabolism 
and cell cycle control

Yes Potential Yes [182]

MiR-214-5p CXCR5 Upregulated in GBM Promoting cell prolif-
eration and migration

Unclear Potential Yes [183]

MiR-221 DNM3/PUMA Upregulated in GBM Promoting temozo-
lomide resistance 
and progression 
in glioma

Yes Yes Unclear [65, 66]

MiR-222 PUMA/PTPμ/AKT Upregulated in HGG 
patients

Associating with gli-
oma progression

Yes Potential Yes [40, 184]

MiR-223 PAX6 Upregulated in GBM Promoting the growth 
and invasion of tumor 
cells

Unclear Potential Unclear [48]

MiR-301a TCEAL7 Upregulated in glioma 
tissue

Promoting radiation 
resistance, prolif-
eration and invasion 
in glioma cells

Yes Unclear Yes [106]

MiR-328 SFRP1 Upregulated in glioma 
cells

Promoting the inva-
sion of glioma cells

Unclear Potential Yes [185]

MiR-381 LRRC4 Upregulated Promoting the prolif-
eration of glioma cells

Promising Potential Unclear [186]

MiR-423-5p FOXP4 Upregulated in MB 
patients exosomes

Inhibiting MB tumori-
genesis, proliferation, 
migration and inva-
sion

Unclear Potential Unclear [187]

MiR-603 MGMT Upregualted Enhancing the TMZ 
sensitivity of GBM

Unclear Potential Unclear [188]

MiR-634 CYR61 Upregulated Decreasing the pro-
liferation and growth 
of glioblastoma cells

Unclear Potential Unclear [189]

MiR-889 Notch/Jak-STAT Upregulated Promoting glioma 
proliferation and radi-
ation resistance

Unclear Potential Unclear [190]

MiR-1238 CAV1/EGFR Upregulated in GBM 
patients

Promoting resistance 
to TMZ and enhanc-
ing anti-apoptosis

Yes potentail Unclear [87]

MiR-1298-5p MSH2/Setd7 Upregulated Promoting immuno-
suppressive effects 
of MDSCs and sup-
pressing the progres-
sion in glioma

Unclear Potential Unclear [103]

MiR-1587 NCOR1 Upregulated Increasing the tumo-
rigenicity of glioma 
stem-like cells

Unclear Potential Unclear [93]



Page 9 of 18Yang et al. Cancer Cell International          (2024) 24:323  

lower expression in high-grade gliomas compared to 
low-grade gliomas [71]. Meanwhile, the findings of Bao 
et al. indicate that elevated expression of miR-155-5p in 
the plasma of glioma patients is positively correlated with 
glioma grading [72]. These studies suggest that miRNAs 
in exosomes have the potential to serve as diagnostic 
markers for glioma metastasis and to distinguish between 
different grades of gliomas, such as low-grade and high-
grade gliomas.

Application of exosomal miRNAs for the treatment 
of gliomas
Traditional glioma treatments, like surgical resection and 
chemotherapy with radiotherapy, often lead to signifi-
cant side effects and poor prognosis [73, 74]. For exam-
ple, temozolomide (TMZ), a primary antitumor agent in 
clinical chemotherapy, induces DNA damage in glioma 
cells while also causing a multitude of chemotherapy side 
effects [75]. Furthermore, the limitations of traditional 
treatments underscore the urgent need for alternative 
therapeutic approaches. Nucleic acid therapy, currently 
promising in various human diseases, has attracted atten-
tion. Research accumulation indicates potential utiliza-
tion of exosomal miRNAs in treating malignant tumors. 
[76, 77]. These exosomal miRNAs regulate gene expres-
sion post-transcriptionally and intricately connect with 
the glioma microenvironment through targeting multiple 
signaling pathways such as EGFR, Phosphatidylinositide 
3-kinases/protein kinase B (PI3K/AKT), p53, Notch, and 
others [78–81].

Targeted therapy refers to a treatment strategy that 
specifically targets molecules or molecular pathways 
involved in the growth, progression, or spread of diseases 
such as cancer. Unlike traditional chemotherapy, which 
can affect both cancerous and healthy cells, targeted ther-
apies are designed to interfere with specific molecules 
that play crucial roles in disease development. Mean-
while, exosomal miRNAs possess dual characteristics, 
with both tumor suppressive and oncogenic activities, 

endowing them with potential for tumor therapy [82–84]. 
Dysregulation of exosomal miRNAs significantly impacts 
glioma tumorigenesis, proliferation, migration, invasion, 
angiogenesis, immunosuppression, and drug resistance, 
suggesting a potentially innovative clinical treatment 
approach for glioma (Fig. 2).

Exosomal miRNAs for drug‑resistant glioma treatment
Glioma resistance to clinical chemotherapy drugs often 
results in frequent disease recurrence and a poor prog-
nosis [85]. Numerous studies have demonstrated the 
involvement of exosomal miRNAs in glioma chemo-
therapy drug resistance, including alkylating drug TMZ, 
suggesting a novel treatment approach to enhance drug 
sensitivity by regulating the expression of exosomal miR-
NAs [86].

Yin et  al. identified high expression of miR-1238 in 
TMZ-resistant GBM cells and tissues, suggesting the 
miR-1238/CAV1 (Caveolin 1) axis as a potential tar-
get for future anti-tumor drugs [87]. Additionally, 
Wang et  al. demonstrated that miR-25-3p promotes 
glioma development and resistance to TMZ by down-
regulating F-Box And WD Repeat Domain Containing 
7(FBXW7) [88]. Furthermore, overexpression of miR-
199a enhances chemosensitivity to TMZ and inhibits 
glioma progression by downregulating ArfGAP With 
GTPase Domain, Ankyrin Repeat And PH Domain 
2(AGAP2) [89]. Moreover, Munoz et  al. demonstrated 
that targeted delivery of exosome-derived functional 
anti-miR-9 from bone marrow stem cells enhances sen-
sitivity of GBM to TMZ [90]. Meanwhile, Sharif et  al. 
discovered that exogenous miR-124 delivered through 
Wharton’s Jelly-derived MSCs (WJ-MSCs) efficiently 
affects cell migration and proliferation in GBM cells, 
increasing sensitivity to TMZ, suggesting a potential 
combination therapy for GBM [91].

Although the above studies have shown that exosomal 
miRNAs can enhance the sensitivity of glioma to chemo-
therapy drugs, most experiments are currently limited to 

Table 2 (continued)

MicroRNA Target genes/
pathway

Dysregulation Mechanism/
biological function

Diagnostic 
significance

Clinic treatment Prognostic 
significance

Ref

MiR-5096 Kir4.1 Upregulated Promoting the inva-
siveness of glioma 
cells

Unclear Potential Unclear [191]

MiR-7239-3p Bmal1 Upregulated Promoting prolif-
eration and invasion 
in glioma

Unclear Potential Unclear [52]

MiR-7239-4p Bmal2 Upregulated Promoting prolif-
eration and invasion 
in glioma

Unclear Potential Unclear [52]
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the cell level. Whether it has the same effect in living ani-
mals and clinical trials still requires further exploration 
and research.

Stem cell‑derived exosomal miRNAs for the treatment 
of gliomas
Stem cell-derived exosomal miRNAs are pivotal in gli-
oma, affecting tumor growth, drug resistance, and treat-
ment outcome [92, 93].They regulate gene expression and 
cell behavior, influencing tumor progression and treat-
ment outcomes. Ongoing research aims to pinpoint spe-
cific miRNAs, elucidate their mechanisms, and explore 

their potential as biomarkers and therapeutic targets for 
improved glioma management [94, 95].

Glioma stem cells (GSCs) play a pivotal role in GBM, 
with GSC-derived exosomes (GSC-Exs) shown to 
enhance endothelial cell angiogenic ability via the miR-
21/VEGF/Vascular Endothelial Growth Factor(VEGFR2) 
signaling pathway [96]. Jiang et  al. demonstrated that 
GSC-derived exosomal miR-944 suppresses Vascu-
lar Endothelial Growth Factor C(VEGFC) expression 
and the AKT/ERK signaling pathway, inhibiting glioma 
growth, progression, and angiogenesis, offering poten-
tial for GBM therapeutic targeting [97]. Additionally, 
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targeting Roundabout Guidance Receptor 1(ROBO1), 
miR-29a-3p delivered via exosomes from engineered 
human mesenchymal stem cells suppresses tumor migra-
tion and vasculogenic mimicry in glioma, presenting 
potential for anti-VM (Vasculogenic mimicry) therapy 
and as supplements for anti-angiogenic therapy [98]. Kim 
et  al. found that exosomal miRNA-584 inhibits glioma 
metastasis, suggesting MSC-derived exosomal miRNAs 
as an alternative strategy for malignant glioma treatment 
[99].

Although stem cell-derived exosomal miRNAs are 
closely related to the therapeutic application of glioma, 
further research is still needed to understand their pre-
cise mechanisms, ensure effective delivery, and verify 
safety. These include optimizing miRNA-based therapies, 
using advanced delivery systems, conducting rigorous 
preclinical and clinical evaluations, and combining these 
methods with existing treatment modalities to improve 
their efficacy and targeting accuracy.

Type II macrophage‑derived exosomal miRNAs 
for the treatment of gliomas
It has been shown that M2-type macrophages promote 
glioma proliferation and migration [100, 101]. Yao et al. 
found that miR-15a and miR-92a, lowly expressed in M2 
macrophage-derived exosomes, inhibit glioma metas-
tasis and infiltration by binding to Cyclin D1(CCND1) 
and RAP1B (RAP1B, Member Of RAS Oncogene Fam-
ily) to activate the PI3K/AKT/mTOR (mammalian tar-
get of rapamycin) signaling pathway [102]. This suggests 
that miR-15a and miR-92a might be a novel biomarker 
for GBM diagnosis in the glioma patients, and target-
ing miR-15a or miR-92a could contribute to anti-tumor 
immunotherapy.

At present, the specific mechanism of action of 
M2-type macrophage-derived exosomal miRNAs in gli-
oma is not fully understood and has been less studied. At 
the same time, their detection methods need to improve 
sensitivity and specificity, and their biological functions 
need to be further verified. In addition, there are also ver-
ification and safety issues in the transformation process 
from the research stage to actual clinical application.

Cellular hypoxia‑derived exosomal miRNAs 
for the treatment of gliomas
Myeloid-derived suppressor cells (MDSCs) constitute 
a heterogeneous population of bone marrow-derived 
cells crucial for tumor immune escape mechanisms due 
to their ability to significantly suppress immune cell 
responses [103]. Meanwhile, hypoxia has been reported 
to play a critical role in miRNA release from exosomes 
and the differentiation progression of MDSCs.

Gou et  al. conducted miRNA sequencing, reveal-
ing upregulation of miR-10a and miR-21 expressions in 
Hypoxia-induced glioma exosomes (H-GDEs) compared 
to normoxia [104]. These miRNAs enhanced MDSC 
proliferation by targeting Rora and PTEN genes, respec-
tively. Knockdown experiments of miR-10a and miR-21 
in glioma cells further confirmed these findings. Guo 
et  al. demonstrated that hypoxia-induced glioma cell 
exosomes stimulated the differentiation of functional 
MDSCs by transporting miR-29a and miR-92a, target-
ing Hbp1 and Prkar1a, respectively [105]. This promoted 
MDSC proliferation, thereby regulating the immunosup-
pressive tumor microenvironment.

Additionally, hypoxic glioma cells secrete exosomal 
miR-301a, which activates the Wnt/β-catenin signaling 
pathway and enhances radiation resistance by target-
ing Transcription Elongation Factor A Like 7(TCEAL7). 
The exo-miR-301a/TCEAL7-signaling axis presents a 
novel target for cellular resistance to cancer therapeutic 
radiation in GBM patients [106]. Furthermore, exosomal 
miR-1246 and miR-10b-5p from hypoxic glioma directly 
target Fyn Related Src Family Tyrosine Kinase(FRK) and 
Transcription Factor AP-2 Alpha(TFAP2A), respectively 
[107]. These miRNAs are delivered to normoxic glioma 
cells, promoting cell migration and invasion, thus offer-
ing a new avenue for antitumor therapy development.

Application of exosomal miRNAs in the prognosis 
of gliomas
Recent research highlights the crucial role of exosomal 
miRNAs in determining glioma prognosis. Their expres-
sion levels serve as potential biomarkers for predicting 
clinical outcomes and guiding therapeutic strategies.

For example, Guessous et al. analyzed TCGA data and 
found that miR-10b levels were negatively correlated with 
the prognosis of glioma patients. Shi et  al. observed an 
association between elevated exosomal miR-21 levels 
in the cerebrospinal fluid of glioma patients and poor 
prognosis [108]. In addition, serum exosomal miR-301a 
levels were significantly elevated in glioma patients 
compared to healthy controls. After surgical resection 
of the primary tumor, serum exosomal miR-301a levels 
decreased, but increased again upon tumor recurrence 
[109]. Hence, serum adventitial miR-301a expression 
may serve as a novel potential biomarker for predict-
ing prognosis in advanced glioma cases. Furthermore, 
Stakaitis et al. reported that high levels of miR-181b were 
linked to shorter postoperative survival, and that exoso-
mal miR-181 levels decreased during glioma progression 
[110]. This suggests that exosomal miR-181 may serve as 
a potential biomarker for prognosis in glioma patients.

Studies have identified several exosomal miRNAs as 
potential prognostic markers for glioblastoma GBM. 
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In GBM patients, an inverse relationship was observed 
between miR-125b/miR-182-5p and nestin expression, 
which correlated with overall survival and implied their 
utility as a potential biomarker for predicting GBM prog-
nosis [111, 112]. High expression of miR-454-3p/miR-
10b in exosomes or miR-628-3p downregulation in GBM 
patients’ blood suggests its potential as a poor progno-
sis biomarker [113–115]. Zottel et  al. found that GBM 
patients with high miR-5p and miR-138-5p expressions, 
particularly with Isocitrate dehydrogenase (IDH) muta-
tions, had significantly shorter median survival and worse 
prognosis [116]. Additionally, Sun et  al. observed that 
miR-2276-5p was significantly lower in GBM patients 
compared to non-glioma individuals, correlating with 
poorer survival, while its target gene RAB13 (RAB13, 
Member RAS Oncogene Family) was elevated and asso-
ciated with worse outcomes [117]. Moreover, Qiu et  al. 
conducted bioinformatics analysis on 480 GBM sam-
ples, revealing strong associations between high levels of 
miR-326/-130a and low levels of miR-323/329/155/210 
with long overall survival and progression-free survival 
in GBM patients [118]. These findings suggest that these 
miRNAs could serve as valuable prognostic biomarkers 
for GBM.

Conclusion
Gliomas, a type of brain tumor, can be broadly clas-
sified into two categories: localized gliomas, which 
are typically benign and often amenable to complete 
removal through surgical resection, and diffuse glio-
mas, which are malignant and carry a generally poor 
prognosis, posing significant challenges in post-surgery 
treatment [119]. As medical science progresses, the 
pursuit of such innovative approaches becomes cru-
cial in enhancing patient care and outcomes in glioma 
cases. Exosomal miRNAs, small non-coding RNAs 
pivotal in regulating gene expression, have emerged 
as key players in various biological processes, includ-
ing the pathogenesis of cancers, notably gliomas [120, 
121]. Exosomal miRNAs present promising prospects 
for glioma research and treatment, offering potential 
for early diagnosis and prognostic assessment through 
liquid biopsies [53]. However, challenges include poten-
tial immune responses, off-target effects, and cytotox-
icity, which could impact normal cells. In addition, the 
financial costs are substantial, encompassing isolation, 
extraction, and detection expenses, with overall devel-
opment and clinical trials potentially costing several 
million dollars. Despite these hurdles, their value in 
glioma diagnostics, treatment and prognosis under-
scores their significance in ongoing research and clini-
cal applications.

As the same time, the integration of big data analysis 
in exosomal miRNAs detection offers a groundbreaking 
perspective on gliomas [122]. With rapid advancements 
in bioinformatics and computational biology, big data 
analytics enable a deeper understanding of the intricate 
roles of exosomal miRNAs in glioma, driving the pro-
gress of personalized medicine [123]. For example, dis-
tinct exosomal miRNA patterns could serve as diagnostic 
markers, allowing physicians to diagnose and subtype 
gliomas via blood tests without invasive surgeries [124, 
125]. Furthermore, in-depth analysis of miRNA expres-
sion patterns can inform treatment decisions, offering 
patients more personalized therapy options.

Additionally, exosomal miRNAs are prepared using 
various techniques, including ultracentrifugation, den-
sity gradient centrifugation, and immunoaffinity cap-
ture. Extraction is typically performed with commercial 
RNA kits, and detection is conducted using methods 
such as qRT-PCR and next-generation sequencing [126, 
127]. These miRNAs are promising as non-invasive 
biomarkers for early cancer detection and prognosis, 
including gliomas, due to their ability to reflect tumor 
biology and facilitate liquid biopsy [128, 129]. How-
ever, several challenges persist, including the lack of 
standardized methods, ensuring high specificity and 
sensitivity, validating biomarkers across diverse patient 
cohorts, and addressing issues related to delivery and 
safety [130]. Future research should aim to standardize 
protocols, improve detection technologies, validate bio-
markers through extensive clinical trials, and advance 
exosome engineering to enhance therapeutic applica-
tions. Collaboration among researchers, clinicians, and 
industry stakeholders will be essential for overcoming 
these challenges and advancing personalized medicine.
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