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act as molecular switches, cycling between active GTP-
bound and inactive GDP-bound forms. Binding to GTP 
is promoted by Rho guanine nucleotide exchange factors 
(Rho GEFs), and they can interact with effectors or tar-
get molecules in the GTP-bound form to initiate down-
stream responses, whereas GTP hydrolysis is catalyzed 
by Rho GTPase-activating proteins (Rho GAPs), revert-
ing the proteins to the GDP-bound state to complete the 
cycle and terminate signaling. Rho GDP-dissociation 
inhibitors (GDIs) sequester GDP-bound Rho GTPases in 
the cytoplasm and inhibit GDP and GTP exchange activ-
ity [1–3].

Rho proteins play critical roles in actin cytoskeleton 
remodeling, influencing cell motility and supporting cel-
lular processes such as migration, invasion, and tube for-
mation. RhoA is involved in gene transcription, cell cycle 
progression, and cell transformation and RhoA plays a 

Introduction
Rho GTPases are the members of the Ras superfam-
ily and are known for their important roles in regulat-
ing the actin cytoskeleton. Rho, Rac, and Cdc42 are the 
most extensively characterized Rho GTPases. The Rho 
subfamily contains the three isoforms RhoA, RhoB, and 
RhoC [1]. The Rho family proteins have lipid modifica-
tions that allow them to localize to cell membranes and 
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Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton 
organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and 
the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy 
resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor 
relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, 
or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, 
allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this 
review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize 
their inhibitors that may improve treatment strategies.
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crucial role in the progression and development of many 
malignancies, such as breast, gastric, and colorectal can-
cer [4]. It regulates cancer cell survival, proliferation, 
adhesion, the cell cycle, and gene transcription [5, 6]. 
Mutations in RhoA have been reported in many human 
cancers, wherein they contribute to the malignant pro-
cesses [7]. RhoA is overexpressed in many tumors and 
has been associated with poor prognosis [8], and its 
inhibition results in decreased tumor proliferation and 
migration [9]. Upregulated RhoC also regulates several 
tumor phenotypes [10, 11] and induces TGFβ signaling 
mediated epithelial-mesenchymal transition (EMT) in 
ovarian and cervical cancers [12, 13]. In contrast, RhoB 
has the opposite function, acting as a negative modifier 
or suppressor gene in cancer cells. In a variety of solid 
tumors, such as lung, head and neck, and brain cancers, 
RhoB levels decrease as tumor progresses [14].

Activated RhoA triggers one of its downstream effec-
tors Rho-associated coiled-coil-containing protein 
kinases, ROCK1 or ROCK2. These kinases play a vital 
role in stress fiber and focal adhesion formation, smooth 
muscle contraction, neurite retraction, microvilli forma-
tion, and cell migration. ROCK2 also plays an important 
role in tumor progression. In this review, we discuss the 
role of RhoA/ROCK2 signaling in normal cells and its 
correlation with cancer cell invasion, migration, division, 
tumor stemness, and resistance to therapy. This study 
aimed to understand tumor progression and identify 
potential targeting strategies.

Structure of Rho proteins
The gene encoding RhoA (former gene name: aplysia 
Ras-related homolog, ARH12) is located on chromosome 
3 in humas, and its precursor mRNA is subject to highly 
variable alternative splicing, resulting in seven known 
transcript variants for RhoA, which are then translated 
into six different RhoA isoforms [15]. The protein struc-
tures of Rho subfamily members have been intensively 
studied for decades, revealing their binding to different 

nucleotides or nucleotide analogs at different activ-
ity states and their interactions with different effectors, 
including GEFs, GAPs, and GDIs.

RhoA, RhoB, and RhoC possess a relatively conserved 
N-terminal portion containing a G domain (also known 
as RhoA-like domain) and a less-conserved C-terminal 
tail. The conformational changes from activated to inac-
tivated states are mainly restricted to two surface loop 
regions: switch I and switch II [16]. The G domain con-
sists of five conserved sequence motifs (G1 to G5) that 
are involved in nucleotide binding and hydrolysis [17]. 
The conformational changes in switches I (G2) and II 
(G3) from the inactive GDP-bound to the active GTP-
bound state are also a prerequisite for the GTPase to bind 
to effector proteins. This possibly occurs via interactions 
with hydrophobic residues in switch regions that are 
exposed in the active state of the GTPase [18]. In addi-
tion to the switch regions, an inserted α-helix (located 
between the G4 and G5 motifs) has been shown to be 
important for effector protein interaction [19]. The crys-
tal structures of the GTPase-binding domains (GBDs) of 
the RhoA-associated coiled-coil kinase (ROCK)-RhoA 
complexes revealed that, as predicted from their primary 
structure, these domains formed α-helical coiled coils 
arranged in a parallel fashion. A 13-residue left-handed 
coiled-coil in the C-terminal portion of the ROCK-GBD 
binds exclusively to the switch and α2 regions of RhoA 
and is considered the minimal sequence required for 
Rho-interacting motif activity [20].

The C-terminal hypervariable region terminates with 
a common sequence known as CAAX (where C rep-
resents cysteine, A is an aliphatic amino acid, and X is 
any amino acid), and post-translational modifications in 
this sequence, including prenylation, endoproteolysis, 
and carboxyl methylation, are critical for the subcellu-
lar localization of Rho GTPases [21] (Fig. 1). The X resi-
due determines which isoprenoid will be added to the 
cysteine. If the amino acid in the X position is leucine, 
isoleucine, or phenylalanine, as in the Rho/Rac family 

Fig. 1 Sequential schematic of the protein structural elements and binding sites of RhoA as retrieved from the PDB database (ID number: 1s1c). Different 
colors of a single letter represent different post-translational modification sites: red for phosphoserine, green for glycosylation sites, and blue for ubiquiti-
nation sites. The red-shaded background on the sequence represents the site that binds to GTP, and the blue-shaded background is the CAAX sequence 
that GDI interacts with. The purple curve line and red boxes below the sequence correspond to α-helices and β-strands, respectively
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of proteins, geranylgeranyltransferase (GGT) modifies 
CAAX Cys residues, while farnesyltransferase (FT) uti-
lizes mostly serine, methionine, or as other amino acids 
in the X position [22, 23]. Prenylation is followed by 
truncation and methylation and the lipid moiety makes 
the C-terminus hydrophobic and helps anchor it to mem-
branes [24]. In contrast to RhoA and RhoC proteins, 
both farnesylated and geranylgeranylated forms of RhoB 
(RhoB-F and RhoB-GG) are present in COS and Rat1/ 
ras cells [25–27].

Post-translational modifications of RhoA
To ensure appropriate spatiotemporal activation, the 
GTPases undergo post-translational modifications. 
The most well-studied are the phosphorylation of ser-
ine, threonine, and tyrosine residues by several critical 
kinases [28]. RhoA is phosphorylated by cAMP-depen-
dent protein kinase (PKA), cGMP-dependent protein 
kinase (PKG), and protein kinase C (PKC) on Ser 188 
[29], whereas ste20-related kinase (SKL) and AMP-
activated protein kinase subunit alpha 1 (AMPKα1) 
inactivate Ser188 [30, 31]. Phosphorylation of Ser188 
deactivates RhoA by increasing its interaction with Rho 
GDI, leading to its translocation from the site of action 
at the membrane to the cytoplasm [32] and causing the 
collapse of actin stress fibers. Extracellular signal-reg-
ulated kinase (ERK) phosphorylates RhoA at Ser88 and 
Thr100 to upregulate RhoA [33]. Mammalian Ste20-like 
kinase 3 (Mst3) phosphorylates RhoA on Ser26 to inac-
tivate RhoA [34]. In addition, other tyrosine residues, 
Tyr34, Tyr66, and Tyr42, are regulated by different tyro-
sine kinases such as Bcr-Abl, Src, and c-Met [35–37]. 
Additionally, RhoA undergoes ubiquitination, leading to 
various outcomes, such as re-localization or degradation 
[38]. RhoA is ubiquitylated by E3 ubiquitin ligase com-
plexes, such as SMAD-specific E3 ubiquitin protein ligase 
(SMURF1), Cullin3, and RNF8, leading to proteasomal 
degradation and regulation of protein turnover [39–42]. 
For RhoA, the prerequisite process involves the addition 
of a geranylgeranyl moiety to Cys190 in the CAAX motif, 
followed by proteolysis and methylation [21, 43].

Role of RhoA in cytoskeletal rearrangement
Cytoskeletal rearrangements play critical roles in the 
regulation of various cellular processes linked to trans-
formation, including proliferation, contact inhibition 
and apoptosis [44]. When bound to GTP, RhoA interacts 
with many downstream effectors. ROCK and mammalian 
diaphanous-related protein (mDia) initiate a network of 
cytoplasmic and nuclear signaling cascades. mDia facili-
tates actin nucleation and polymerization and induces 
long, straight actin filaments [45, 46], and stabilizes and 
aligns microtubules in interphase cells [47]. Rho acts on 
ROCK to phosphorylate myosin phosphatase and myosin 

light chain kinase at Ser19 [48, 49], leading to actin fila-
ment formation and increased actin-myosin interactions 
[50, 51] and contribution to the invasive phenotype [52]. 
ROCK phosphorylates LIM kinase 1 (LIMK1) at Thr508 
[53], then phosphorylates and inactivates cofilin (filament 
severing and depolymerization from the pointed end) to 
regulate actin filament stabilization, focal adhesion, and 
actin network assembly [54, 55].

RhoA-ROCK signaling is involved in the cell cycle
Rho proteins regulate cell cycle proteins that are mainly 
involved in the G1/S transition [56, 57]. Activation of 
RhoA and Rho-dependent stress fiber accumulation 
upregulates cyclin D1 expression levels and consequent 
G1-phase progression. Macrophage migration inhibitory 
factor promotes the activation of the canonical extracel-
lular signal-regulated kinase (ERK)/mitogen-activated 
protein kinase cascade and cyclin D1 expression by 
stimulating Rho GTPase activity and downstream sig-
naling to stress fiber formation and subsequent progres-
sion through G1 to S phase [58–61]. In addition, RhoA 
increases the ubiquitination-dependent degradation of 
p27 (cyclin-dependent kinase inhibitor p27kip1) by con-
tributing to an earlier stage of G1 progression [62]. Inhi-
bition of RhoA and ROCK resulted in increased p21 (cell 
cycle inhibitor p21Cip1/Waf1) expression, which is depen-
dent on phosphorylated ERK, resulting in decreased cell 
proliferation [63, 64].

RhoA regulates mitosis
Mitotic progression is highly regulated and involves the 
dynamic modulation of cell shape and morphology, pri-
marily through the remodeling of the actin and microtu-
bule cytoskeleton. Rho GTPases in animal somatic cells 
regulate the mitotic stages from prophase to telophase, 
and then to cytokinesis [57, 65–67]. During prometa-
phase, chromosomes are captured at kinetochores as 
mitotic spindles assemble. The presence of all chromo-
somes at the spindle equator is necessary for accurate 
chromosome segregation; however, this process is prone 
to error [68].

Cytokinesis is a finely orchestrated process that requires 
the formation and progression of a cleavage furrow gen-
erated by the contraction of an actomyosin contractile 
ring anchored to the plasma membrane by cytoskeletal 
proteins [69]. At the onset of mitosis, actin cytoskeleton 
rearrangement, de-adhesion, and an increase in cortical 
rigidity accompany mitotic cell rounding, during which 
a flat cell becomes spherical [70]; Cdk1/cyclin B1 medi-
ates the phosphorylation of RhoA regulators causing a 
global increase in RhoA activity; activated RhoA acts on 
ROCK to alter cell shape [71]. This is followed by nuclear 
envelope rupture during mitosis and an increase in RhoA 
activity and the concentration of active RhoA in the cell 
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cortex. Following chromosome segregation, cells imme-
diately undergo highly ordered cytoplasmic division, and 
RhoA plays a central role in regulating cytokinesis [72]. 
RhoA activation is required to stabilize midzone micro-
tubules and maintain midzone structures after anaphase 
onset or during cytokinesis [73]. Recruitment of RhoA 
determines the cleavage sites and promotes contractile 
ring assembly and furrow ingression [74, 75] or induces 
polyploidy if actin filaments are not concentrated at fur-
row sites [76, 77]. During cleavage, daughter cells move 
apart to expose the intercellular bridges that stretch 
between them. Cytokinesis is completed when the intra-
cellular bridge is severed.

Intermediate filament (IF) proteins are located in the 
cleavage furrow and must be phosphorylated by ROCK 
during late cytokinesis, which locally breaks down IFs 
and separates IF networks efficiently [78, 79]. If cyto-
plasmic division fails and intermediates are formed in 
this state, nascent daughter cells may remain attached. 
This results in the generation of binucleated aneuploid 
or polyploid giant cells that may lead to genomic insta-
bility and contribute to the initiation and/or progres-
sion of tumorigenesis. Megakaryocytes (MKs), which are 
naturally polyploid cells that give rise to platelets, require 
RhoA/ROCK/F-actin for cytoplasmic maturation, and 
inhibition of this pathway leads to macrothrombocytope-
nia [80–82].

RhoA-ROCK2 pathway and asymmetric cell division 
(ACD)
The RhoA-ROCK2 signaling pathway plays a crucial 
role in cytoskeletal rearrangement and regulation dur-
ing somatic cell division. Deviations in this pathway can 
result in aneuploidy formation or ACD, which can dam-
age various cellular processes such as plasma membrane 
invagination, cleavage site positioning or specification, 
cleavage furrow formation, ingression, midbody forma-
tion, and cell separation [65, 69, 83]. Aneuploidy is a 
common characteristic of cancer cells present in approxi-
mately 90% of solid human tumors and 50% of hemato-
poietic cancers. Hypoxia stimulates the NPY/Y5R axis 
and leads to RhoA overactivation, cytokinesis defects, 
and polyploidy, triggering chromosomal instability and 
bone metastasis in Ewing sarcoma [84] (Fig. 2).

Dynamic contractile ring control mitosis through RhoA 
recruitment effectors
The contractile forces required for furrow ingression 
are provided by a ring of filamentous actin and myosin 
II, which are juxtaposed with the cell membrane at the 
equator of the dividing cells. RhoA-dependent ROCK 
activity is required for myosin II recruitment to the cor-
tex, whereas myosin light chain kinase (MLCK) activ-
ity promotes myosin II turnover [85]. Uniform tension 

distribution around the ring depends on continuous 
turnover of actin filaments; however, a nonuniform ten-
sion distribution around the ring leads to peeling off of 
actin and myosin [86]. Cofilin is activated by myosin II to 
polymerize actin and assemble the contractile ring [87], 
rapidly accumulated during the late stages of furrowing, 
and eventually enriched at the midbody [88]. Cofilin, an 
actin-binding protein, contributes to turnover by sever-
ing actin filaments for normal function. The absence of 
cofilin results in longer filaments, higher ring tension, 
and increased actin dissociation from myosin in fission 
yeast [89].

Furthermore, F-actin is also required for anchoring 
the mitotic spindle to the cell cortex and determining 
the direction of spindle movement [90]. It is plausible 
that in the absence of cofilin, the excessive amount of 
actin forms filaments during mitosis that prevent proper 
spindle positioning and manifest as chromosome segre-
gation defects and aberrant cytokinesis [91]. After silenc-
ing endogenous cofilin, cells lacking nuclear localization 
fail to sever nuclear F-actin during mitotic exit, resulting 
in defective nuclear volume expansion and chromatin 
decomposition [92].

Rho GEFs and GAPs involved in ACD through act on RhoA
Rho GAPs such as IQGAP [93–95], ARHGAP19 [96, 
97], and ARHGAP11A [98], affect the recruitment and 
localization of key cytokinesis, or involved in spindle ori-
entation. MgcRacGAP (RACGAP1, named Cyk-4 in C. 
elegans, RacGAP50C in Drosophila [99, 100]) localizes 
to the central spindle and contractile ring and binds the 
kinesin-like protein MKLP-1 to form an evolutionarily 
conserved complex called centralspindlin. It is essential 
not only for cytoplasmic division of somatic cells but 
also for cytoplasmic contraction, leading to intercellular 
bridges [101]. Rho GEF Ect2 localization to the central 
spindle depends on centralspindlin [102]. Ect2 deple-
tion impairs microtubule attachment to kinetochores 
and causes prometaphase delay and abnormal chromo-
some segregation [103]. Rho GEF-H1/Lfc associates with 
mitotic spindles and spindle microtubules. Disruption of 
Lfc or the central spindle results in a reduction of active 
RhoA concentration in the equatorial plane, which in 
turn leads to a delay in mitosis [104–106]. MP-GAP (Rho 
GAP) was shown to target RhoA during mitosis/cytoki-
nesis, and depletion caused excessive RhoA activation in 
M-phase, leading to the uncontrolled formation of large 
cortical protrusions and late cytokinesis failure [107].

Proper completion of cytokinesis requires the interplay 
of Rho GEFs and GAPs to appropriately regulate RhoA 
levels. The GRAF (Rho GAP) and RhoGEF2 are in bal-
ance for proper activation of actomyosin ring contraction 
[108]. Endogenous p190RhoGAP colocalize with Ect2 at 
the cleavage furrow during cell division [109]. Cells with 
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ectopic or loss of expression of the protein have reduced 
Rho GTP levels at the cleavage furrow and become multi-
nucleated or fail to divide [110].

RhoA-ROCK signaling involved in ACD through centrosome 
disorganization
The centrosome is a small, self-replicating organelle that 
coordinates with mitosis [111, 112]. Abnormalities in 

centriole duplication, disengagement, or loss are hall-
marks of cancer [113, 114], these abnormalities cause 
delays in the bipolar spindle assembly, high rates of 
chromosomal instability, and aneuploidy in vertebrate 
somatic cells [115, 116]. Signaling components, such as 
kinases and phosphatases, including ROCK, are associ-
ated with centrosomes, spindle poles, and microtubule 
organizing centers (MTOCs) [117]. They could maintain 

Fig. 2 RhoA signaling pathway regulates cell asymmetric division. (a) Chromosomes are arranged on the equatorial plate with two levels of centromeres 
pulling them laterally. (b) The central spindle recruits the Rho GEF and delivers it to the plasma membrane where it activates RhoA. Activated RhoA directs 
the assembly of the contractile ring containing the filamentous actin myosin II and contracts to change cell shape. (c) Failure of cell division owing to lack 
of contractility or centrosome can lead to asymmetric cell division
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centrosome stable and separation. ROCK2, associated 
with nucleophosmin (NPM), prevents aberrant centro-
some amplification and a high frequency of multinucle-
ated cells [118, 119]. Inhibition of ROCK1/2 affects 
chromosome segregation, bypasses the spindle assem-
bly checkpoint (SAC), blocks late cytokinesis, induces 
microtubule-dependent centrosome fragmentation, and 
increases the distance between mother and daughter cen-
trioles in G1 cells [120].

RhoA indirectly modifies the actin cytoskeleton 
through ROCK1, but not ROCK2, and directly affects 
centriole structure and function through centriole-asso-
ciated factors [121]. Similarly to ROCK, downstream 
LIMK inhibition also induces centrosome fragmentation 
[122]. Myosin II is also essential for centrosome separa-
tion and positioning during mitotic spindle assembly 
[123]. In addition, during interphase and mitosis, p190B 
Rho GAP and MgcRacGAP localize to chromosomal 
centromeres and provides epigenetic centromere main-
tenance [124, 125]. The Rho GEF ARHGEF10 regulates 
RhoA and controls centrosome duplication through its 
binding partner, the motor protein KIF3B, which colocal-
izes with ARHGEF10 at the centrosome [126].

Cofilin, downstream of RhoA, regulates ACD during 
meiosis
Meiosis occurs in oocytes that lack centrosomes [127] 
and possess a dynamic cytoplasmic actin network. This 
network is critical for spindle migration during meio-
sis and functions in cooperation with various actin-
binding proteins [128]. Cofilin is primarily distributed 
around spindles. LIMK overexpression, which interferes 
with cofilin activation during maturation, results in the 
depletion of cytoplasmic F-actin. This depletion leads to 
defects in spindle migration and polar body extrusion 
[129]. Cyclase-associated proteins (CAPs) can promote 
actin disassembly by enhancing the actin-severing activ-
ity of cofilin. The knockdown of CAP1 leads to the accu-
mulation of excessive actin filaments near the spindles, 
which impairs meiotic spindle migration and asymmetric 
division [130].

RhoA regulates the migration of non-tumor cells
The actin cytoskeleton endows the cell with shape, struc-
ture, and polarity and undergoes constant remodeling. 
Lamellipodia, filopodia, stress fibers, and focal adhesions 
constitute the structural framework of the actin cyto-
skeleton [131]. In normal epithelia, RhoA helps generate 
epithelial polarity and junction assembly and function 
[132]. The role of RhoA is complex, as the production of 
actin assembly drives protrusions at the front, coordinat-
ing actomyosin contractility-driven retraction at the tail 
to facilitate movement during cell migration in 2-D envi-
ronments [133]. For example, in migrating leukocytes, 

cell body and tail contraction depend on actomyosin 
contractility and can be regulated by RhoA/ROCK [134, 
135]. However, excessive activation of RhoA causes an 
increase in the contractile force that pulls endothelial 
cells and disrupts barrier function. Cofilin is required for 
and promotes lamellipodium extension and cell migra-
tion [136]. It has also been reported that RhoA cooper-
ates with Rac1 and Cdc42 to induce membrane ruffles 
through the recruitment of mDia, implying amoeboid-
like motility [137]. These findings are of particular inter-
est with respect to explaining of epithelial cell migration.

Cell adhesion activates RhoA, leading to the activation 
of ROCK and mDia, organization of actomyosin bundles 
into stress fibers, and the formation of focal adhesion 
complexes composed of vinculin, paxilin, and focal adhe-
sion kinase [51]. Tyrosine kinases are essential in signal 
transduction from integrins to RhoA; tyrosine phosphor-
ylation of the focal adhesion plaque alters the assembly of 
actin fibers by RhoA/ROCK, which then effect the forma-
tion and aggregation of focal adhesions [138, 139]. Focal 
complex confined to lamellipodia can be induced by high 
level of Rac and low level of Rho, enlarge and elongate 
centripetally into typical focal contacts upon upregula-
tion of Rho, and turn over for cells to migrate [140].

RhoA-ROCK signaling pathway promotes cancer 
progression
Rho GTPases, in addition to many other cellular func-
tions, are components of the signaling network that 
coordinates cell proliferation with microenvironmental 
dynamics, and their deregulation contributes to malig-
nant transformation and cancer. In addition to changing 
the adhesive repertoire, cancer cells employ developmen-
tal processes to gain migratory and invasive properties 
that involve dramatic reorganization of the actin cyto-
skeleton and concomitant formation of membrane pro-
trusions, which are required for the invasive growth of 
cancer cells (Fig. 3).

RhoA promotes the migration and invasion of cancer cells 
by regulating EMT
During EMT, in which epithelial cells gradually dedif-
ferentiate, polarized epithelial cells lose their adhesive 
properties and acquire a mesenchymal cell phenotype. As 
a result, the cells acquire migratory and invasive proper-
ties that allow them to penetrate the extracellular matrix 
(ECM) more easily [141, 142]. Cell movement in the 
ECM is a multistep process that requires reorganization 
of the actin cytoskeleton and formation of membrane 
protrusions. Increased intracellular pressure via RhoA-
ROCK signaling leads to blebbing, thus causing amoe-
boid migration, while regulating tail retraction during 
mesenchymal migration [143, 144]. Apart from lamel-
lipodia and filopodia, tumor cells also form lobopodia, 
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which are blunt cylindrical protrusions formed by intra-
cellular pressure and have been discovered in the three-
dimensional extracellular matrix [145].

In addition, cells also form invadopodia and podo-
somes, actin-rich structures that proteolytically degrade 
the ECM for 3D migration [146]. Proteases are released 
to remodel the extracellular matrix by proteolysis, such 
as the levels of Matrix metalloproteinase-9 correlated 
with invasive ability [147].

RhoA enhances the formation of vasculogenic mimicry in 
malignant tumors
In addition to tumor angiogenesis, aggressive tumors 
acquire microcirculation through vasculogenic mimicry 
(VM), which tumor cells form by acquiring plasticity to 
mimic embryonic vasculogenic networks and connect 
with those of the endothelium for invasion and metas-
tasis. It is known that, RhoA/ ROCK plays an important 
mediated role in the process of cancer cell VM formation 
[148]. RhoA signaling is involved in the maintenance of 
actin organization, induction of migration, and tube for-
mation in the VM [149]. Hypoxia enhances RhoA/ROCK 
2 and Rac1/Pak activity, stabilizes hypoxia-inducible 
factor-1α (HIF-1α) protein, and induces VM formation 
through HIF-1α stabilization and EMT with vimentin 

phosphate activation [150]. In addition, axon guidance 
factor Sema4D activates RhoA/ROCK pathway and regu-
lates tumor cell plasticity and migration to achieve VM 
in non-small cell lung cancer [151]. ROCK mediates 
TGF-β1-induced EMT and cancer stemness activity to 
participate in VM formation [152]. The traditional herbal 
medicines Baicalein [153] and Incarvine C [154] suppress 
VM by inhibiting the RhoA/ROCK signaling pathway.

RhoA signaling pathway promotes the stemness of cancer 
cell
Rho GTPases enhance the stemness of cancer cells by 
interacting with other signaling pathways, such as Notch 
and Wnt [155–157]. Wnt3A was found to promote super-
oxide generation by activating the phosphorylation of 
RhoA, in addition to Wnt3/RhoA/ROCK signaling path-
way being involved in adhesion-mediated drug resistance 
of multiple myeloma [36, 158]. Loss of p130 induced 
expression of Wnt5A, which selectively increased RhoA 
transcription and drove tumorigenesis in small cell lung 
cancer cells [159].

YAP/TAZ are sensors of the structural and mechanical 
features of the cellular microenvironment. Their activa-
tion induces CSC characteristics, such as proliferation, 
chemoresistance, and metastasis [160]. RhoA mediates 

Fig. 3 RhoA is overexpressed in cancer and promotes cancer progression via RhoA/ROCK2 signaling pathway. RhoA and its downstream effectors Rock2, 
myosin II, LIMK, and cofilin play critical roles during G1-S phase progression by regulating the expression of cell cycle proteins p21 and cyclin D1. RhoA 
regulated by Rho GEFs and GAPs can recruit effectors to form a contraction ring during cell cytokinesis, and the loss of contractile forces can cause asym-
metric division. RhoA-mediated actin assembly, protrusion at the front of the cell, and contraction at the body of the cell enhance motility and promote 
cancer cell invasion and migration. In addtion, RhoA plays an important role in epithelial-mesenchymal transition and the formation of vasculogenic 
mimicry network. These processes drive cancer stem cells to tumor progression
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YAP1 dephosphorylation and transport to the nucleus, 
inducing autophagy and promoting the migration of liver 
CSCs [161]. Protease-activated receptor 1 (PAR1) activa-
tion inhibits the Lats kinase associated with the Hippo-
YAP pathway via Rho. Inhibition of Lats kinase results in 
increased nuclear localization of dephosphorylated YAP, 
leading to EMT [162]. Another study has shown that 
inhibition of the RhoA GTPase/F-actin pathway may be 
a useful approach for suppressing YAP/TAZ activity and 
limit breast CSC formation [163]. In cancer-associated 
fibroblasts, RhoA knockout can reduce branching and 
meshwork formation and may promote CSC-like proper-
ties [164].

RhoA signaling pathway is associated with the formation 
of polyploid giant cancer cells
Tumors are composed of non-homogeneous cell pop-
ulations that exhibit varying degrees of genetic and 
functional heterogeneity [165]. Polyploid cancer cells 
(PGCCs) are a subtype of CSCs that express stem cell 
properties and have differentiation potential. PGCCs are 
large and contain single giant nuclei or multiple nuclei 
with significant variations in shape, chromatin pattern, 
and number of nucleoli; they display an ACD by bud-
ding or bursting [166–168]. PGCCs confer resistance to 
DNA damage and contribute to the formation of com-
plex tumor cell karyotypes by promoting aneuploidy and 
chromosomal instability [169–171]. The PGCCs exhib-
ited significant differences in the organization of actin 
stress fibers, including the presence of longer and thicker 
stress fiber bundles. Increased cytoskeletal rigidity and 
nuclear structure are largely regulated by the RhoA-
ROCK1 signaling pathway and actin cytoskeletal dynam-
ics, which are essential for protecting cells from injury 
[172]. Therefore, the regulation of the RhoA/ROCK path-
way is critical to understanding how PGCCs promote 
tumor progression.

RhoA-ROCK2 signaling is involved in chemoradiation 
therapy resistance
Although most cancer cells tend to become addicted 
to therapy, PGCCs or other CSCs show low sensitiv-
ity, undergo transient dormancy, and can evade treat-
ment and cause cancer relapse after emerging from their 
dormant state [173, 174]. For example, RhoA signaling 
promoted CSC phenotypes in diffuse-type gastric adeno-
carcinoma cells, and RhoA inhibition could reverse che-
motherapy resistance both in vivo and in vitro [175]. The 
mechanisms of chemoresistance in cancer cells are com-
plicated, and the main mechanisms include increased 
drug efflux mediated by membrane transport proteins 
[176–178], reduction of Bcl-2 family mediated cell apop-
tosis [179, 180], and reduction of topoisomerase activ-
ity, leading to decreased affinity of topoisomerase to its 

target cells [181]. RhoA is closely associated with multi-
drug resistance-associated proteins (MRPs) in the devel-
opment of chemoresistance.

RhoA was mediated by GPR56 and enhanced drug 
resistance through upregulation of MDR1 levels [182]. 
RhoA knockdown increases NF-κB activation, which 
induces nitric oxide production and leads to tyrosine 
nitration of multidrug resistance protein 3 (MRP3), 
thereby reducing doxorubicin efflux and reversing che-
moresistance [183]. Besides, inhibition of RhoA rescued 
the resistance to CPT-11 by inhibiting MRP1 and GSTP1 
expression and promoting apoptosis [184]. Notably, 
RhoA exerted different effects on chemoresistance to 
different drugs. For example, downregulation of RhoA 
decreased the chemoresistance of cells to doxorubicin 
due to MRP1 internalization and increased doxorubicin 
accumulation but decreased chemoresistance to cisplatin 
due to decreased cisplatin influx [185, 186]. In osteosar-
coma, RhoA enhances therapy resistance and suppresses 
apoptosis after photodynamic treatment through the 
Hippo/YAP pathway [187]. Mechanically, RhoA knock-
down alleviates the antagonism of HIF-1α to hypoxia-
induced apoptosis [188]. There is also evidence that 
RhoA facilitates brain metastasis during the evolution of 
Osimertinib-resistance in NSCLC cells [189].

In addition, elevated ROCK2 expression is associated 
with chemoresistance. Inhibition of ROCK2 signaling 
sensitizes drug-resistant prostate cancer to enzalutamide 
[190] and gemcitabine [191]. In MGMT-low (O6-methyl-
guanine-DNA methyltransferase) temozolomide (TMZ) 
resistant glioma cells, overactive ROCK2 increased 
homologous recombination repair and decreased TMZ 
sensitivity [192]. Both sunitinib and everolimus treat-
ment significantly enhanced ROCK2 phosphorylation 
and subsequent β-catenin nuclear translocation [193]. 
The decreased expression of ARHGAP18 (a Rho GAP 
protein) leads to the increase of RhoA/ ROCK1 signaling 
pathway and promotes glucocorticoid resistance by anti-
apoptotic of leukemia cells [194].

There are reports that implicating the RhoA/ROCK 
pathway in radiation resistance [195]. Radioresistance 
in glioma cells could be induced by activation of the 
DNA repair pathway and increased levels of reactive 
oxygen species (ROS), resulting in the enrichment of 
CD133 + CSCs [196, 197]. On the one hand, modula-
tion of RhoA activity sensitized cells to γ-irradiation by 
attenuating the DNA damage response and repair path-
ways [198]. In addition, activated RhoA is found in the 
nucleus of tumor cells after irradiation and regulates 
resistance by modulating survivin activity [199, 200]. In 
contrast, RhoA is a downstream target of heterogeneous 
nuclear ribonucleoprotein C1/C2, and RhoA inhibition 
can hinder the activity of cancer-associated fibroblasts 
and weaken the radiation resistance of pancreatic tumors 
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[201]. ROCK inhibitor reduced survival and DNA repair 
capacity in wild-type p53 cells by inhibiting NHEJ and 
NER pathways with reduction of γH2AX foci and accu-
mulation of strand breaks [202].

Small molecular inhibitors targeting RhoA-ROCK2 
signaling
The implications of Rho GTPases and their upstream 
regulators or downstream effectors in the transforma-
tion, migration, invasion, and tumorigenesis of various 
CSCs highlight the potential of Rho GTPase targeting 
in cancer therapy [203]. First, targeting RhoA inhibi-
tors such as Botulinum C3 exoenzyme, Grincamycin B, 
and Riboprine (N6-isopentenyladenosine) inhibits RhoA 
activity and attenuates stemness, inhibits the VM net-
work formation, and suppresses tumor growth and inva-
sion [204, 205]. Inhibitors of the RhoA/ROCK2 pathway 
shown in Table  1. The RhoA inhibitor Rhosin, which 
specifically binds to RhoA, was the first RhoA subfam-
ily specific inhibitor developed to target GEF activation, 
and has been used in several cancer cells [139, 206, 218]. 
CCG-1423 is an inhibitor of RhoA/C that disrupts the 
transcriptional response of the Rho pathway [207]. CCG-
100,602 and CCG-203,971 are new second-generation 
RhoA inhibitors with lower toxicity and higher selectivity 
and potency than those of CCG-1423 [208]. JK-136 and 
JK-139, two of the anti-RhoA hydrazide derivatives, were 
found to inhibit gastric cancer in mice [209].

The implications of Rho GTPases and their upstream 
regulators or downstream effectors in the transforma-
tion, migration, invasion, and tumorigenesis of various 
CSCs highlight the potential of Rho GTPase targeting 
in cancer therapy [203]. First, targeting RhoA inhibi-
tors such as Botulinum C3 exoenzyme, Grincamycin B, 

and Riboprine (N6-isopentenyladenosine) inhibits RhoA 
activity and attenuates stemness, inhibits the VM net-
work formation, and suppresses tumor growth and inva-
sion [204, 205]. Inhibitors of the RhoA/ROCK2 pathway 
shown in Table  1. The RhoA inhibitor Rhosin, which 
specifically binds to RhoA, was the first RhoA subfam-
ily specific inhibitor developed to target GEF activation, 
and has been used in several cancer cells [206, 218, 139]. 
CCG-1423 is an inhibitor of RhoA/C that disrupts the 
transcriptional response of the Rho pathway [207]. CCG-
100,602 and CCG-203,971 are new second-generation 
RhoA inhibitors with lower toxicity and higher selectivity 
and potency than those of CCG-1423 [208]. JK-136 and 
JK-139, two of the anti-RhoA hydrazide derivatives, were 
found to inhibit gastric cancer in mice [209].

ARHGEF12, also known as LARG, regulates RhoA 
activity and could regulate cell morphology and invasion 
[219], as well as the mechanical response to integrins, 
mesenchymal stem cell stemness [210, 220] Y16, a small-
molecule inhibitor of ARHGEF12, has been reported to 
inhibit RhoA activity and suppress sphere formation in 
breast cancer cells [218, 221]. The activity of Rho GEF 
Vav was important for the development of head and neck 
squamous cell carcinoma and showed effective inhibition 
in vivo [222, 223].

Post-translational modifications of RhoA may be prom-
ising cellular targets for anticancer therapy. Lovastatin 
suppressed EGF-induced thyroid cancer cell invasive-
ness by reducing Rho geranylgeranylation, which in turn 
suppressed membrane translocation and the subsequent 
suppression of Rho/ROCK and FAK/paxillin signaling 
[224]. PTX-100 is an inhibitor of geranylgeranyl transfer-
ase-1 (GGT-1), which mediates RhoA prenylation. It has 
shown significant antitumor activity in mouse models 

Table 1 Inhibitors of the RhoA/ROCK2 pathway
Main target Inhibitors Functions
RhoA Rhosin Inhibit cancer cell migration and invasion [206]
Rho CCG-1423, CCG-

100,602, CCG-203,971
Inhibit cancer cell invasion and repress fibrogenesis [207, 208].

RhoA JK-136, JK-139 Inhibit cancer activities in vivo [209].
RhoA Grincamycin B Suppresses the growth and invasion of glioblastoma cells; targets glioblastoma stem cells; and attenu-

ates the formation of tumor spheres [205].
RhoA Riboprine Inhibits the formation of vasculogenic mimicry network and suppresses cell migration and invasion [149].
ARHGEF12 Y-16 Regulates RhoA activity and reduces cell invasion; promotes mesenchymal stem cell stemness; and 

enhance differentiation-related gene expression [210].
ROCK2 Fasudil Sensitizes CSCs to chemotherapy and radiation response and suppresses the growth and tumorigenicity 

of chemo-resistant osteosarcoma cells [211].
ROCK Y-27,632 Sensitizes CSCs to chemotherapy and radiation response and reduces contractility and collagen degrada-

tion capacity [212].
ROCK PT262 Induces cytoskeleton remodeling and inhibits migration [213].
ROCK RKI-1447 Inhibits migration, invasion, and anchorage-independent tumor growth [214].
ROCK AT13148 Reduces tumor growth and blocks cancer cell invasion [215].
ROCK Ripasudil Associates with other agents to reduce tumor burden and prevent metastasis [216].
ROCK HSD1590 Inhibits the migration of breast cancer cell [217].



Page 10 of 15Ning et al. Cancer Cell International          (2024) 24:339 

of breast cancer and is well tolerated. Patients in their 
advanced stages of disease are currently being recruited 
for a phase 1 clinical trial (NCT03900442) [225, 226].

Subsequently, common ROCK chemical inhibitors 
include fasudil (HA-1077) and Y-27,632, which can 
decrease tumor growth, invasion, and metastasis [211, 
227–229] and sensitize CSCs to chemotherapy and radia-
tion [230]. Y-27,632 can reduce the contractility and col-
lagen degradation capacity of both CSCs and non-CSCs 
by blocking microtubule and F-actin assembly [212]. In 
addition, Y-27,632 activated dormant breast cancer cells 
and disrupted cell junctions, thereby promoting cell pro-
liferation, migration, and invasion [231]. Exposure of cir-
culating breast cancer cells to Y-27,632 destabilizes the 
actin cortex and increases the formation of microtubules, 
which are microtubule-based structures that enhance 
their ability to reattach to the vasculature [232]. However, 
interestingly, transient and continuous supplementa-
tion of non-toxic concentrations of Y-27,632 and fasudil 
inhibits apoptosis, enhances the ability of cells to form 
spheres, and increases stem cell marker expression in 
glioblastoma stem cells [233]; Y-27,632 primes the transi-
tion of CD44−/low cells to generate CD44high cells, helping 
to maintain a CD44high fraction and tumorigenic diversity 
in colon cancer [234]. Other selective inhibitors of ROCK 
include PT262, RKI-1447, CCT129253, and AT13148; 
however, their evaluation as anti-metastatic agents have 
been restricted to solid tumor cells, such as breast cancer 
and melanoma [49, 213–215, 235]. Photodynamic ther-
apy combined with a ROCK inhibitor (ripasudil) and an 
anti-PD-L1 antibody could reduce uveal melanoma and 
prevent metastasis [216]. Furthermore, HSD1590, a new 
compound inhibited the migration of breast cancer cell 
[217].

Conclusion
In summary, the tumorigenic potential of Rho GTPases 
has led to continuous investigation of their functions. 
Many hallmarks of cancer, including unlimited replica-
tive potential, evasion of apoptosis, tissue invasion, and 
metastasis, may be related to abnormal cytoskeletal or 
matrix mechanics. Undoubtedly, the RhoA/ROCK2 sig-
naling pathway regulates cancer stemness in response to 
chemotherapy and radiation therapy and is involved in 
aneuploidy formation through ACD. Most RhoA/ROCK 
inhibitors remain in laboratory use; nevertheless, their 
pharmaceutical development and research continue to 
hold promise. These inhibitors show promise as emerg-
ing targets to combat cancer progression and suppress 
tumor stemness.
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