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by down regulation of cMyc
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Abstract
Background: Ovarian cancer is one of the most significant malignancies in the western world. Studies showed that 
Ovarian cancers tend to grow resistance to cisplatin treatment. Therefore, new approaches are needed in ovarian 
cancer treatment. Kaempferol is a dietary flavonoid that is widely distributed in fruits and vegetables, and 
epidemiology studies have revealed a protective effect of kaempferol against ovarian cancer risk. Our early studies also 
found that kaempferol is effective in reducing vascular endothelial growth factor (VEGF) expression in ovarian cancer 
cells. In this study, we investigated kaempferol's effects on sensitizing ovarian cancer cell growth in response to 
cisplatin treatment.

Results: Ten chemicals were screened for sensitizing OVCAR-3 ovarian cancer cell growth in response to cisplatin 
treatment. For kaempferol, which shows a significant synergistic interaction with cisplatin, expression of ABCC1, ABCC5, 
ABCC6, NFkB1, cMyc, and CDKN1A genes was further examined. For cisplatin/kaempferol treatments on OVCAR-3 
cancer cells, the mRNA levels of ABCC1, ABCC5, and NFkB1 did not change. However, significant inhibition of ABCC6 
and cMyc mRNA levels was observed for the cisplatin/kaempferol combined treatment. The CDKN1A mRNA levels 
were significantly up-regulated by cisplatin/kaempferol treatment. A plot of CDKN1A mRNA levels against that of cMyc 
gene further revealed a reverse, linear relationship, proving cMyc's regulation on CDKN1A gene expressions. Our work 
found that kaempferol works synergistically with cisplatin in inhibiting ovarian cancer cell viability, and their inhibition 
on cell viabilities was induced through inhibiting ABCC6 and cMyc gene transcription. Apoptosis assay showed the 
addition of 20 μM kaempferol to the cisplatin treatment induces the apoptosis of the cancer cells.

Conclusions: Kaempferol enhances the effect of cisplatin through down regulation of cMyc in promoting apoptosis of 
ovarian cancer cells. As a dietary component, kaempferol sensitizes ovarian cancer cells to cisplatin treatment and 
deserves further studies for possible applications in chemotherapy of ovarian cancers.

Background
Ovarian cancer is one of the most important diseases for
women in Western countries. It is the fifth leading cause
of cancer-related deaths [1]. Treatment of ovarian cancers
usually involves surgery and chemotherapy. The combi-
nation of cisplatin and paclitaxel as a chemotherapeutic
regimen has improved the survival of ovarian cancer
patients. However, the results are not satisfying because
of drug resistance developed by cancer cells [2]. The can-
cer frequently progresses after the treatment and the
majority of ovarian cancer patients die as cancer later

relapses [3]. Therefore, it is important to identify new
approaches for the treatment of ovarian cancer.

Flavonoids are polyphenolic natural compounds which
are present in a wide variety of fruits and vegetables [4]
and are protective against some forms of cancer [5]. It has
been reported that dietary flavonoids reduce the risks of
humans to cardiovascular disease [6], prostate cancer [7],
colorectal cancer [8], and renal cancer [4]. Flavonoids
were also reported to inhibit cell growth and proliferation
[9] and induce cell toxicity [10] in cancer cells.

Cisplatin (cis-diamminedichloroplatinum(II)) is com-
monly used in the treatment of various cancers. Cisplatin
is activate inside the cell and reacts with guanine residues
in DNA. The binding of cisplatin to DNA changes the
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secondary structure of DNA and consequently the
metabolism of the cell. The exact mechanism by which
cisplatin influences the metabolism of the cell and conse-
quently cell growth is unclear [11].

Several genes have been reported to potentially play a
role in cisplatin resistance. The ABCC1, ABCC5, and
ABCC6 genes are members of the ABCC family of mem-
brane transport proteins. These genes have been impli-
cated in drug resistance of a variety of anticancer drugs
including platinum based drugs such as cisplatin. Inhibi-
tion of these genes is ideal to reduce the efflux of antican-
cer drugs out of the cell [12]. The NFκB1 gene is a subunit
of the NFκB gene, an important regulator of genes con-
trolling a variety of cell survival process including prolif-
eration and apoptosis. Activation of the NFκB gene has
been implicated in many human cancers [13]. The genes
cMyc and CDKN1A are also important regulators of cell
proliferation and apoptosis. However, their role in cispla-
tin resistance is unclear.

In this study, we investigated the sensitization effects of
eight flavonoids (luteolin, genistein, quercetin, kaemp-
ferol, taxifolin, rutin hydrate, naringin, and apigenin), and
two forms of vitamin E (tocopherol and tocopherol succi-
nate) on the cisplatin induced killing of cells in the ovar-
ian cancer cell line OVCAR-3. To measure the
sensitization effect we used a novel statistical model to
distinguish between true sensitization of the cells to cis-
platin and the additive effect of the combined toxicity of
the sensitization chemical and cisplatin. For any chemi-
cals that showed a sensitization effect we further mea-
sured the effect of the cisplatin-chemical combination on
the expression of ABCC1, ABCC5, ABCC6, NFκB1, cMyc
and CDKN1A genes.

Results
Kaempferol synergistically enhances cisplatin's effect on 
inhibiting proliferation of OVCAR-3 cancer cells
All 10 chemicals, including 8 flavonoids and 2 α-tocoph-
erols, were tested at 20-μM concentration for their addi-
tive or synergistic effects with cisplatin on OVCAR-3
cancer cells. As shown in Figure 1, OVCAR-3 cancer cells
are relatively resistant to cisplatin treatment, remaining
88.1-95.3% (or 1.945-1.979 when logged) viability at 80-
μM cisplatin concentration. The effects of test chemicals
alone (at 20-μM) vary from no effect (99% for taxifolin) to
moderate effect (67% for rutin hydrate). With the excep-
tion of taxifolin, co-treatment with cisplatin and test
chemicals was more effective inhibiting cancer cell prolif-
eration than cisplatin alone, although the majority of
these combined effects are additive (p > 0.05 for coeffi-
cients of Cisplatin*Drug, Table 1). However, for kaemp-
ferol and α-tocopherol succinate, the resistance to
cisplatin in OVCAR-3 cells was reduced, with the cell via-
bility down-regulated to 68.4% (1.835 when logged) and

71.3% (1.853 when logged), respectively. The slope of cis-
platin treatment, by linear regression analysis, is changed
from -0.012 to -0.070 by co-treatment with 20-μM kae-
mpferol, and from -0.019 to -0.051 by co-treatment with
20-μM α-tocopherol succinate, demonstrating a signifi-
cant sensitization (p = 0.001 for kaempferol and 0.015 for
α-tocopherol succinate). The goodness of fit (R2 = 0.901
for kaempferol and 0.891 for α-tocopherol succinate) in
these models suggests a successful regression on logged
viability data with kaempferol and α-tocopherol succinate
co-treatments (Table 1).

Kaempferol enhances cisplatin's effect on gene 
transcription for ABCC6, cMyc and CDKN1A in OVCAR-3 
cancer cells
Because kaempferol sensitizes OVCAR-3 cancer cells'
response to cisplatin treatment, the effect on gene
expression by cisplatin and/or kaempferol was further
evaluated by analyzing mRNA levels of ABCC1, ABCC5,
ABCC6, NFκB1, cMyc and CDKN1A genes. As shown in
Figure 2, cisplatin treatment, with or without kaempferol,
does not alter mRNA levels significantly for ABCC1,
ABCC5, and NFκB1 genes. However, cisplatin decreased
ABCC6 and cMyc mRNA levels in a dose-dependent
manner, with a remaining mRNA level of about 58% at
80-μM concentration (p < 0.05). Kaempferol treatment
also inhibited ABCC6 and cMyc genes transcription
down to 68% (p < 0.01). Combination of kaempferol with
40-μM cisplatin further inhibited ABCC6 and cMyc
genes mRNA levels down to 65% (p < 0.05), and with 80-
μM cisplatin leads to the lowest mRNA level of 55% for
cMyc(p < 0.01), although no enhancement is observed for
ABCC6 gene at 80-μM cisplatin concentration. For the
CDKN1A gene, cisplatin increased mRNA levels dose-
dependently, reaching 818.7% at 80-μM concentration (p
< 0.05), while kaempferol failed to increase CDKN1A
mRNA level significantly (p = 0.891). However, combina-
tion of the two chemicals brings the CDKN1A mRNA
level up to 1064.7% (p < 0.01). Due to the known regula-
tion of the CDKN1A gene expression by cMyc, the rela-
tionship between the two genes was further examined.
The mRNA levels of CDKN1A were plotted against cMyc
in a linear scale and a linear relationship was observed
between cMyc and CDKN1A mRNA levels, regardless of
kaempferol treatment (Figure 3). The two sets of data
were pooled for correlation analysis, and the Pearson cor-
relation coefficient is -0.649, demonstrating a strong neg-
ative association (p < 0.01).

Kaempferol promotes apoptosis in OVCAR-3 cancer cells 
treated with cisplatin
Cisplatin and kaempferol were also tested for their effects
in inducing apoptosis in OVCAR-3 cancer cells. Caspase-
3 levels in OVCAR-3 cells range from 5-13 pg/μg-Total
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Protein (TP), but showed considerable inter-experiment
variances. Caspase-3 levels were expressed as percent of
control within each experiment and plotted in logarith-
mic scale for linear regression analysis. As shown in Fig-
ure 4, cisplatin treatment alone, up to 80 μM, does not
cause any noticeable changes in caspase-3 levels as com-
pared to the 7.4 pg/μg-TP in control (p > 0.70), while a
20-μM kaempferol treatment raised caspase-3 levels to
8.2 pg/μg-TP. More importantly, when combined with
kaempferol treatment, cisplatin begins to have a dose-
dependent effect in inducing caspase-3 levels, a signifi-
cant sensitization proven by linear regression analysis (p
< 0.05 for coefficient of Cisplatin*Kaempferol, R2 =
0.905). The caspase-3 level is 8.6 pg/μg-TP for cells
treated with 40-μM cisplatin and 20-μM kaempferol (p <
0.05) and 9.2 pg/μg-TP for cells treated with 80-μM cispl-
atin and 20-μM kaempferol, significantly higher than that
of control.

Discussion
There are many different chemotherapy agents for treat-
ing cancer. One of the most commonly used chemother-
apy drugs is cisplatin. Cisplatin is commonly used in

cancers of the head, neck, bladder, ovary, and testis.
Unfortunately, many cancer cells are resistant to cisplatin
treatment or may become resistant with treatment. Cur-
rently the only way to overcome acquired resistance to
cisplatin in cancer cells is by increasing dosage, which
results in higher toxicity in normal body cells [14]. Resis-
tance to cisplatin treatment can be due to lack of the p53
gene [15], by the activation of cell survival genes such as
nuclear factor-κB (NF-κB) [16], and by the reduced cellu-
lar concentration of cisplatin [14].

OVCAR-3 cells were found to be resistant to cisplatin
treatment with 88.1-95.3% viability at 80-μM cisplatin
concentration. Our previous studies found that fla-
vonoids, including kaempferol, inhibit ovarian cancer cell
growth and VEGF expression [17]. Some flavonoids are
reported to have sensitization effects on cisplatin [15,18].
The 10 chemicals screened, varied in their viability sup-
pression from light to moderate. Among the 10 chemicals
tested only kaempferol, a flavonoid, and α-tocopherol
succinate, a vitamin E derivative, significantly sensitized
OVCAR-3 cells to cisplatin treatment. With the excep-
tion of taxifolin, all of the combined treatments with cis-
platin and the test chemical resulted in a more effective

Figure 1 Effect on cell proliferation in OVCAR-3 cancer cells. OVCAR-3 cells (8 × 103) were seeded into wells in 96-well cell culture microplates, 
incubated for 16 hours, and treated with 0, 40, and 80-μM Cisplatin with or without other chemicals of 20 μM for 24 hours in triplicates. Cell viability 
was analyzed with MTS-based assay, normalized as percent of control, logged and fitted to linear regression models to check cisplatin and other 
chemicals' effects on cell proliferation, and their interactions. Data represents MEAN ± SE from 3 independent experiments.
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Table 1: Linear regression to analyze cisplatin and/or compound's effect on OVCAR-3 cell proliferation.

Kaempferol α-Tocopherol Succinate Rutin Hydrate

R2 0.901 0.891 0.188

B Sig. B Sig. B Sig.

Constant 2.002 0.000 2.010 0.000 2.009 0.000

Cisplatin -0.012 0.198 -0.019 0.040 -0.028 0.789

Compound -0.022 0.238 -0.048 0.006 -0.237 0.221

Cispl. × Comp. -0.058 0.001 -0.032 0.015 0.029 0.844

Apigenin Taxifolin Luteolin

R2 0.947 0.415 0.841

B Sig. B Sig. B Sig.

Constant 2.008 0.000 2.009 0.000 2.010 0.000

Cisplatin -0.015 0.119 -0.028 0.035 -0.019 0.076

Compound -0.173 0.000 -0.003 0.902 -0.102 0.000

Cispl. × Comp. 0.0080 0.571 0.003 0.884 0.008 0.548

Naringin α-Tocopherol Genistein

R2 0.296 0.541 0.885

B Sig. B Sig. B Sig.

Constant 2.009 0.000 2.010 0.000 2.010 0.000

Cisplatin -0.028 0.306 -0.019 0.521 -0.019 0.086

Compound -0.058 0.243 -0.062 0.253 -0.117 0.000

Cispl. × Comp. 0.001 0.989 -0.046 0.269 0.0001 0.994

Quercetin

R2 0.567

B Sig.

Constant 2.010 0.000

Cisplatin -0.019 0.467

Compound -0.029 0.533

Cispl. × Comp. -0.056 0.134

Data from 3 independent experiments were modeled as (Viability = Constant + Cisplatin + Compound + Cisplatin* Compound) to analyze 
effects of Cisplatin, Compound, and Cisplatin-Compound interactions. Tabulated are standardized coefficients (B) with corresponding p 
values (Sig.) for each model. The goodness of fit, R2, is also listed for each model.
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treatment. However, all of these effects were additive
except for kaempferol and α-tocopherol succinate.

To gain an insight into the mechanism of kaempferol
sensitization, the mRNA levels of ABCC1, ABCC5,
ABCC6, NFκB1, cMyc and CDKN1A genes were ana-
lyzed by qPCR. The levels of ABCC1, ABCC5, or NFκB1
were not influenced by cisplatin or kaempferol. With the
addition of kaempferol, cisplatin treatment significantly
inhibited ABCC6 and cMyc mRNA levels. Since ABCC6
is a membrane transport protein important in the reduc-
tion of intracellular accumulation of cisplatin [12], the
reduced amount of ABCC6 by kaempferol prevents the
removal of cisplatin from the cell leading to the killing of
the cancer cell by cisplatin.

Another mechanism of sensitization of cisplatin by kae-
mpferol is through down regulating of cMyc and up regu-
lation of CDKN1A. The proto-oncogene cMyc is highly
expressed in proliferating cells and is commonly activated
in human cancers [19]. cMyc is known to down regulate
the CDKN1A gene and our study showed a strong nega-
tive association between the two (Pearson correlation
coefficient, -0.649, p < 0.01). The up regulation of
CDKN1A usually leads to the apoptosis of the cancer
cells [20]. Our apoptosis assay showed that cisplatin alone
does not induce apoptosis of the ovarian cancer cells. The
addition of 20 μM kaempferol to the cisplatin treatment
induces the apoptosis of the cancer cells. Therefore, kae-

mpferol enhances the effect of cisplatin through down
regulation of cMyc in promoting apoptosis of ovarian
cancer cells.

Conclusions
Our work found that kaempferol works synergistically
with cisplatin in inhibiting ovarian cancer cell viability,
and their inhibition on cell viabilities was induced
through inhibiting ABCC6 and cMyc gene transcription.
Apoptosis assay showed the addition of 20 μM kaemp-
ferol to the cisplatin treatment induces the apoptosis of
the cancer cells. Therefore, kaempferol enhances the
effect of cisplatin through down regulation of cMyc in
promoting apoptosis of ovarian cancer cells. As a dietary
component, kaempferol sensitizes ovarian cancer cells to
cisplatin treatment and deserves further studies for possi-
ble applications in chemotherapy of ovarian cancers.

Methods
Chemicals
All 11 chemicals, including cisplatin, 2 α-tocopherols,
and 8 flavonoids were obtained from Sigma (St. Louis,
MO). Chemicals were dissolved in DMSO to form a 20-
mM stock solution which were stored at -20°C. For cell
treatment, DMSO concentrations were controlled con-
stant through various concentration and chemical combi-
nations.

Figure 2 Kaempferol and/or cisplatin's effect on ABCC1, ABCC5, ABCC6, NFκB1, cMyc and CDKN1A mRNA levels. OVCAR-3 cells (5 × 105) were 
seeded in 60-mm cell culture dishes and incubated for 16 hours before chemical treatment (0, 40, and 80-μM cisplatin with or without 20-μM kaemp-
ferol) for another 24 hours. RNA was extracted with TRIzol Reagent and quantitated by qRT-PCR as described in Materials and Methods. Gene mRNA 
levels were adjusted by GAPDH and expressed as percent of control. Data represents MEAN ± SE from 3 independent experiments. * p < 0.05 as com-
pared to control by ANOVA Dunnett t test. ** p < 0.01 as compared to control by ANOVA Dunnett t test.
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Cell Culture
The human ovarian cancer cell line OVCAR-3 was
obtained from American Type Culture Collection
(Manassas, VA). Cells were cultured in RPMI 1640
medium supplemented with 4 μmol/mL glutamine, 100
units/mL penicillin, 100 μg/mL streptomycin (VWR,
West Chester, PA), and 10% US-qualified fetal bovine
serum (Invitrogen, Grand Island, NY) in a humidified
incubator with 5% CO2 at 37°C.

Cell Proliferation Assay
Chemical effects on OVCAR-3 cell proliferation were col-
orimetrically determined with a "CellTiter 96® Aqueous
One Solution Cell Proliferation Assay" kit from Promega
(Madison, WI). OVCAR-3 cells (8 × 103) were seeded into
wells in 96-well cell culture microplates and incubated for
16 hours. Chemical treatments (0, 40, and 80-μM Cispla-
tin with other chemicals of 0, or 20-μM) were then
applied in triplicates for another 24 hours. After removal
of medium, 100 μL freshly-prepared Aqueous One Solu-
tion (MTS tetrazolium compound) was added to each
well, incubated at 37°C for 2 hours, and optical density
(OD) measured at 490 nm with a microplate reader (Bio-
Rad, Hercules, CA). A linear standard curve was gener-

ated by seeding different numbers of cells (0 - 1 × 104) at
the beginning and used to quantify chemical-treated cells'
viability. Cell viability was expressed as percent of control
(0-μM cisplatin and 0-μM other chemicals), and averaged
from replicates. Data from 3 independent experiments
were pooled for statistical analysis.

Quantification of mRNA levels for ABCC1, ABCC5, ABCC6, 
NFκB1, cMyc and CDKN1A genes
Effect on transcription of the 6 genes' were determined by
quantitative reverse-transcription Polymerase Chain
Reaction (qRT-PCR). OVCAR-3 cells (5 × 105) were
seeded in 60-mm cell culture dishes and incubated for 16
hours before chemical treatment (0, 40, and 80-μM cispl-
atin with or without 20-μM kaempferol) for another 24
hours. Cells were washed twice with PBS (Phosphate
Buffered Saline), and RNA was extracted with TRIzol
Reagent (Invitrogen, Grand Island, NY). RNA was resus-
pended in DEPC (diethyl pyrocarbonate)-treated water
and introduced to reverse transcription with oligo-dT
and AMV Reverse Transcriptase from Promega (Madi-
son, WI). Real-time PCR was deployed to amplify cDNA
for the 6 genes with RT2 SYBR Green qPCR Master Mix
(SuperArray Bioscience, Frederick, MD) and a Chromo4

Figure 3 Negative correlation between cMyc and CDKN1A gene mRNA levels. The mRNA levels of CDKN1A and cMyc from 3 independent ex-
periments were expressed as percent and plotted against each other for Pearson Correlation analysis. A strong negative association exits for CDKN1A 
and cMyc genes (as regulated by cisplatin treatment) regardless of kaempferol treatment.
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real-time detector coupled to a DNA Engine thermal
cycler (Bia-Rad, Hercules, CA). Primers for CDKN1A
were designed from the Primer3 website http://
frodo.wi.mit.edu/primer3/ to amplify both transcript
variants, and primers for other genes were chosen from
the PrimerBank website http://pga.mgh.harvard.edu/
primerbank/ (Table 2). The PCR program was set as fol-
low: 95°C 10'; (95°C 20", 58°C 45", 72°C 20", 77°C 1", read
plate) × 50; 72°C 5'; 58°C 1'; melting curve (65°C -95°C by
0.5°C increments). A standard curve was generated from
series dilutions of PCR products to monitor amplification
efficiency, and to relatively quantify samples for every
gene. RNA samples without reverse transcription served
as non-reverse-transcription (-RT) controls, and melting
curves were checked for uniform amplification. In pro-
cessing amplification curves, baselines were set as aver-
age levels through cycle 2-12, and threshold values was
set as 0.01. Gene expression levels, as relatively quantified
by individual standard curves, were further adjusted by

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase)
levels, and expressed as percent of control (0-μM cispla-
tin and 0-μM kaempferol). Data from 3 independent
experiments were pooled for statistical analysis.

Apoptosis Assay
Cell apoptosis was determined by measuring caspase-3
levels with a Caspase-3 Colorimetric Assay Kit (R&D Sys-
tems, Minneapolis, MN) and total protein levels with a
BCA (bicinchoninic acid) Protein Assay Kit (Pierce Bio-
technology, Rockford, IL). Cells (2 × 106) were seeded in
60-mm dishes and incubated 16 hours before being
treated with kaempferol (0 or 20 μM) and cisplatin (0, 40,
and 80 μM) for 2 hours. After 3 washes with cold PBS,
cells were harvested in lysis buffer, and cell lysates were
collected for caspase-3 assay and for the BCA assay as per
instructions. Standard curves were generated by serial
dilution of recombinant human caspase-3 (R&D Systems)
and albumin standards (2 mg/mL), and caspase-3 levels

Figure 4 Effects in inducing caspase-3 levels in OVCAR-3 cancer cells. OVCAR-3 cells (2 × 106) were seeded in 60-mm dishes, incubated for 16 
hours, and treated with kaempferol (0 or 20 μM) and cisplatin (0, 40, and 80 μM) for 2 hours. Caspase-3 levels were determined with a colorimetric 
assay kit and normalized to total protein levels determined with a BCA assay kit. Normalized caspase-3 levels were expressed as percent of control, 
logged and fitted to linear regression models to check cisplatin and kaempferol's effects on cell apoptosis, and their interactions. Data represents 
MEAN ± SE from 4 independent experiments. * p < 0.05 as compared to control by ANOVA Dunnett t test. ** p < 0.01 as compared to control by ANOVA 
Dunnett t test.
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were normalized to total protein levels for each sample.
Normalized caspase-3 levels were expressed as percent of
control and logged for linear regression analysis. A total
of 4 independent experiments were performed for statis-
tical analysis.

Statistical Analysis
All data were normalized as percent of control within
each experiment and data from several independent
experiments were pooled to represent three biological
replicates. For mRNA levels and caspase-3 levels, treat-
ment groups with various concentrations of cisplatin
and/or kaempferol were compared against control by
ANOVA with Dunnett t multiple comparisons in SPSS
15.0 software (SPSS Inc, Chicago, IL). For detection of
interactions between cisplatin and compounds, cell via-
bility levels and caspase-3 levels (at logarithmic scale)
were plotted against cisplatin (coded as 0, 1, 2 to repre-
sent 0, 40, and 80 μM cisplatin, respectively) with or with-
out 20-μM test chemical (coded as 0, 1) for linear
regression analysis in SPSS 15.0 software. Cisplatin, com-
pound, and the product between cisplatin and compound
were entered as 3 predictors for linear regression analysis
to examine the effects of cisplatin, compound, and cispla-
tin-compound interaction, respectively (Y = Constant +
Cisplatin + Compound + Cisplatin*Compound). An addi-
tive effect between cisplatin and compound will give two
lines nearly parallel, while an interaction will have unpar-
allel lines and a significant coefficient for the product pre-
dictor: Cisplatin*Compound. A sensitization effect can
be seen when there is an interaction between cisplatin
and compound and the effect of cisplatin is amplified by

co-treatment with compound: two lines that depart from
each other when moving toward higher cisplatin concen-
trations. The relationship between cMyc and CDKN1A
genes' mRNA levles was evaluated by Pears' Correlation
Analysis in SPSS software.
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