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Abstract
Background: The present study mainly aimed to investigate the direct effects of Endostar (ES) on the proliferation and 
radiosensitivity of human lung squamous cancer cell line H-520.

Results: ES significantly inhibited H-520 cell proliferation in a time- and dose-dependent manner. According to the 
colony-forming assays, ES could increase the H-520 cell radiosensitivity. ES induced cell apoptosis, the apoptosis rate 
increased with the raise of ES concentration. Irradiation induced significantly higher apoptosis rate in ES-treated H-520 
cells than non-treated H-520 cells. ES induced cell cycle distribution and G0/G1 arrest in H-520 cells, whereas irradiation 
induced G2/M arrest. The phospho-p38-MAPK and p-Akt protein levels were decreased in H-520 cells after ES 
treatment. Furthermore, activated caspase protein level increased and Bcl-2 protein levels decreased after treatment 
with ES and irradiation.

Conclusion: ES significantly enhanced the sensitivity of H-520 cells to irradiation by inhibition of cellular proliferation, 
promotion of cell apoptosis and redistribution of cell cycle, possibly via deactivation of Akt pathway. The present study 
supports the possibility to use the combination of ES and ionizing irradiation to treat patients with lung squamous cell 
cancer in clinics.

Background
About 40% of patients with stage III or IV non-small cell
lung carcinoma (NSCLC) cannot be resected at present
[1]. Radiotherapy and chemotherapy are still the major
treatment in such patients and significantly improves the
survival of unresectable patients [1-3]. Nevertheless,
long-term survival remains poor and mortality is high.
Anti- angiogenesis therapy that interfered with cancer
angiogenesis may improve lung cancer patient survival by
enhancing radiation and chemotherapy efficiency with-
out increasing treatment-related adverse effects [4-7].

Endostatin (ED) is a 22 kDa polypeptide derived from
the C-terminal fragment of type XVIII collogen. Both
recombinant human and murine ED have been reported
to inhibit endothelial cell proliferation but not smooth
muscle cells or fibroblast proliferation in vitro, which
suggested that the anti-proliferation effect was endothe-

lial-specific [8,9]. The anti-angiogenic activity of ED was
a complicated process resulting in the inhibition of
endothelial cell adhesion, migration and proliferation as
well as the induction of apoptosis [10,11]. It has been
shown that ED bind specifically to the cell surface recep-
tor on the endothelial cells and the complex of ligand-
receptor was internalized into the cells [12-14]. The inte-
grin αν, α5, β1 and cell surface glypicans and nucleolin
have been identified as receptors interact with ED [14-
16]. Recently, the anti-tumor effects of ED have been
reported. Wilson et al reported that ED inhibited migra-
tion and invasion of head and neck squamous cell carci-
noma cells [17]. Cui et al reported that ED directly
modulated lung cancer cell function in vitro [18]. Dkhissi
et al demonstrated that ED exhibited a direct anti-tumor
effect in addition to its anti-angiogenic activity in colon
cancer cells [11]. All these results suggested that ED
could interact with not only endothelial cells but also can-
cer cells. However, it was not reported whether ED
directly modulates NSCLC cell function such as prolifer-
ation, apoptosis and cell cycle distribution or whether it
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has the ability to enhance radiosensitization activity in
NSCLC cells.

Endostar (ES) is a novel recombinant human ED which
expressed and purified in E. coli, and was approved by the
State Food and Drug Administration (SFDA) for the
treatment of NSCLC in 2005 [19]. ES is traditional ED
with an additional nine-amino acid sequence at the N-
terminal of the protein and a six-histidine tag which
could be chelated with metal ions with a relatively high
affinity. As a result, the purification is simplified and the
stability of the protein was remarkably improved [20]. In
the present study, we evaluated the direct radiosensitive
effects of ES on human lung squamous carcinoma cells
H-520 in vitro and also explored its mechanism of radio-
sensitization.

Materials and methods
Cell lines and cell culture
The human lung squamous cancer cell line H-520 was
purchased from the Institute of Basic Medical Sciences
Chinese Academy of Medical Sciences and cultured in
DMEM supplemented with 100 IU/mL penicillin, 100
mg/mL streptomycin, 4 mM glutamine and 10% heat-
inactivated fetal bovine serum (Hangzhou Sijiqing Bio-
logical Engineering Materials Company, China) in a
humidified atmosphere of 95% air and 5% CO2 at 37°C.
ES-treated H-520 cells were obtained by culturing cells
with 200 μg/mL ES (expressed and purified in E. coli.
Simcere Pharmaceutical Research Co., Ltd) for 24 h
before irradiation. Phospho-P38 mitogen-activated pro-
tein kinases (MAPK) mAb (Alexa Fluor) was provided by
Cell Signaling Technology, US.

For all in vitro experiments, cells were released from
flasks using phosphate- buffered saline containing 0.01%
trypsin and 0.20 mmol/L EDTA, and 1 × 105 cells were
plated onto 25 cm2 culture flasks one day before drug
treatment. Cultures were between 50% and 70% conflu-
ence at the time of harvest.

Cell growth assay
Cells were maintained as mono-layer cultures in DMEM
with 10% FBS and antibiotics (100 U/ml of penicillin and
l00 mg/ml streptomycin). The cells were incubated in 5%
CO2 atmosphere. The studies were completed with 3 × l03

cells/well plated into 96-well flat bottom microplates
(Costar), treated with ES of desired concentration when
cells began to grow exponentially. After incubation for
24-96 h, 20 μL of 3-(4,5-diethyl-2-thiazolyl)-2,5-diphenyl
tetrazolium bromide (MTT 5 mg/mL) was added to each
well, and the cells were further incubated at 37°C for 4 h.
The medium was then removed and 200 μL of DMSO
was added to dissolve the reduced formazan product.
The plate was then read on a microplate reader (Bio-
RAD, model 550) at 590 nm.

Ionizing radiation treatment
Exponentially growing H-520 cells were irradiated using
60Co γ ray source at 1.953 Gy/min dose rate. Radiation
was performed in the Radiation Department of Peking
University.

Clonogenic assay
H-520 cells of the control and ES groups were exposed to
different radiation doses (0,1, 2, 4, 6, 8 and 10 Gy) and
incubated for 21 d, then cells were fixed with methanol
and stained with Giemsa. Cell colonies which contained
more than 50 cells were manually counted. Radiation sur-
vival data from ES-treated cells were corrected for plating
efficiency (PE) using an unirradiated plate treated with ES
under the same conditions. The PE and survival fraction
(SF) were calculated as follows: PE = (colony number/
inoculating cell number) × 100%. SF = PE (tested group)/
PE (0Gy group) × 100%. A dose-survival curve was
obtained for each experiment and used for calculating the
radiobiological parameters. Three replicates were set at
each radiation dose. The cell-survival curve was fitted
using Origin 7.5 software according to the multi-target
single-hit model after normalizing for the cytotoxicity
induced by Endostar alone. The equation of SF = 1-(1-e-D/

D0)N was applied to calculate the cellular radiosensitivity
(mean lethal dose, D0), the capacity for sublethal damage
repair (quasithreshold dose, Dq), and the extrapolation
number (N). Those values were used to calculate the SF
after irradiation at a dose of 2Gy (SF2) and the sensitiza-
tion enhancement ratio (SER).

Apoptosis assay
Two methods were used to analysis apoptosis induced by
ES. Morphological changes were determined by
Hoechst33258 staining. Single cell suspensions in PBS
were stained with 10 μg/mL Hoechst33258. A drop of the
stained cell suspension was placed on a microscope slide.
Cells were visualized under a fluorescence microscope
with a blue filter. Apoptotic cells were defined as cells
showing cytoplasmic and nuclear shrinkage and chroma-
tin condensation or fragmentation morphologically.
Annexin V-FITC and propidium iodide (PI) double stain-
ing were used for evaluation of cellular apoptosis rate.
The H-520 cells were treated with 200 μg/mL ES for 24 h
and then irradiated with different doses of 0, 2, 4 and 8Gy.
After a 72 h post- irradiation incubation period in 200 μg/
mL, all cells were collected, stained with annexin V-FITC
for 30 min at 4°C, then stained with PI and analyzed by
flow cytometry (FCM) immediately.

Activated caspase proteins assayed by FCM
5 × 105 H-520 cells were harvested after treatment with
irradiation for 24 h. Then, washed once in 1 ml PBS, and
re-suspended in 200 μl staining solution containing
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FITC-VAD-fmk (CaspACE, Promega). After incubation
for 20 min at 30°C, cells were washed in 1 ml PBS and re-
suspended in 200 μl PBS [21]. Samples were analyzed by
FACScan using Coulter EPICS and ModFit software.

Analysis of cell cycle by FCM
H-520 cells from the control and ES groups were treated
with irradiation (0 and 4Gy) and 8, 24, and 48 h later, cells
were trypsinized, counted, washed, and re-suspended
from all flasks. Cells were then fixed by dropwise addition
of 70% ice-cold ethanol and stored at 4°C until the day of
analysis. Cells were then washed in phosphate-buffered
saline, and re-suspended in PI solution at 50 μg/mL and
analyzed by FCM using Coulter EPICS and ModFit soft-
ware (Verity Software House, Topsham, MN).

Phospho-P38-MAPK quantification by FCM
Bcl-2 and phosphor-p38-MAPK were quantified in con-
trol and ES-treated H-520 cells at 24 h after irradiation.
Cells were stained with p38-MAPK mAb (Alexa Fluor) or
Bcl-2 mAb (Beijing Zhongshan Golden Bridge Biotech-
nology Co., Ltd) and analyzed by FACScan using Coulter
EPICS and ModFit software.

Western blotting analysis
H-520 cells from the control and ES groups were treated
with irradiation (0 and 4Gy), harvested and total cell
lysates were resolved on 10% SDS-PAGE, and processed
according to standard protocols. The antibodies (Abs)
used for western blotting included: monoclonal anti-β
Actin (Sigma, USA), monoclonal antibody against phos-
phor-Akt (Beijing Zhongshan Golden Bridge Biotechnol-
ogy Co., Ltd). Optimal dilutions of primary Abs were
1:1000 to 1:5000. The secondary Abs anti-rabbit were
conjugated to horseradish peroxidase (dilution 1: 5000 to
1: 10000); signals were detected using the ECL system.

Statistics
Results are presented as mean ± SE of at least three
experiments. Student's t test was used to assess the statis-
tical significance of differences. A significance level
threshold of p < 0.05 was used in this study.

Results
The effects of ES on cell proliferation
The effect of ES on the proliferation of human lung
squamous cancer cells H-520 was first determined using
MTT assay. As shown in Fig. 1, ES significantly inhibited
the proliferation of H520 cells in a dose- and time-depen-
dent manner, especially when the concentrations of ES
were between 25 and 200 μg/ml. Based on the present
results, we chose 200 μg/mL ES as an appropriate con-
centration for the following experiments.

Radiosensitization of ES in H-520 cells
In the coming assays, we treated H-520 cells with ES in a
dose of 200 μg/mL for 24 h before those cells received dif-
ferent doses of irradiation. The cell survival was detected
by a clonogenic assay at 21d after irradiation. As shown in
Fig. 2, survival fraction of H-520 cells at 2Gy (SF2) was

Figure 1 MTT assay was used to evaluate the effect of ES on the 
growth of H-520 cells. The exponentially growing H-520 cells were 
seeded in 96-well plates and treated with increasing concentrations of 
ES for 24, 48 and 72 h. The results are presented as the percentage of 
the decreased values from the untreated cells. One representative of 
two identical experiments was shown.

Figure 2 Clonogenic survival of H-520 cells after different treat-
ments including irradiation with or without ES. H-520 cells were 
treated with 200 μg/mL ES for 24 h and then washed. These ES-treated 
or control H520 cells received 0-10Gy radiation and cloning formation 
was detected by 21 days after irradiation. Data were a summary of 
three experiments.

Irradiation

Irradiation + ES
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0.56 vs. 0.37 and mean inactivation dose (D0) was 2Gy vs.
1.33Gy in the absence and presence of ES pre-treatment
respectively. The SER of ES in H-520 cells was 1.51. The
other radiobiological parameters of H-520 cells were: Dq
= 0.41 Gy, N = 1.60 and D10 = 4.60Gy, whereas these
parameters of ES-treated H-520 cells were: Dq = 0.34Gy,
N = 1.79 and D10 = 3.05Gy, respectively. These data indi-
cated that ES had efficient radiosensitization effects on
H-520 cells in vitro.

Cell death of H-520 cells induced by ES and irradiation
To evaluate the induction of apoptosis after the combina-
tion of ES and irradiation, H-520 cells were treated with
200 μg/mL ES for 24 h immediately before irradiation.
Apoptosis cell death was determined by fluorescence
microscopy using cells stained with Hoechst 33258. H-
520 cells showed typical morphologic changes of apopto-
sis as cytoplasmic and nuclear shrinkage and chromatin
condensation or fragmentation morphology (Fig. 3A).

The amount of apoptotic cells was determined by
annexin V-FITC and PI double staining. As expected,
more apoptotic cells were observed when the radiation
doses increased (Fig. 3B and Table 1). Radiation induced
significantly higher cell death in ES-pretreated H-520
cells than those in control H-520 cells (P < 0.05 or P <
0.01, Table 1).

Effects of ES and irradiation on cell cycle progression of H-
520 cells
H-520 cells were treated with ES (200 μg/mL) for 12 to 48
h, the G0/G1 peak was increased and the G2/M peak
decreased in a time-dependent style. There was no signif-
icant change in the S-phase after treated with ES for 12 h,
but a marked decrease was observed from 24 to 48 h after
treatment with ES (Fig. 4 and Table 2). Exposed to 4Gy
irradiation for 12-48 h, the G0/G1 peak decreased, But the
G2/M peak increased after irradiation during 12 to 24 h
and decreased from 24 to 48 h. However, the combination
of ES and irradiation induced significantly decreased G0/

Figure 3 ES treatment significantly enhanced radiation-induced cell death in H-520 cells. A) Cell apoptosis observed by Hoechst 33258 staining 
(×400). H-520 cells treated with medium alone (a), 200 μg/mL ES (b), irradiation (c), and their combination (d) for 72 h. B) Cell death after different 
treatments was determined by a flow cytometry. The early apoptosis rate of ES-treated H-520 cells was significantly higher than those of un-treated 
H-520 cells at the radiation dosage of 4Gy. Higher total apoptosis rate of the ES-treated H-520 cells was observed at every radiation dose included in 
this study. One representative of three identical experiments was shown.
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G1 and G2/M phase cells but increased cells in S phase
compared with control cells (Table 2).

Effects of ES and irradiation on proteins involved in 
apoptosis
Proteins involved in apoptosis including Bcl-2 and acti-
vated caspase which were tested by flow cytometry. The
Bcl-2 expression was decreased in H-520 cells after the
treatment with irradiation or ES, but less expression of
Bcl-2 in H-520 cells was observed after the treatment
with both ES and irradiation (Fig. 5A). On the other hand,
the activated caspase level was up-regulated in irradia-
tion- or ES- treated H-520 cells compared with control
H-520 cells. The combination of ES and irradiation
induced significantly higher activated caspase level in H-
520 cells compared with the control H-520 cells (Fig. 5B).

Expression of phospho-p38-MAPK and p-Akt in H-520 cells 
after ES and irradiation treatment
ES influenced signaling pathway, we examined the
expression of the phosphorylation status of Akt by West-
ern blotting and p38-MAPK by FCM, which mainly asso-
ciated with mitogenicity and cell proliferation. As shown
in Fig. 6A and Table 3, ES could significantly inhibit the
phosphorylation of p38-MAPK in H-520 cells after treat-
ment with irradiation or not. However, the level of phos-
phor-p38-MAPK in cells treated with irradiation and ES
had no observed change. Western blotting analysis
showed significant decrease of the phosphor-Akt expres-
sion in ES alone or combined with irradiation of 4Gy (Fig.
6B). Nevertheless, no significant changes of expression of
phosphor-Akt were observed in irradiation-treated H-
520 cells.

Discussion
It is known that ED inhibits the angiogenesis of malignant
diseases, but it does not inhibit the functions of cancer
cells. However, recent studies showed that ED possess
direct antitumor activity on cancer cell migration, metas-
tasis, and proliferation [11,17,21-23]. ES, a novel recom-
binant human ED, has been demonstrated to inhibit the

proliferation and migration of human umbilical vein
endothelial cells (HUNECS) and the invasion of MDA-
MB-435 human breast cancer cells [19,24]. But weather it
suppress the cell proliferation of cancer cells has not been
reported. In the present study, we showed the first evi-
dence that ES directly inhibits the proliferation of human
lung squamous cancer cells H-520 and induces H-520 cell
apoptosis. Moreover, ES could enhance the sensitivity of
H-520 cells to irradiation.

It has been reported that ED enhanced the anti-tumor
effects of ionizing irradiation in vivo [25-29]. ES signifi-
cantly inhibited the proliferation of H-520 cells in a dose-
and time- dependent manner as determined by an MTT
assay. The dose-survival curves of ES-treated H-520 cells
exhibited a narrower shoulder and a greater slope rate
which standard for quasi-threshold doses (Dq) and mean
lethal doses (D0) respectively. It indicates that the repair
of sublethal damages and sensitivity to lethal radiation
dose was decreased. A significant radiosensitivity effect
with the sensitization enhancement ratio (SER) is 1.51. So
our findings showed that ES could enhance the sensitivity
of H-520 cells to irradiation and had the potential to be a
radiosensitizer.

The mechanisms of ES improved H-520 cell response
to radiation were multiple, especially in the in vivo mod-
els [30-32]. ES could inhibit the proliferation of endothe-
lial cells and cancer cells, and induced cell apoptosis, both
of which reduce the total tumor cell mass, making tumors
more amenable to control by radiotherapy [11,18,33-35].
The cell cycle phases also determined H-520 cancer cells
relative to radiosensitivity, with H-520 cells being most
radiosensitive in the G2/M phase, less sensitive in the G0/
G1 phase, and least sensitive during the latter part of the S
phase [36]. It was demonstrated that ED induced a cell
cycle arrest mainly in the G0/G1 phase and a decrease in
the S phase [37-39]. In the current study, we observed a
clear cell arrest in the G0/G1 phase and a reduction in the
H-520 cells of S phase in ES-treated H-520 cells with a
time-dependent style. H-520 cells progressing past the
G1/S block might accumulate proapoptotic signals caused

Table 1: Effects of ES and irradiation on apoptosis in H-520 cells(%,  ± s)

Irradiation dose(Gy) H-520 cells ES-treated H-520 cells

Early apoptotic rate Total apoptotic rate Early apototic rate Total apoptotic rate

0 0.57 ± 0.03 4.27 ± 0.29 4.59 ± 0.48a 22.38 ± 1.61b

2 3.99 ± 0.48 14.3 ± 1.15 9.54 ± 0.29c 35.01 ± 1.16d

4 6.8 ± 0.26 28.49 ± 1.58 12.08 ± 0.25e 46.83 ± 2.06f

8 7.46 ± 0.24 54.79 ± 1.89 8.68 ± 0.68g 64.08 ± 4.28h

Compared to the control H-520 cells irradiated with the same dose,t = 14.40, aP < 0.01; t= 19.17, bP < 0.01; t = 17.15, cP < 0.01; t = 17.79, dP < 
0.01; t = 25.64, eP < 0.01; t = 25.64, fP < 0.01; t = 2.93, gP < 0.05; t = 3.44, hP < 0.05.

x
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by both radiation and ES, resulting in increased H-520
cell death [40]. Radiation alone or the combination of
radiation and ES promoted significantly higher percent-
ages of cells in G2/M phase at 24 h after treatment,
though the combination of radiation and ES showed less
effect than radiation alone in this respect. These data
indicate that radiation induces a cell cycle arrest in G2/M
phase in H-520 cells at the early time points. However, in
the later stage, more cells in this phase will process cell
death so the percentage of cells in G2/M phase will
decrease dramatically, as seen in 48 h after radiation.

A fundamental view on apoptosis was that apoptotic
signaling transduction act mostly upon pathways initiat-
ing from mitochondria and they eventually met at the
level of Bcl-2 family members and the caspases, an ulti-
mate executioners of cell death [41]. It has been reported
that ED induced apoptosis in several cancer cells [11,18],
and it also has been reported that ED induced apoptosis
in endothelial cells in a caspase-dependent manner, and
ED-mediated apoptosis is associated with several apop-
totic signaling pathways including overloading of intrac-
ellular magnesium and calcium, as well as regulation of
p53 and Bcl-2 expression [10,42,43]. In the present study,

Figure 4 Cell cycle distribution of H-520 cells after treatment with ES and/or 4Gy irradiation from 12 to 48 h in H-520 cells. One representative 
of two independent experiments with similar results was shown.

Control

12h

24h

48h

ES       4Gy                          ES+4Gy

No treatment

Time after 
irradiation



You et al. Cancer Cell International 2010, 10:17
http://www.cancerci.com/content/10/1/17

Page 7 of 10

Table 2: Cell cycle distribution in H-520 cell line after treatment with ES and irradiation(%,  ± s)

Group Treatment G0/G1 S G2/M

0 h No treatment 66.15 ± 1.01 28.18 ± 1.23 5.66 ± 0.22

12 h ES 66.03 ± 1.46 30.66 ± 2.55 3.31 ± 1.10a

4Gy 47.27 ± 1.25b 41.1 ± 1.67c 11.63 ± 1.65d

ES+4Gy 58.62 ± 3.84e 34.32 ± 2.88f 7.06 ± 0.97

24 h ES 72.36 ± 2.14g 27.03 ± 1.71 0.61 ± 0.54h

4Gy 35.79 ± 1.43i 33.94 ± 1.79j 30.23 ± 0.43k

ES+4Gy 57.34 ± 2.26l 29.11 ± 2.39 13.55 ± 0.78m

48 h ES 82.72 ± 3.32n 15.06 ± 3.13o 2.22 ± 0.94p

4Gy 48.85 ± 3.28q 48.12 ± 2.10r 3.03 ± 1.35s

ES+4Gy 57.78 ± 1.46t 41.44 ± 1.08u 0.78 ± 0.39v

Compared with 0 h group, t = 3.63, aP < 0.05; t = 20.36,bP < 0.01; t = -10.79,cP < 0.01; t = -6.22, dP < 0.01; t = 3.29, eP < 0.05; t = -3.40, fP < 0.05; 
t = -4.54, gP < 0.05; t = 14.94, hP < 0.01; t = 30.12, iP < 0.01; t = -4.60, jP < 0.05; t = -87.69, kP < 0.01; t = 6.17, lP < 0.01; t = -16.92, mP < 0.01; t = -
8.28, nP < 0.01; t = 6.76, oP < 0.01; t = 6.15, pP < 0.01; t = 8.75, qP < 0.01; t = -14.18, rP < 0.01; t = 3.33, sP < 0.05; t = 8.16, tP < 0.01; t = -14.08, uP 
< 0.01; t = 18.82,vP < 0.01.

x

Figure 5 Bcl-2 and activated caspase protein level in H-520 cells after treatment with ES and 4Gy irradiation were detected by a flow cy-
tometry. A) Decreased Bcl-2 expression in ES and radiation-treated H-520 cells. B) Increased activated caspase level in H-520 cells induced by ES and 
irradiation. Data were presented as mean ± SD(N = 4). One representative of four identical experiments was shown.
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Figure 6 Phosphorylation level of p38-MAPK and Akt in H-520 cells after irradiation and ES treatment. A) ES combined with 4Gy irradiation 
significantly inhibits p38-MAPK phosphorylation. B) Decreased p-Akt in H-520 cells caused by ES treatment. Protein extracts of cells treated with 200 
μg/mL ES, 4Gy irradiation, and in combination (ES+4Gy) at 24 h following irradiation. One representative of three independent experiments was 
shown.
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Table 3: Expressions of phospho-p38-MAPK in H-520 cells (  ± s)

Flurescence intensity

Group Phospho-p38-MAPK(-)% Phospho-p38-MAPK(+)%

control 87.61 ± 0.72 12.39 ± 0.72

ES 90.31 ± 0.27a 9.69 ± 0.27b

Irradiation 84.08 ± 1.39c 15.92 ± 1.39d

ES+ irradiation 88.99 ± 0.78 11.01 ± 0.78

Compared with control t = -6.11, aP < 0.01; t = 6.11, bP < 0.01; t = 3.90, cP < 0.05; t = -3.90, dP < 0.05.

x



You et al. Cancer Cell International 2010, 10:17
http://www.cancerci.com/content/10/1/17

Page 9 of 10
we evaluated apoptosis in H-520 cells after ES combina-
tion with irradiation treatment from morphological and
quantitative aspects, which showed a significant increase
in H-520 cellular apoptosis. Consistently, the levels of
Bcl-2 protein in H-520 cells were decreased after treat-
ment and the level of activated caspase proteins was
increased. These changes in combination treatment
group were significantly greater than that in single treat-
ment group and is consistent with the previous studies
[10,42].

Previous studies showed that the PI3K-Akt pathway
and MAPKs have a significant effect on the cell survival
of cancer cells and play an important role in the anti-
apoptotic effects of growth factors [44,45]. There are four
distinct subfamilies in the MAPK family: ERKs (ERK1
and ERK2), p38 MAPK, JNK/SAPK, and ERK5/BMK1.
Among them, p38 MAPK is closely related to the apopto-
sis of a variety of cells [46-48]. The Akt protein played a
key role in a pathway related to survival by inhibition of
apoptotic signals and promotion of cell cycle progression,
with a clear implication in cancer and other pathologies.
Also, Akt has been shown to be potently activated in
response to a wide variety of growth factors and in
response to DNA damage [49]. It was demonstrated that
ES suppress the activation of ERKs, p38 MAPK, and Akt
in HUVECs or retinal microvascular endothelial cells
(RMECs) [49,50]. In the present study, ES combined with
irradiation significantly reduce the phosphorylation of
p38-MAPK protein and Akt protein, which probably be
the mechanism leading to the increased apoptosis of H-
520 after treatment.

In conclusion, ES significantly inhibited cell prolifera-
tion and induced apoptosis in human lung squamous
cancer cell line H-520 and has the potential to be a radio-
sensitizer, which may due to the cell cycle redistribution,
increase of cell apoptosis and influences on the PI3K-Akt
pathway and MAPKs. The present data offer basic infor-
mation of the combining ES and irradiation on tumor
treatment, which may have clinical significance.
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