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Abstract

Background: Castration-resistance in prostate cancer (PC) is a critical event hallmarking a switch to a more
aggressive phenotype. Neuroendocrine differentiation and upregulation of NF�B transcriptional activity are two
mechanisms that have been independently linked to this process.

Methods: We investigated these two pathways together using in vitro models of androgen-dependent (AD) and
androgen-independent (AI) PC. We measured cellular levels, activity and surface expression of Neutral
Endopeptidase (NEP), levels of secreted Endothelin-1 (ET-1), levels, sub-cellular localisation and DNA binding ability
of NF�B, and proteasomal activity in human native PC cell lines (LnCaP and PC-3) modelling AD and AI states.

Results: At baseline, AD cells were found to have high NEP expression and activity and low secreted ET-1. In
contrast, they exhibited a low-level activation of the NF�B pathway associated with comparatively low 20S
proteasome activity. The AI cells showed the exact mirror image, namely increased proteasomal activity resulting in
a canonical pathway-mediated NF�B activation, and minimal NEP activity with increased levels of secreted ET-1.

Conclusions: Our results seem to support evidence for divergent patterns of expression of the NF�B/proteasome
pathway with relation to components of the NEP/neuropeptide axis in PC cells of different level of androgen
dependence. NEP and ET-1 are inversely and directly related to an activated state of the NF�B/proteasome
pathway, respectively. A combination therapy targeting both pathways may ultimately prove to be of benefit in
clinical practice.

Background
The 26S proteasome is part of the ubiquitin-proteasome
system (UPS) and constitutes a large multiprotein com-
plex present in all cells, both in the cytoplasm and
nucleus, which degrades ubiquitinated proteins. The
proteasome targets proteins that are damaged, oxidised
or misfolded. Furthermore, it orchestrates the orderly
degradation of regulatory proteins that govern cell cycle,
transcription factor activation, apoptosis, and cell traf-
ficking [1,2].

The activation of the nuclear factor kappa B (NF�B), a
key transcription factor, is dependent on proteasome-
mediated degradation of the inhibitory protein I�Ba [3].
Thereby, the proteasome regulates the transcriptional
activity of NF�B. NF�B induces expression of cell adhe-
sion molecules (i.e., E-selectin, intercellular adhesion
molecule-1, vascular cell adhesion molecule-1), prosurvival
proteins (i.e., Bcl-2), and growth factors, like interleukin-6
(IL-6), thus promoting cell survival, angiogenesis, and
metastasis, related to cancer progression and resistance to
chemotherapy in various solid tumors, including PC [2,4].
Neutral endopeptidase 24.11 (NEP, neprilysin, enkepha-

linase, CALLA, CD10, EC 3.4.24.11) is a thermolysin-like
zink metallopeptidase of the M13 family that is normally
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expressed by numerous tissues, including prostate. This
enzyme is an integral plasma membrane ectopeptidase
that plays an important role in turning off peptide signal-
ling events at the cell surface. It cleaves peptide bonds on
the amino side of hydrophobic amino acids and inactivates
a variety of physiologically active peptides, including atrial
natriuretic factor, substance P, bradykinin, oxytocin, Leu-
and Met-enkephalins, neurotensin, endothelin, bombesin,
and bombesin-like peptides, which are collectively termed
neuropeptides (NPs) [5-8]. NEP reduces the local concen-
tration of NP available for receptor binding and signal
transduction via G-protein receptor coupling. It has been
implicated in controlling cellular proliferation by hydrolys-
ing NPs such as endothelin and bombesin-like peptides,
found to be potent mitogens for both benign and malig-
nant cells [9,10]. Loss or decrease in NEP expression has
been reported in a variety of malignancies, including PC
[11]. Reduced NEP allows an accumulation of higher pep-
tide concentrations at the cell surface and may facilitate
the development and progression of neoplasia [7,12].
The aberration of the NF�B/UPS pathway and the

NEP/NPs axis have been independently linked to the
development and progression of PC [2,13-17]. In this
work we have hypothesised that both increased NP sig-
nalling as a result of NEP loss and overactivated NF�B-
signalling emanating from increased proteasome activity
are features of an evolving AD-to-AI phenotype. We
therefore investigated these pathways together using in
vitro models of androgen-dependence and -indepen-
dence PC states.

Methods
Cell culture and reagents
The human prostate carcinoma lines LnCaP and PC-3
as well as the HeLa cell line were all purchased from
the European Collection of Animal Cell Cultures
(ECACC, Health Protection Agency, Salisbury, UK) and
all experiments were performed within six months from
purchase. The cell lines were cultured in RPMI 1640
(Euroclone, UK) supplemented with 10% heat-inacti-
vated FBS (GIBCO, UK), 5% L-glutamine (GIBCO, UK)
and 1% penicillin-streptomycin (Euroclone, UK) at 37°C
in a humidified 5% CO2 atmosphere. Suc-Ala-Ala-Phe-
pNa chromogenic substrate for the NEP activity was
purchased from Bachem Biosciences, Germany. IKK
inhibitor (wedelolactone), NF�B inhibitor (BAY 11-
7082), and rhTNFa were all from Sigma Aldrich, UK.
Recombinant human NEP enzyme (rhNEP) was a kind
offer by Dr David Nanus, Weill Cornell Medical College,
New York, USA. Proteasome inhibitor (Bortezomib,
VELCADE) was purchased from Janssen-Cilag Pharma-
ceuticals, Greece. 20S proteasome control and protea-
some inhibitor lactacystin were from Chemicon
International, USA. Protein quantification was done

with the use of the Bradford quantification assay (Bio-
Rad Laboratories, Inc.) for the total cell lysates, and the
BCA Protein Kit (PIERCE Endogen, UK) for the nuclear
and cytoplasmic extracts.

Total cell lysates
Total protein cell lysates were prepared using a 0.5%
CHAPS buffer, which did not affect NEP and proteaso-
mal enzymatic activity. Total lysates were also prepared
using a second buffer (containing 10 mM Tris-HCl,
50 mM EDTA, 150 mM NaCl, 1% Triton-X and 10%
Glycerol) for western blotting purposes.

Nuclear extracts
Nuclear extracts were prepared as described by Carter et
al. [18], with minor modifications as reported previously
[19]. 106 cells were washed in cold PBS and collected in
400 μl of ice-cold lysis buffer supplemented with 10 μg/ml
of protease inhibitors cocktail and then incubated on ice
for 20 min. Nonidet (NP-40) 10% was added to lyse the
cells which were vortexed and centrifuged for 20 sec at
4°C at 13,000 rpm. The supernatant containing the cyto-
plasmic extracts stored at -80°C. The pellet was resus-
pended in 100 μl of extraction buffer for 20 min on ice.
The nuclear suspension was then centrifuged for 15 min-
utes at 13,000 rpm and supernatant nuclear extracts
stored at -80°C until use. Nuclear extracts of PC-3 cells
were prepared at baseline and following bortezomib incu-
bation at a dose of 1 μM for 60 min.

Flow cytometry analysis
Cells were gently removed from tissue culture flasks
with the use of a cell scraper, rinsed twice in PBS and
resuspended in culture medium and analysed for CD10
surface expression using a fluorescein-conjugated mouse
monoclonal antibody against CD10 (clone ALB1, Beck-
man Coulter). A mouse anti-human IgG1-FITC anti-
body (Beckman Coulter) was used as isotype control.
Analysis was performed with an Argon and HeNe laser
flow cytometer (Beckman Coulter).

NEP enzymatic activity assay
Chromogenic NEP activity assay in total cell lysates was
performed as described before [14]. Absorbance was
read at 540 nm using a Wallac Victor™ multilabel
counter. All experiments were performed in quadrupli-
cate. Specific activity at baseline was calculated as pico-
moles of converted substrate per microgram protein per
minute. Values were compared against a substrate-speci-
fic standard curve and an rhNEP enzyme activity curve.

ET-1 ELISA
Culture supernatants were collected when cells were at
80% confluency. A commercially available kit based on a
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double-sandwich assay specific for ET-1 detection was
used (IBL Internaitonal). Absorbance was read at
450 nm according to kit specifications with the use of a
multilabel counter as above. ET-1 concentration in the
cell culture supernatant was estimated in pg/ml based
on absorbance unit plot readings.

20S proteasome activity assay
Chymotryptic activity of the 20S proteasome was mea-
sured in total cell lysates with the use of a commercially
available fluorogenic assay kit based on 7-Amino-4-
methylcoumarin (AMC) (Chemicon International, USA)
and confirmed with in-house developed assays. All
experiments were performed in quadruplicate and mea-
sured using a Wallac Victor™ multilabel counter with
380 nm excitation and 490 nm emission wavelengths.
Fluorometric reading of baseline enzyme activity was
expressed as RFU/μg of total protein. Values were com-
pared against a fluorogenic substrate (LLVY-AMC) stan-
dard curve and a 20S proteasome control activity curve.
Changes in proteasomal activity following different drug-
incubations were expressed as percentage increase or
decrease from baseline activity of each line. Bortezomib
incubations were at a dose of 1 μM for 60 minutes in
LnCaP and PC-3 cells. Percentage of activity inhibition of
control 20S proteasome was produced by lactacystin. All
measurements were performed in triplicate (p < 0.001).

Western blot analysis
30 μg of total protein lysate of each sample (total cell
lysate or nuclear/cytoplasmic extracts) were loaded on
4-12% Bis-Tris polyacrylamide gels and underwent elec-
trophoresis under reducing conditions. Proteins were
subsequently transferred on a PVDF blotting membrane.
Following blocking with 5% non-fat milk, membranes
with incubated with primary antibodies at 4°C overnight.
Primary antibodies against CD10 (clone 56C6, mouse
monoclonal, Novocastra), the p65 subunit of NF�B (F-6,
mouse monoclonal and C-20, goat polyclonal, Santa
Cruz Biotechnology, Inc.), I�Ba (C-15, rabbit polyclonal,
Santa Cruz Biotecnhology, Inc.) and actin (clone AC-40,
mouse monoclonal, Sigma Aldrich, UK) were used. Sec-
ondary antibodies incubations were at a dilution of
1:2500 for 2 hours at room temperature. Both colori-
metric (Opti4CN Detection Kit, Bio-Rad Laboratories,
Inc) and chemiluminescence detection (ECL detection
reagent, Amersham Biosciences) with autoradiography
were used. Total cellular I�Ba levels in PC-3 cells were
prepared following serial incubations with bortezomib at
a dose of 1 μM for 30, 45, 60 and 90 min respectively.

Immunocytochemistry
Cells were spread and cultured on glass slides. When at
80-90% confluency cells were fixed with Merckofix®

spray fixative (Merck KGaA, Darmstadt, Germany) and
conventional avidin-biotin immunocytochemistry was
performed. The Ventana NexES Automated Slide Stai-
ner and related Ventana reagents were used. The sam-
ples were immersed in a citrate buffer solution (pH 7.3)
and heated for 15 min at 350 W. They were subse-
quently incubated with 3% H2O2 for 4 min to quench
the endogenous peroxidase activity. A primary antibody
against the p65 subunit of NF�B was used in a 1:100
dilution. Diaminobenzidine (DAB) was used as a chro-
mogen for detection of the antigens. Incubation with
copper sulfate was performed for enhancement of the
colour reaction. The slides were finally counterstained
with haematoxylin and coverslipped for examination.
Experimental conditions involved drug-incubation of
PC-3 cells with bortezomib at a dose of 1 μM for
60 min, wedelolactone at a dose of 50 μM for 90 min
and Bay-7082 at a dose of 20 μM for 16 hrs. PC-3
cells were incubated with rhNEP at a dose of 50 μg/ml
for 72 hrs.

Electrophoretic mobility shift assay
As NF�B consensus oligonuclotide we used the PRDII
element [20] of human IFN-beta enhancer (5’-
TGGCCAACATGGTGAAACCCCGTTTCTACT-3’)
(IMBB, Microchemistry Laboratory), labelled with [g-
32P] ATP using T4 polynucleotide kinase. The probe
was purified through G50 columns (Amersham Bios-
ciences) and then EMSA was performed. Briefly, 3 μg of
nuclear extracts were incubated at RT for 20 min with
100 ng of labelled double-stranded oligonucleotide in
the presence of 20 ng of PolydI-dC (PIERCE Endogen,
UK) and 20 μg of BSA. Nuclear extracts from HeLa
cells (ATCC, UK) 6 hours post-infection with the Sendai
paramyxovirus (Cantell strain) and following incubation
with TNFa for 1 hour were used as positive controls.
For the supershift assay, nuclear extracts were incubated
with 1 μg of anti-p65 rabbit polyclonal antibody (Santa
Cruz Biotechnology, Inc.) for 30 min at 4°C, before the
addition of the probe. In every case, the protein-DNA
complexes were separated on a 7% non-denaturing poly-
acrylamide gel and bands were visualized using a Taef-
fun Phospor-Imager/Scanner with the ImageQuant™
TL analysis software (Amersham Biosciences).

Results
NEP/NPs axis at steady state
Baseline surface NEP expression in LnCaP cells was esti-
mated to be at a 99% level (MFI = 30). NEP enzymatic
activity was 187 pmoles of converted substrate per
microgram of protein per minute. PC-3 cells were nega-
tive for NEP expression on flow cytometry analysis, and
showed negligible NEP enzymatic activity (0.375
pmoles/μg/minute) (Figures 1A, B).
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The estimation of NEP protein amount in whole cell
lysates via western blot concurred with the above, show-
ing bands of increased intensity for LnCaP cells and no
bands for PC-3 cells (Figure 2A). Secreted ET-1 concen-
tration measure in cell culture supernatants was 1.45
pg/ml in the LnCaP line and 4.95 pg/mg in the PC-3
line (Figure 2B).

NF�B/UPS pathway at steady state
On immunocytochemistry analysis, LnCaP cells showed
almost exclusively cytoplasmic NF�B localisation, while
PC-3 cells showed mixed nuclear and cytoplasmic locali-
sation (combination of cytoplasmic, mixed or purely
nuclear localisation) (Figure 3A).
As expected, use of UPS inhibitors (NF�B, IKK and

20S proteasome inhibitor) converted the mixed NF�B
localisation in PC-3 cells to cytoplasmic (Figure 3B).
Higher concentration or longer incubation with two of
these inhibitors (NF�B inhibitor BAY-7082 50 μM for
16 hours; IKK inhibitor wedelolactone 50 μM for
5 hours) resulted in altered cell morphology (round,
plump, apoptotic-looking cells) (data not shown). Use of
UPS inhibitors expectedly had no effect on NF�B locali-
sation in LnCaP cells, which remained cytoplasmic.

Figure 1 NEP surface expression and activity in PC cell lines. (A) NEP specific activity (pmoles/μg/min) in LnCaP (left; 187.255, SD: 2.84) and
PC-3 cells (right; 0.375, SD: 0.03). All measurements in quintuplicate (p < 0.001). (B) Flow cytometry analysis of NEP surface expression in LnCaP
(left) and PC-3 cells (right). All measurements in triplicate (p < 0.001).

Figure 2 NEP cellular expression and ET-1 secretion in PC cell
lines. (A) Total cellular NEP levels in PC-3 (left) and LnCaP cells
(right). (B) ET-1 ELISA detection in culture supernatants of LnCaP
(left; 1.448, SD: 0.06) and PC-3 cells (right; 4.953, SD: 0.49). All
measurements in octuplicate (p < 0.001).
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When PC-3 cells were incubated with rhNEP, their
baseline NF�B sub-cellular localization profile changed
from mixed nuclear and cytoplasmic to purely cytoplas-
mic (Figure 3C).
Western blot analysis of nuclear and cytoplasmic

extracts in LnCaP cells showed less nuclear NF�B pro-
tein and less amount of cytoplasmic protein compared
to PC-3 cells, which showed significant amount of both
nuclear and cytoplasmic NF�B protein. Bortezomib
incubation predictably resulted in reduced nuclear
NF�B amount in PC-3 cells (Figure 4A). The use of a
more sensitive technique such as EMSA did detect
NF�B-DNA binding signal in LnCaP cells, however less
intense compared to PC-3 cells (Figure 4B).
Furthermore, LnCaP cells also showed significantly

higher amount of total I�Ba protein compared to PC-3
cells (Figure 4C). The effect of the proteasome inhibitor
on the I�Ba status, much evidenced in the literature,

was also demonstrated on serial incubations of bortezo-
mib alone in PC-3 cells. There was a gradual time-
dependent increase in the total I�Ba amount, peaking at
the 60-minute incubation, and declining at longer incu-
bation, consistent with the reversible nature of bortezo-
mib-induced proteasome inhibition [21] (Figure 4D).
20S proteasomal activity measurement showed the

opposite relationship between LnCaP and PC-3 cells as
compared to NEP activity. LnCaP showed low protea-
somal activity (45.2 RFU/μg protein), while PC-3 cells
had a significantly higher activity (208.6 RFU/μg pro-
tein; p < 0.001). Incubation with proteasome inhibitor
bortezomib produced a significant proteasomal inhibi-
tion in PC-3 cells (17% of baseline activity) and a mod-
erate one in LnCaP cells (65% of baseline activity). The
inhibition in PC-3 cells was comparable with the inhi-
bition produced by lactacystin on 20S proteasome con-
trol protein (Figure 5).

Figure 3 NF�B immunohistochemical expression and subcellular localisation in PC cell lines. (A) LnCaP cells (left, ×10) and PC-3 cells
(middle and < right, ×10 and ×40). (B) PC-3 cells; incubations with: Left: bortezomib 1 μM (60 min) (×10); Middle: wedelolactone 50 μM (90 min)
(×40); Right: Bay-7082 20 μM (16 hrs) (×10). (C) PC-3 cells; Left: Baseline (×40); Right: Incubation with rhNEP 50 μg/ml (72 hrs) (×40).
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Our results are suggestive of a mirror-image profile of
the NEP/NPs and NF�B/UPS pathways between AD
and AI PC cells (Table 1).

Discussion
The importance of NPs in the emergence of castration-
resistant PC clones with metastatic potential has
attracted a renewal of interest in the recent years, sup-
plemented by our modern knowledge of complex
tumour-niche interactions. Both ET-1 and bombesin
have been shown to activate pathways and processes

that promote tumour invasion and metastasis in the
microenvironment of PC [22-26].
Emerging preclinical evidence implicates NF�B/UPS

pathway in the development, growth, survival, angiogenesis
and metastatic progression of PC cell lines and preclinical
models [27,28]. NF�B has been shown to be constitutively
active in PC cell lines, preventing apoptotic cell death
[29,30]. Constitutive activation of NF�B has also been
detected in AI PC xenografts and in PC tissues [15,29-31].
Our results provide evidence that at baseline level

there is an inverse pattern of expression between certain

Figure 4 NF�B activation in PC cell lines. (A) Nuclear and cytoplasmic NF�B levels in PC-3 (left) and LnCaP cells (middle). Right: Nuclear
extracts of PC-3 cells at baseline and following bortezomib incubation (1 μM for 60 min). (B) NF�B EMSA. Lane 1: negative control; Lane 2: PC-3
cells; Lane 3: LnCaP cells; Lane 4: HeLa cells (6 hrs post-infection). (C) Total cellular I�Ba levels in PC-3 (left) and LnCaP cells (right). (D) Total
cellular I�Ba levels in PC-3 cells following serial incubations with bortezomib 1 μM.
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components of the NF�B/UPS and the NEP/NPs path-
ways. As described above, these two pathways have been
previously separately implicated in PC and the progress
towards castration resistance. We have now demon-
strated that LnCaP cells, modelling the AD state, which
are known to express NEP and therefore cleave endo-
genous/paracrine NPs, also exhibit low proteasomal
activity. This translates to low I B degradation rate and
resultant high total I B levels. As such, these cells have

constitutively low level of NF�B activation, indicated by
its cytoplasmic localisation and low DNA-binding signal.
PC-3 cells, modelling progression to castration resis-

tance, have lost their NEP expression [14] due to pro-
moter methylation [32] and therefore have significant
levels of autocrine and paracrine-acting NPs available
for cellular signaling, as our results establish. We have
also demonstrated that they exhibit high proteasomal
activity, resulting in low I B levels and increased NF�B
activation. PC-3 cells appreciably showed a greater sen-
sitivity to proteasomal inhibition compared to LnCaP
cells. The biological explanation behind this might be
that there is a minimal requirement of 20S proteasomal
activity for cellular homeostasis, which cannot be abol-
ished. As such, PC-3 cells are amenable to a high per-
centage inhibition of proteasomal activity exactly
because they have higher baseline activity, while LnCaP
cells, having a lower baseline activity, are “allowed” a
smaller-scale inhibition.
It is therefore possible that, in the progression to

androgen-independence, cells via loss of their membrane
NEP activity, as shown before [14], survive and prolifer-
ate in a milieu of increased paracrine NP signaling.
Indeed, our results relating to the AD state in vitro
model (represented by LnCaP cells) support that the lat-
ter have lower secreted levels of ET-1, also shown by

Figure 5 Proteasome activity in PC cell lines. 20S proteasome activity (RFU/μg) in PC-3 (left; 208.58, SD: 3.24) and LnCaP cells (right; 45.2, SD:
0.2). All measurements in quintuplicate (p < 0.001). Small graph: % inhibition of baseline 20S proteasome inhibition produced by bortezomib
incubations (1 μM for 60 minutes) in LnCaP (left) and PC-3 cells (middle); % activity inhibition of control 20S proteasome produced by lactacystin
(right). All measurements in triplicate (p < 0.001).

Table 1 In vitro profile of the NEP/NPs and NF�B/UPS
pathways in PC

AD AI

LnCaP PC-3

NEP specific activity (pmoles/μg/min) 187.25 0.375

NEP surface expression (%) 98.89 3.81

NEP protein High None

ET-1 secretion (pg/ml) 1.44 4.95

NF�B subcellular localisation Cytoplasmic Mixed

Nuclear NF�B protein Low High

NF�B-DNA binding signal Low Intense

Total cellular I�Ba protein High Low

20S proteasomal activity (RFU/μg) 45.2 208.58

Analysis of components of the two pathways in cell line models of AD and AI
states.
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Nelson et al. [13] and Grant et al. [33], which could be
the combined outcome of both NEP-mediated degrada-
tion but also reduced ET-1 production due to decreased
ECE-1 expression [34]. Concomitantly, the AI in vitro
model (represented by PC-3 cells) exhibits activation of
the NF�B signaling pathway with up-regulation of their
baseline cellular proteasomal activity.

Conclusions
Our study provides evidence of a molecular pattern
between the NEP/NPs and NF�B/UPS pathways that is
inverted in the progression from hormone-naïve to hor-
mone-refractory PC. This biological concept can be
used towards combined clinical applications of antago-
nists/inhibitors involving these two mechanisms, possi-
bly in conjunction with standard chemotherapy, thus
more effectively blocking pathways know to affect survi-
val of PC.
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