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Pathobiology of cancer metastasis: a short account
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Abstract

Cancer-initiating cells display aberrant functional and phenotypic characteristics of normal stem cells from which
they evolved by accumulation of multiple cytogenetic and/or epigenetic alterations. Signal transduction pathways
which are essential for normal stem cell function are abnormally expressed by cancer cells, with a cancer cell
phenotype playing an essential role in cancerization and metastasis.
Local tumour progression, metastasis and metastatic tumour growth are mediated by direct cell-to-cell and
paracrine reciprocal interactions between cancer cells and various stromal cells including fibroblasts, macrophages,
bone marrow derived stem cells and progenitor cells. These interactions mediate breakdown of basement
membrane barriers and angiogenesis both locally at the invasive front of the primary tumour and at the distant
metastatic site; attract primary tumour cells to the candidate metastatic site; and promote proliferation, survival and
growth of primary tumour cells and of metastatic cells at their distant site.
It is the purpose of this article to highlight the analogies between some of the genetic programs of normal stem
cells, and of cancer cells participating in the process of metastasis.
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Background
A primary malignant tumour consists of a heterogeneous
population of cancer cells comprising stem/progenitor cells,
cells at different stages of differentiation and de-differentiated
cells [1]. Cancer stem cells and de-differentiated cancer
cells are capable of using several intracellular path-
ways that are analogous to those used by normal stem/
progenitor cells and their progeny during development,
despite the dysregulation of many of their biological
functions. Most probably the precursor cancer cells ori-
ginate either as tissue specific stem cells, or as progenitor
cells that have undergone cancerous transformation
expressing dysregulated cellular signalling pathways that
in normal cells would be strictly regulated [2]. As cancer
stem cells are long-lived and possess persistent self-
renewal capabilities, they are well endowed to initiate
metastatic cancers [2-4].
During the process of de-differentiation, there is de-

activation of repressive mechanisms of developmental tran-
scription factors, and activation of dormant intracellular
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signalling pathways which are ordinarily expressed during
development by normal stem cells [1-6].
Stem cells that initiate cancer display several proper-

ties that normal stem cells exhibit, including the capabil-
ity for self–renewal and differentiation, active expression
of telomerase, motility, and the ability to migrate. Fur-
thermore, metastatic cells like normal stem cells, func-
tion and number of which are regulated by signals from
the niche in the microenvironment in which they are
located, require a specific microenvironmental niche at
their destination site in order to initiate and sustain
metastatic growth [1,2,7].
It is the purpose of this article to discuss some of the

cellular genetic programs analogous to those that are
used by tissue specific stem cells, employed by cancer
cells in the process of metastasis.
The metastatic process
In general, the process of metastasis comprises an
orderly sequence of pathobiological events starting with
local invasion by tumour cells, continuing with intrava-
sation of the cells and their survival in the bloodstream,
and ending with their extravasation, and ultimately with
infiltration and colonization of distant tissues [1,8].
These events are driven by gene products of metastatic
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cells, and by direct cell-to-cell and paracrine interactions
between cancer cells and various stromal cells, both in
the primary and in the metastatic tumour microenviron-
ments [8-15].
Although it is evident that the cancer-associated reac-

tive stroma surrounding the primary tumour promotes
tumour growth and invasiveness, it is not clear whether
signals from the microenvironment induce genotypic
and phenotypic changes in the cancer cells without
which metastasis cannot occur [16]; or whether these
genotypic and phenotypic properties are induced by
inherent altered intracellular transduction pathways and
gene expression, that have been present from the cancer
stem cell stage.
During disease progression, cancer cells activate local

stromal cells including resident fibroblasts and macro-
phages, and attract to the primary tumour circulating
monocytes and platelets. In turn, the reactive stroma-
associated cytokines, chemokines, growth factors and
matrix metalloproteinases mediate attraction of bone
marrow-derived stem and progenitor cells to the micro-
environment of the primary tumour. These active agents
also mediate angiogenesis, degradation of basement
membrane barriers and other extracellular matrix com-
ponents, as well as detachment, motility and migration
of cells from the primary cancer, thus promoting local
tumour growth and invasion [8-12,16,17].

The pre-metastatic niche
The destination and growth of cells metastasising from
the primary cancer, are dictated by specific metastatic
genes expressed by the disseminating cells, by the char-
acteristics of the microenvironment of the candidate
metastatic sites, and by the interaction between the stro-
mal microenvironment at these sites and the metastatic
cells [8,10-12,18,19].
Primary cancer cells and their associated reactive stro-

mal cells secrete humoral factors including an array of
cytokines, chemokines and growth factors which deter-
mine tropism for specific distant tissues, and promote
metastatic colonization and infiltration [10,18,19]. It is
probable that similar humoral factors released by differ-
ent types of primary cancers, will result in those differ-
ent cancers metastasising to the same distant tissues;
whereas other humoral factors released by a primary
cancer will account for its tendency to metastasise to
particular tissues or organs [18]. Thus, tumour-specific
biologically active factors will dictate the pattern of can-
cer metastasis [19].
These biological factors, including vascular endothelial

growth factor and placental growth factor activate fibro-
blasts in the stromal microenvironment of the candidate
metastatic sites resulting specifically in enhanced fibro-
nectin expression. Concurrently with this process, these
and other biological factors recruit haematopoietic
progenitor cells (HPCs) from the bone marrow to the
fibronectin rich stroma. The fibronectin provides a dir-
ectional signal to the arriving HPCs, and serves as an
adhesive substrate in which HPCs aggregate in clusters.
Subsequently, the clusters of HPCs secrete chemokines,
cytokines, growth factors and adhesion molecules required
for the chemoattraction of primary cancer cells, and for
the creation of a favourable microenvironment called a
pre-metastatic niche. This niche will be colonized by
metastatic cells [10,18,19].
Soon after these pathobiological events, HPCs in the

niche now colonized by metastatic cells recruit bone-
marrow derived endothelial progenitor cells (EPC) that
will contribute to the vascularisation of the site, promot-
ing growth of micrometastases [18,19].
Thus, the changes in the microenvironment of a can-

didate metastatic site mediated and aided by products of
the primary cancer-associated stromal cells, by fibronec-
tin, by HPCs, and by EPCs, create a supportive micro-
environment which promotes recruitment, attachment,
survival and growth of the metastasised cells [19].
The ability of cancer stem cells to induce angiogenesis,

to migrate, to invade tissues and blood vessels and to
infiltrate and colonize distant tissues is in part mediated
by cellular pathways which are expressed ordinarily by
normal tissue-specific stem/progenitor cells. Three of
these signalling pathways which are particularly impor-
tant in carcinogenesis are the interaction between che-
mokine stromal derived factor-1 (SDF-1) and its
chemokine receptor CXCR4, the epithelial to mesenchy-
mal transition (EMT) pathway and the Wnt pathway
[4,5,8,10-12,16,17,20-30].

The SDF-1-CXCR4 axis
The SDF-1-CXCR4 axis is essential in the function of
normal stem/progenitor cells; and in carcinogenesis it
mediates the growth of primary cancers and the devel-
opment of cancer metastases [20]. CXCR4 receptors are
expressed by a variety of tissue-specific stem cells and
by several types of cancer cells, and in fact, all cancer
cells that metastasise to bone express CXCR4 receptors
[14,17,26,31].
SDF-1 is produced by stromal cells of mesenchymal

origin including fibroblasts, osteoblasts and endothelial
cells, and by haematopoietic stem/progenitor cells and
endothelial stem/progenitor cells of bone marrow [20,26].
SDF-1 is highly expressed in lymphatic tissue, lung, liver
and bone [20]. The expression of both SDF-1 and CXCR4
is upregulated by biological factors associated with tis-
sue damage or tissue hypoxia. A prominent promoter of
SDF-1-CXCR4 expression is hypoxia-inducible factor-1
(HIF-1) which is upregulated by hypoxia within the pro-
gressively growing primary cancer [11,17,20].
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Both tissue-specific cancer stem/progenitor cells and
their normal counterparts, express CXCR4 receptors and
respond to chemoattractant signals generated by SDF-1,
resulting in their directional migration along the SDF-1
concentration gradient. The stem/progenitor cells will
consequently arrive at and be retained in the microenvi-
ronment which expresses high levels of SDF-1 [8,11,20].
In response to stimulation by SDF-1, CXCR4-positive

cells display motility and increased adhesion properties,
and secrete angiogenic factors (e.g. VEGF) and matrix
metalloproteinases [10,20]. Furthermore SDF-1 may pro-
mote survival and proliferation of cancer cells expressing
CXCR4 receptors [17].
Upon exposure to SDF-1, cancer cells expressing

CXCR4 receptors display rearrangement of cytoskeletal
proteins. This promotes cell motility leading to migra-
tion along the SDF-1 gradient, resulting in local invasion
by primary tumour cells. SDF-1 also modulates adhesion
of CXCR4-positive cancer cells to endothelial cells, to
fibrinogen and to fibronectin by activating specific inte-
grins and other cell surface molecules including VCAM-
1, ICAM-1 on endothelial cells. This facilitates migration
through the endothelial cell layer [17,20].
The transendothelial migration is further facilitated by

SDF-1 induced secretion of matrix metalloproteinases
(MMP)-2 and MMP-9 by CXCR4 positive cancer cells.
The increased expression of MMP’s leads to degradation
of extracellular matrix and of components of basement
membrane increasing vascular permeability and cancer
cell extravasation, and facilitating the locomotion of can-
cer cells and their invasion of tissues [17,32].
SDF-1 either alone or in combination with other fac-

tors mediates the trafficking and homing of tissue spe-
cific cancer stem/progenitor cells to cell-specific niches
in the target tissue. SDF-1 also mediates trafficking of
bone marrow derived haematopoietic progenitor cells to
the metastatic niche, facilitating angiogenesis and the
formation of a favourable microenvironment that is crit-
ical for metastatic growth [10,17,18].

Epithelial-mesenchymal transition
Epithelial-mesenchymal transition (EMT) is a cellular
genetic program expressed during embryogenesis that
governs morphogenesis. EMT transcription factors me-
diate the conversion of polarized immotile epithelial
cells to motile mesenchymal progenitor cells [27,28].
Molecular changes occur in the transition from an epi-

thelial to a mesenchymal phenotype. For example, EMT
transcription factors suppress E-cadherin expression in
epithelial cells resulting in functional loss of cell-to-cell
adhesion. They also trigger complex changes in cellular
architecture such as alterations in actin cytoskeleton
resulting in the acquisition of a mesenchymal phenotype
capable of motility and migration [27].
Dysregulation of the EMT programme contributes to
tumour initiation, invasion and metastatic spread. Signal-
ling pathways which induce EMT transitions include
TGF-β, Notch, Wnt, and Hedgehog, and these in turn act
via transcription factors such as Twist1, Twist2, Snail,
Slug, ZEB1 and ZEB2 [33]. Common pathways in EMT
have been identified in development and in oncogenesis/
cancerization [33]. These commonalities suggest that dor-
mant developmental pathways are triggered in cancers
and contribute to tumour progression. For example, inhib-
ition of Wnt signalling has been shown to reduce the cap-
acity of cancer cells to self-renewal and blocked tumour
formation by repressing EMT transcription factors [34].
Thus, during cancerization, the EMT genetic program

may be reactivated in de-differentiated cancer cells [21],
or be aberrantly expressed by cancer stem cells [29]. Epi-
dermal growth factor, transforming growth factor-β,
fibroblast growth factor and hypoxia-inducible factor 1α
(HIF1α) released in the microenvironment of the pri-
mary cancer are the biological agents that have the cap-
acity to induce EMT in cancer cells [10,16,28]. Cancer
cells which undergo EMT are predominantly found at
the invasive front of the primary tumour [35].
Similarly to what occurs during embryogenesis,

during the metastatic cascade, cancer stem cells or
de-differentiated cancer cells of epithelial origin which
express the EMT transcription factor Twist, promote
loss of E-cadherin-mediated cell-to-cell adhesion and
cell motility with subsequent expression of mesenchymal
genes. Cancer cells undergoing EMT display fibroblast-
like spindle morphology and express fibronectin, vimentin,
smooth muscle actin, and N-cadherin [21]. Furthermore,
transcription factors associated with EMT such as Twist
or Snail, also mediate the proliferation of cancer stem
cells with self-renewal capacity, thus increasing the num-
ber of cancer initiating cells [29], and mediate cancer
stem cell survival [36]. These properties of increased
proliferation and prolonged survival greatly contribute to
the successful colonization of disseminating cancer cells
at a metastatic site [29].
EMT may be a transient phenomemon, so that after

initial dissemination most metastatic cells which had
undergone EMT, revert via a mesenchymal-epithelial
transition program, re-acquiring an epithelial phenotype
at their metastatic destination [28,35].

Wnt signalling pathways
Wnt signalling transduction pathways mediate develop-
mental processes during embryogenesis by maintaining
the integrity of the stem cell niche, and by regulating stem
cell division, proliferation and migration, and tissue polar-
ity [23,37]. Through the activation of the EMT genetic
program, Wnt signalling is involved in gastrulation and in
the development of the heart and the neural crest [28,35].
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One of the several Wnt signalling pathways, the
canonical pathway, is associated with translocation of β-
catenin from adherence junctions to the nucleus, with
subsequent activation of β-catenin/T cell factor (TCF)
transcriptional complexes. The mobilization of β-catenin
from the adherence junctions with the subsequent func-
tional loss of E-cadherin, together with β-catenin/TCF
direct activation of E-cadherin repressor SLUG, may
bring about EMT [35,37].
The activation of the canonical Wnt pathway occurs

when Wnt ligands concurrently engage with Wnt receptor
Frizzled and with the low-density lipoprotein receptor-
related protein (LRP) 5/6 [23,24]. The Wnt canonical sig-
nalling is regulated by a number of antagonists, including
Dikkopf 1 (DKK1), a soluble secreted protein. The inter-
action between DKK1 and LRP 5/6 brings about active in-
hibition of the Wnt/β-catenin signalling pathway [23,24].
During carcinogenesis Wnt signalling is aberrantly

activated in cancer stem cells and de-differentiated can-
cer cells contributing to tumour invasion and metastasis.
Dysregulated expression of Wnt signalling increases the
proliferation of cancer stem cells and promote their
resistance to apoptosis [3,35,37]. The dysfunctional Wnt
signalling starts early in carcinogenesis and is maintained
throughout the course of tumour progression. However,
Wnt-associated activation of EMT that results in cancer
cell detachment, motility and migration with subsequent
invasion and metastasis, is a relatively late event [35].
Wnt proteins (ligands, receptors and co-receptors) in

differentiated osteoblasts promote expression of genes
associated with bone formation, and indirectly control
osteoclast differentiation and function by regulating the
secretion of osteoprotegerin by osteoblasts, thus playing
an important role in regulating bone mass [23,24].
In metastatic bone disease, the metastatic cells may ei-

ther activate the Wnt signalling pathway or down-
regulate the inhibitory functions of DKK-1 on the Wnt
signalling, resulting in bone formation and in the forma-
tion of an osteoblastic lesion; or the metastatic cells may
inhibit the Wnt signalling through upregulation of DKK-
1, leading to the inhibition of osteoblastic functions with
consequent development of osteolytic lesions. By ma-
nipulating the Wnt canonical signalling, cells metastasis-
ing to bone influence the phenotype of the metastatic
osseous lesion [24,25,38-40].
Thus, aberrant activation of Wnt signalling pathway

plays a pivotal role in the progression of the primary
cancer and in determining whether the metastatic bone
disease will be osteolytic or osteoblastic in type.

Summary
The molecular pathways underlying EMT and stem-
ness appear to be interlinked. Cancer stem cells and
de-differentiated cancer cells express several transcription
factors that under physiological conditions regulate em-
bryonic development. During cancerization these transcrip-
tion factors mediate increased survival and proliferation of
cancer cells, and mediate cancer cell detachment, motility
and migration, resulting in tumour invasion and metastasis.
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