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Abstract

Background: The effect of cell injury and apoptosis induced by ultrasound with contrast agent has been verified.
Contrast agent enhanced apoptosis and expression of genes that related to apoptosis and are responsive to
ultrasound. This effect was associated with reactive oxygen species (ROS) production induced by the sonochemical
reaction, as reported in previous studies. NF-kappa B may be one of the factors involved in oxidizing reactions or
modulation during the process of ultrasound inducing apoptosis.

Results: Ultrasound irradiated gastric cancer cells (SGC7901 cell line) and hepatocellular carcinoma cells (SMMC-771
cell line) cultured in medium containing contrast agent. Significant cellular damage and apoptosis were observed
in the bath cells incubated for 24 hours following 120 seconds ultrasonic irradiation. | kappa B alfa expression
synchronously increased in the treatment groups of both the cell lines, and the down-regulated expression of NF-
kappa B influenced its-regulated expression of genes that related to apoptosis. Production of intracellular ROS and
elevation of NF-kappa B level occurred after incubation of the cells for 1 hour following ultrasonic treatment.

Conclusions: Our result suggested that contrast agent enhanced the biological effect of ultrasound. Their reaction
might stimulate the transitory expression of NF-kappaB, and subsequent elevation in IxBalfa expression could lead

to the apoptosis of SGC7901 cells and SMMC-771 cells.
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Background

Studies regarding the ultrasonic effects on the proliferation
of cells have gradually led to the development of a new
field of ultrasonic biological research and promoted the
emergence of a new direction for ultrasonic medical ther-
apy [1]. Furthermore, low-frequency ultrasonic (20 khz-2
Mhz) irradiation has the ability to directly kill tumor cells
including inhibiting tumor cell proliferation and inducing
apoptosis [2,3]. The mechanism of inhibition of tumor cell
growth may be related to the cavitation effect of low-
frequency ultrasound, because free radicals, produced via
the cavitation effect, interrupt the replication of normal
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double-stranded deoxyribonucleic acid (DNA) by promot-
ing the polymerization of DNA strand and restrain cell
growth [4]. The biomechanics study regarding the
dynamic characteristics of an ultrasound contrast agent
suggested that ultrasound irradiation with a microbubble
contrast agent may cause cellular injury[5]. In combination
with a microbubble contrast agent, ultrasound might pro-
mote cellular injury, including the initiation of apoptosis
and cell injuries through ultrasonic cavitation effects or via
other approaches [6-8].

In previous studies, free radicals were considered to be
the main products of ultrasonic irradiation with microbub-
ble agent and as an important factor responsible for cellu-
lar injury caused by ultrasound treatment [9,10]. Free
radicals, including reactive oxygen species (ROS), can also
activate some cellular factors such as nuclear factor kappa
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B (NF-kappa B); NF-kappa B is one of the cellular factors
primarily involved in oxidizing reactions or in inducing
“oxidative stress”[11,12]. Although NF-kappa B is known
to modulate the signaling pathways responsible for cellular
proliferation and degeneration, its activity is regulated by
the binding of a cytoplasmic inhibitor protein, I kappa B
[13-15]. However, such alterations in the levels of these
factors have been not reported when cells are subjected to
ultrasound irradiation with contrast agent.

In order to determine the biological effects and
changes in the levels of relevant cellular factors and to
elucidate the possible mechanism underlying the effects
of low-frequency ultrasound combined with microbub-
ble agents, we used a contrast agent Levovist to deter-
mine the changes in the expressions of NF-kappa B and
I kappa B in cultured gastric cancer cells and hepatocel-
lular carcinoma cells subjected to low-frequency ultra-
sound irradiation.

Results

Test of inhibiting cells proliferation

The cells were incubated for 24 hours after ultrasonic
irradiation for 60, 90, 120 and 150 seconds, the lowest
cell survival rates were observed in the cells irradiated
for 120 seconds compared with those of the control
group. The survival rate of the SMMC-7721 cells was
51.52 + 3.51% and that of the SGC-7901 cells was 49.63
+ 4.21%. Similar results were obtained when the cells
were irradiated for 120 seconds with ultrasound and
contrast agent after incubation for 1, 24 and 48 hours.

Ultrasound-induced changes in the intracellular levels of
reactive oxygen species (ROS) and superoxide dismutase
(SOD) in the medium containing the contrast agent
Ultrasound irradiation of the cells cultured in the med-
ium containing contrast agent led to the production of
ROS and abatement of SOD activity. Significant effects
were observed at 1 hour incubation after 120 seconds of
ultrasonic exposure. In SGC7901 cells, Changes in the
intracellular levels of ROS were significantly (81.40 +
1.31 for group D vs. 23.20 + 1.22 for group A after incu-
bation for 60 min, p < 0.05) and SOD(69.52 + 2.81 U/ml
for group D vs. 165.06 + 1.14 U/ml for group A after
incubation for 60 min, p < 0.05). Similar changes
occurred in SMMC-7721 cells after incubation for 1
hour. The intracellular level of ROS was increased
(77.40 £ 1.1 for group D vs. 23.20 + 1.2 for group A, p
< 0.05), and the level of SOD was decreased (58.87 +
1.91 for group D vs. 149.15 + 5.72 U/mL for group A, p
< 0.05.).

Morphological changes of cellular damage and apoptosis
Both SGC7901 and SMMC-7721 cells showed different
kinds of changes in cellular morphology after treatment
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with ultrasound combined with microbubble agent. The
main morphological changes observed in the cells were
as follows: mitochondria swelling or vacuolation with
disappearance of mitochondria cristae, cytoplasmic rare-
faction, formation of vacuoles of various sizes, reduced
electron density matrix, and dilation of endoplasmic
reticulum. Apoptosis was also observed in some cells
showing characteristic apoptotic features of cell shrink-
age and cytoplasmic condensation, blistering of cyto-
plasm, formation of apoptotic bodies, nuclear
condensation, and assembly of nuclear chromatin
toward the inner surface forming clumps or crescent-
shaped bolus. As demonstrated, treatment by ultrasound
with contrast agent induced typical apoptotic morpholo-
gical changes, including orange cell shrinkage with con-
densation and fragmentation of nuclei (Figure 1).

Flow cytometry-based confirmation of apoptosis in cells
after treatment with both ultrasound and contrast agent
The apoptosis rates in the SMMC-7721 cells treated
with ultrasound and microbubble agent were signifi-
cantly higher (27.31 + 4.14) than those in group A (1.69
+ 0.27, P < 0.05), group B (2.51 £ 0.32,), and group C
(15.24 + 2.16). Similar results were observed in the
SGC7901 cells. The apoptotic rates in SGC7901 cells in
group D (21.15 + 4. 68) were significantly lesser than
those in group A (1.15 + 0.37 P < 0.05), group B (2.39 +
0.65,), and group C (11.7 + 2.68) (Figure 1).

Western blot analysis showed the transient expression of
NF-kappa B in the cells treated with ultrasound and
contrast agent

Similar results were obtained in both SMMC-7721cells
and SGC7901 cells. NF-kappa B expression levels in
both cells were remarkably higher than that of control
group when the cells were incubated for 1 hour after
120 seconds treatment with ultrasound and contrast
agent. At the same time, I kappa B-alfa expressed indis-
tinctly. However, enhanced expression of I kappa B-alfa
was observed when the cells were incubated for 24
hours after the treatment. Meanwhile decreased expres-
sions of NF-kappa B and bcl-2 were observed respec-
tively in the both cell lines, and reciprocal expression of
bax also emerged in those cells (Figure 2).

Discussion

Ultrasonic microbubble contrast agent might produce
biological effects on cells, because such agents are able
to induce cellular and cell membrane injuries [1,6]. ROS
induced by ultrasound irradiation are thought be
responsible for the biological effects of ultrasound irra-
diation [16,17]. Ultrasonic microbubble contrast agents
have the ability to produce oxyradicals, which has been
confirmed by spin resonancespectroscopy [18]. These
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Figure 1a, SMMC-7721 cells in Figure 1b.).

Figure 1 Morphological changes of the apoptosis in cancer cells were observed by AO/EB double fluorescent staining under
fluorescent microscope (control groups in Figure 1a-1 and Figure 1b-1, group D in Figure 1-a2 and Figure 1-b2.), transmission
electron microscope(group D in Figure 1-a3 and Figure 1-b3) and flow cytometry(Figure 1a-4 and Figure 1b-4). (SGC-7901 cells were in
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radicals might induce apoptosis and necrosis in tumor
cells via several targets, such as cell membranes, intra-
cellular bioactive molecules, and DNA [19]. In this
study, we found that low-frequency ultrasonic irradia-
tion with microbubble agent promoted apoptosis and
inhibited cellular proliferation in tumor cells and vascu-
lar endothelial cell. This effect was associated with the

attenuation of the SOD activity in the culture medium.
Consumption of active oxygen scavengers indicates an
increase in the level of ROS produced during cellular
damage caused by treatment with ultrasound and micro-
bubble agent. This phenomenon has been assessed by
other researchers who have suggested a sonochemical
mechanism underlying this effect [20].
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Figure 2 The expressions of NF-xB and IxBa in SCG7901 cells (Figuer 2a) and SMMC-7721 cells (Figure 2b) were after incubation at
different times following ultrasound irradiation for 120 second after incubation for 1 hour or 24 hours. Expressions of genes (Figure 2c)
that related to apoptosis regulated by NF-kappa B were after irradiation for 24 hours.

b

1 hour 24 hours

NF-xb
IkBau

GAPDH = o o ¢ o o = =
ABCoD ABCD

Apoptosis can be induced by treating cells with ultra-
sound and contrast agent. ROS-mediated injury may be
one of the important factors responsible for the biologi-
cal effects of ultrasound [17,18]. Increase in the expres-
sion of NF-kappa B and I kappa B-alfa has been often
associated with the induction of apoptosis [14]. These
nuclear factors might be related with the sequential
induction of cell death caused by ultrasound.

ROS can activate the expression of intracellular NF-
kappa B. This ubiquitous cytokine is involved in the regu-
lation of various cellular effectors molecules and is present
in an inactive form as a dimer with I kappa B-alfa, in the
absence of any stimulation. The activity of NF-kappa B
proteins is regulated by I kappa B-alfa proteins [21]. When
cells are stimulated, NF-kappa B is activated and is trans-
located to the nucleus, where it binds to the target gene
promoter and activates its transcription [15]. A variety of
extracellular signals can stimulate the activation of NF-
kappa B, such as ROS, ultraviolet irradiation, double-
stranded RNA, cytokine interleukin-1, tumor necrosis fac-
tor-a,, lipopolysaccharide, and viruses [11-13]. Because the
regulation by NF-kappa B activation, de novo I kappa B-
alfa can reintegrate with NF-kappa B to form a dimeric
compound to inhibit the activation of NF-kappa B.
Although I kappa B-alfa is synthesized de novo, NF-kappa

B activity remains sustainable for several hours [22]. We
found that the protein level of NF-kappa B was markedly
augmented at 1 hour after treatment with ultrasound irra-
diation and microbubble agent, suggesting that the cellular
damage was associated with the oxidation induced by
ultrasound and microbubbles. Hence, the biological effects
of ultrasound were speculated to be associated with the
ultrasound chemical reaction. At 24 hours after ultrasound
treatment, the enhanced expression of I kappa B suggested
that emerge of the activities of intracellular biological
mediation produced through ultrasound chemical reac-
tions, corresponding with the general regulation of modu-
lating cellular proliferation in this type of cytokines
[21,22]. We found that I kappa B-alfa expression pro-
moted apoptosis in the experimental groups. Ultrasonic
irradiation increased the level of ROS and induced the
expression of NF-kappa B and I kappa B in succession.
This finding suggests that the biological effect of sono-
chemistry is one of related factors in ultrasound killing
cells with microbubble agent. Due to the dynamic charac-
teristics of ultrasound contrast agents [5], ultrasound
microbubble agents undergo reactions involved in ultra-
sound physics and ultrasound chemistry, damaging cell
membranes and intracellular structures, and ultimately
resulting in cellular injury or even cell death [23].
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Conclusion

In this study, SMMC-771 tumor cells and SGC7901 cells
were injured or induced apoptosis after treatment with
low-frequency ultrasound with contrast agent. The apop-
totic mechanism might be related to transitory expression
of NF-kappa B stimulated by enhanced ultrasonic effect of
contrast agent, and subsequent elevation in I kappa B alfa
expression leads to the apoptosis and alterations of related
apoptotic genes of cancer cells. The study results may pro-
vide experimental evidence or basis for using ultrasonic
contrast agents to investigate their use in the treatment of
cancer.

Methods

Cells and culture medium

Gastric cancer SGC7901 cell line and SMMC-7721 hepa-
toma cell line (Cell bank, Shanghai, China) were digested
with 0.25% trypsin, and a single cell suspension was
obtained; the cells were cultured in RPMI 1640 medium
(GIBCO, USA) containing 10% fetal calf serum (Sijiqing,
Hangzhou, China), 100 U/mL of penicillin, and 100 mg/
mL of streptomycin at 37°C in a 5% CO, incubator. For all
experiments, a cell density of 2 x 10°/mL was used.

Ultrasonic apparatus and contrast agents

An ultrasonic surgical device (Jiangsu Meidakang, Nanjing,
China) was used as an ultrasound apparatus, as described
previously [24]. Before every experiment, the apparatus
was adjusted using an Ultrasound power meter (Model
UPM-DT-1; Ohnic Instruments Co., Maryland, Swiss).
Experimental irradiation power was adjusted to 0.5 W on
the reading meter, and an effective output value was
adjusted to about 0.159 W/cm?; this value was determined
by measuring the outputs at 1 W, 0.5 W, and 0.25 W,
according to the results of a preliminary experiment with
the apparatus[25]. Contrast agent, Levovist (SHU 508A,
Schering, Berlin, Germany) was added in 200 mg/ml into
culture medium before ultrasound irradiation [8].

Experimental design

Two cell lines (SGC7901 and SMMC-7721) were divided
into the following groups: a control group (A), without
any interventions; simple microbubble group (B) that was
treated with a simple microbubble agent alone; simple
ultrasound group (C) that was treated with ultrasound
alone; and ultrasound combined with microbubble agent
group (D). The groups that received ultrasonic irradiation
were further divided into 4 subgroups according to the
ultrasonic irradiation time of 60, 90, 120, and 150 seconds.
The cells treated with ultrasonic irradiation were placed in
a latex finger glove. The glove was suspended under
degassed water in a constant temperature bath, maintained
at 37°C and was made to be in contact with a transducer
placed inside the bucket. Immediately before exposing the
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cells to ultrasound, we added the microbubble contrast
agent at a concentration of 1:3. After the treatment, the
conditioned medium was replaced with a fresh one. For
viability testing, 200 ul of the sample was used, and the
remaining sample was incubated for 1, 24 and 48 hours
under the same conditions until further analysis.

Measurement of cell survival rate

Cell survival rate was measured using the methyl thiazolyl
tetrazolium (MTT) assay kit (Sigma, USA). Absorption
(A570) was measured at 570 nm, and cell survival rate was
calculated using the following formula: cell survival rate =
[optical density value (experiment group)/optical density
value (control group)] x 100%.

Measurement of reactive oxygen species (ROS) and
superoxide dismutase (SOD) levels

The level of intracellular ROS was evaluated with a
fluorescent probe, 2’,7’-dichlorofluorescin diacetate
(DCFH-DA) in reactive oxygen species assay kit (Apply-
gen Technologies Inc. Beijing, China) and a FACS Cali-
bur (BD Pharmingen)[26]. The activities of superoxide
dismutase (SOD) were assayed by the kits (Jiancheng
Biotechnology Institute, Nanjing, China).

Morphological survey

The cells were observed under optics inverted microscope
(OLYMPUS-CK?2; Olympus, Japan) for routine morpholo-
gical investigation. After treatment with the agents, the
cells were also observed under a transmission electron
microscope (Hitachi-660, Hitachi, Japan) after centrifuga-
tion at 1000 rpm for 5 min, 2 times each. Apoptotic mor-
phological changes in the cells were detected by staining
with AO/EB. Briefly, 1 ml of a stock solution containing
100 mg/ml each of AO and EB was added to 25 ml of cell
suspension. Cells were examined using fluorescence
microscopy. Viable cells were colored green with intact
nuclei. Apoptosis was demonstrated by the appearance of
orange cell shrinkagewith condensation and fragmentation
of nuclei.

Flow cytometry-mediated detection of apoptosis

After the cells were treated with ultrasound irradiation,
they were detected using the calcium-binding protein V-
fluorescein isothiocyanate (AnnexinV-FITC) staining kit
(Immuno tech Co. France) by using a flow cytometer
(Beckman Coulter, USA).

Western blot

Western blot analysis was performed for detecting the
expressions of NF-kappa B, I kappa B alfa, bcl-2 and bax
in the cells (SGC7901 cells or SMMC-7721 cells), as
described in detail previously [13,22]. Enhanced chemilu-
minescence (ECL) (Santa Cruz, CA, USA) was used to
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detect the protein bands, and the results were analyzed
using the BioProfil gel electrophoresis image analysis sys-
tem after gray-scale integration of the electrophoresis
bands corrected with glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) (Boaosheng, Beijing, China).

Statistical analysis

The experimental data were presented as mean * stan-
dard error and analyzed using statistical package for
social sciences (SPSS) 13. 0 statistical software package.
Numerical data were compared using analysis of var-
iance (ANOVA). Statistical significance was set at o =
0.05.
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dismutase; NF-kappa B: nuclear factor kappa B.
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