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Abstract

Background: Most patients with advanced Ewing's sarcoma (EWS) respond poorly to
conventional chemotherapy, indicating the need for new treatment approaches. Epigenetic events,
such as promoter hypermethylation and chromatin histone deacetylation, silence the expression of
tumor suppressor genes (TSGs) and play an important role in tumorigenesis. These epigenetic
changes can be reversed by using 5-aza-2'-deoxycytidine (5AZA-CdR), a potent inhibitor of DNA
methylation, in combination with an inhibitor of histone deacetylase (HDAC).

Results: Here, we used a clonogenic assay to evaluate the in vitro antineoplastic activity of 5SAZA-
CdR in combination with different HDAC inhibitors on EWS cells. We observed that the HDAC
inhibitors, MS-275, trichostatin-A, phenylbutyrate, LAQ824 and depsipeptide, enhanced the
antineoplastic action of 5AZA-CdR on EWS cells. The combination of 5AZA-CdR and MS-275
showed marked synergy, and was correlated with significant reactivation of the expression of two
TSGs, E-cadherin and tumor suppressor lung cancer-1 (TSLCI), in a EWS cell line.

Conclusion: These results suggest the value of future clinical studies investigating the combination
of 5AZA-CdR and MS-275 in patients with advanced EWS.

Background

Metastatic or recurrent Ewing's sarcoma (EWS) does not
respond well to standard chemotherapy [1], suggesting
the need for new therapeutic approaches for the treatment
of this malignancy. The silencing of tumor suppressor
genes (TSGs) by aberrant DNA methylation plays an
important role in tumorigenesis [2]. Since this epigenetic
change is reversible, it is a potential target for chemother-
apeutic intervention. 5-Aza-2'-deoxycytidine (Decitabine,
Dacogen, 5AZA-CdR), a potent inhibitor of DNA methyl-

ation, has been shown to reactivate the expression of
silenced TSGs [3]. 5AZA-CdR has been approved for the
treatment of hematological malignancies [4,5]. However,
its antitumor activity is still under investigation. Certain
genes that inhibit cellular growth can also be silenced by
the deacetylation of chromatin-bound histones, which
yields a compact chromatin configuration that is unfavo-
rable for transcription [6]. Histone deacetylase (HDAC)
inhibitors can reverse this process to produce an antitu-
mor effect [7]. In addition to reactivation of genes that
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inhibit tumor growth, HDAC inhibitors can produce cell
cycle arrest and induce apoptosis [8]. These inhibitors are
currently under clinical investigation in patients with dif-
ferent types of malignancies [9].

Research has shown that the "cross-talk" between DNA
methylation and histone modifications in chromatin can
synergistically re-activate TSGs [10], suggesting that it
might be useful to investigate the use of 5AZA-CdR in
combination with HDAC inhibitors for tumor therapy.
We previously reported that 5AZA-CdR plus depsipeptide
(depsi) or phenylbutyrate (PB) showed synergistic antin-
eoplastic action against breast carcinoma cells [11] and
lung carcinoma cells [12], respectively. We also investi-
gated the ability of 5AZA-CdR and MS-275 to reactivate
two TSGs, E-cadherin (ECAD) [13] and tumor suppressor
lung cancer-1 (TSCL1)[14], in EWS cells. Here, we evalu-
ated the in vitro antineoplastic activity of 5AZA-CdR in
combination with different HDAC inhibitors: depsi, PB,
trichostatin-A (TSA), LAQ824 (LAQ) and MS-275 in EWS
cells. Our results revealed that all of the tested HDAC
inhibitors enhanced the antineoplastic action of 5AZA-
CdR on EWS cells.

Methods

Material

5AZA-CdR was obtained from Pharmachemie (Haarlem,
Netherlands). Depsi (FR901228) was obtained from Fuji-
sawa Pharmaceutical (Osaka, Japan). LAQ was kindly pro-
vided by Novartis Pharmaceuticals Inc. (East Hanover,
NJ). TSA was obtained from Wako BioProducts (Rich-
mond, VA). MS-275 was kindly provided by Schering AG
(Berlin, Germany). PB was procured from Triple Crown
America Inc. (Perkasie, PA). The human TC71 and TC32
EWS cell lines were kindly provided by Dr Jeffrey A. Toret-
sky (Lombardi Comprehensive Cancer Center, Georget-
own University, Washington, DC). The cells were
cultivated as monolayer in RPMI 1640 medium (Life
Technologies, Burlington, Ontario) with 10% heat-inacti-
vated fetal calf serum (Wisent, St-Bruno, Quebec) at 37°C
with 5% CO, atmosphere.

Clonogenic assay

The loss of clonogenicity of TC71 and TC32 EWS cell lines
was assessed after drug exposure by placing 100-250 cells
in each well of a six-well 35 mm dish. The next day differ-
ent concentrations of 5AZA-CdR and/or HDAC inhibi-
tors: depsi, TSA, PB, MS-275 or LAQ were added at
indicated concentrations for 48 h. The cells were washed
with drug-free medium and were incubated for an addi-
tional 7-11 days and then stained with 0.5% methylene
blue in 50% methanol. The colonies (> 500 cells) were
counted.
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Effect of different concentrations of 5AZA-CdR for
48 h exposure on loss of clonogenicity (A) and for 72
h exposure on inhibition of DNA synthesis (B) for
TC32 and TC71 EWS cells. Data shown are mean values
£SD,n2>3.

Inhibition of DNA synthesis assay

The inhibition of DNA synthesis by 5AZA-CdR and/or
HDAC inhibitors was measured by the incorporation of
radioactive thymidine into DNA. Aliquots of ~10%cells in
2 ml of medium were placed in each well of a six-well 35
mm dish. The next day, the cells were exposed to the dif-
ferent concentrations of 5AZA-CdR and/or HDAC inhibi-
tors as indicated above. Then, at 48 h, 0.5 pCi of
radioactive tritium-labeled thymidine (6.7 Ci/mmol, ICN
Biomedicals, Irvine, CA) was added to the medium for an
additional 24 h. The cells were then trypsinised, sus-
pended in 0.9% NaCl, placed on a GF/C 25 mm glass fiber
filter disc, washed with cold 0.9% NaCl, 5% cold trichlo-
roacetic acid and ethanol. The filters were dried, placed in
EcolLite scintillation fluid (ICN Biomedicals) and the radi-
oactivity was measured with a scintillation counter.
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Figure 2

Effect of different concentrations of HDAC inhibitors for 48 h exposures on loss of clonogenicity for TC32 and

TC71 EWS cells. Data shown are mean values + S.D., n > 3.

Isolation of RNA and RT-PCR analysis

In order to study the reactivation of gene in EWS cell lines,
we treated cells with 5AZA-CdR (100 ng/ml) and/or MS-
275 (250 ng/ml) for 72 h. Cells were harvested 24 h after
the removal of the drugs and total RNA was isolated using
RNeasy Mini Kit (Qiagen, Mississauga, Ontario). For
cDNA synthesis, total RNA was reverse-transcribed using
OmniScript RT kit (Qiagen). The reaction was performed
at 37°C for 1 h followed by 5 min at 93°C to inactivate
the enzyme. PCR amplifications were performed using
HotStar Taq Polymerase (Qiagen) and specific primers
spanning different exons for ECAD, TSLC1 and 18S ribos-
omal RNA. For ECAD (GenBank NM 004360), the prim-
ers were sense 5'-CAATCCCACC ACGTACAAG-3' and
antisense 5'-CTGGGCAGTGTAGGATGTGA-3'. The length
of the PCR product of ECAD was 410 bp. For TSLC1
(GenBankNM 014333), the primers were sense 5'-
GGGCAGAATCTGTITA CGAAAGA-3' and antisense 5'-
TCGGTATAGAGCTGGCAAAAGTA-3'. The length of the
PCR product of TSLC1 was 257 bp. The human 18S ribos-
omal RNA gene (GenBank X03205) was amplified as an
internal control using as sense primer 5-TCGATGGTAG

TCGCCGTGCCTA-3' and antisense 5'-CTGCTGCCTTC-
CTTGGATGTGGTA-3'. The length of the PCR product of
18S ribosomal RNA was 110 bp. Samples were amplified
in a thermocycler under the following conditions. For
ECAD, the PCR conditions were 5 min at 95°C, 15 s at
94°C, 15 s at 58°C and 15 s at 72°C, for 5 cycles. Then,
the annealing temperature was lowered at 56°C for 35
more cycles. For TSLC1, the PCR conditions were 5 min at
95°C, 30sat94°C, 15sat56°Cand 15 s at 72°C, for 5
cycles. Then, the annealing temperature was lowered at
54°C for 34 more cycles. For 18S ribosomal RNA, the PCR
conditions were 5 min at 95°C, 45s5at94°C, 30 s at 60°C
and 30 s at 72°C, for 5 cycles. Then, the annealing temper-
ature was lowered at 58°C for 11 more cycles. For each
gene, the number of cycle chosen as to be in the exponen-
tial phase of DNA amplification. The PCR products were
electrophoresed on 2% agarose gel and detected by ethid-
ium bromide staining. The measurement of the absolute
concentration of amplified DNA was obtained with the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA) as described previously.[11] This latter method,
which is very sensitive, uses capillary electrophoresis and
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Figure 3

Effect of different concentrations of HDAC inhibitors for 72 exposures on inhibition of DNA synthesis for
TC32 and TC71 EWS cells. Data shown are mean values + S.D., n > 3.

fluorescent detection to measure both the size and quan-
tity of DNA.

Data analysis

The data are the mean values + SD for n > 3. Differences
between groups were analyzed using one-way ANOVA test
coupled with a Tukey-Kramer test, by comparing the result
of each drug alone with the results of the combination of
both agents. The critical level of significance was set at p <
0.05.

Results

The effects of different concentrations of 5SAZA-CdR on
loss of clonogenicity and on the inhibition of DNA syn-
thesis in TC71 and TC32 EWS cell lines are shown in Fig-
ure 1A and 1B, respectively. The concentration of 5AZA-
CdR that produced about 50% loss of clonogenicity (ICs)
following a 48 h exposure was in the range of 10 ng/ml for
the TC32 cell line and 30 ng/ml for the TC71 cell line. The
ICs, values for inhibition of DNA synthesis following a 72

h exposure of 5AZA-CdR were in the same range as the
IC;, values for loss of clonogenicity for both ES cell lines.

For the HDAC inhibitors, the ICs, values for loss of clono-
genicity for the TC32 and TC71 cell lines, respectively,
were: ~30 and 400 ng/ml for MS-275 (Figure 2A), ~7 and
2 ng/ml for TSA (Figure 2B), ~0.5 and 0.6 ng/ml for depsi
(Figure 2C), ~2 mM for PB (Figure 2D) and ~12 and 8 ng/
ml, for LAQ (Figure 2E). For the inhibition of DNA syn-
thesis the IC;, values for the HDAC inhibitors for the
TC32 and TC71 cell lines, respectively, were: ~400 ng/ml
for MS-275 (Figure 3A), ~20 and 2 ng/ml for TSA (Figure
3B), ~1 and 0.8 ng/ml for depsi (Figure 3C), ~3 and 2 mM
for PB (Figure 3D) and ~10 and 8 ng/ml for LAQ (Figure
3E).

The objective of this study was to determine if 5AZA-CdR
in combination with HDAC inhibitors would show
enhanced antineoplastic activity against the EWS cells. In
our clonogenic assay 5AZA-CdR plus the HDAC inhibi-
tors TSA, PB, LAQ, depsi and MS-275 showed a significant
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Effect of 48 h exposure of 5AZA-CdR (5AZA) (10 ng/
ml) and/or HDAC inhibitors on loss of clonogenicity
of TC71 EWS cells. A) MS-275 (100 ng/ml), B) TSA (2.5
ng/ml), C) Depsi (0.6 ng/ml), D) PB (I mM), E) LAQ (5 ng/
ml). Data shown are mean values + S.D., n > 3. Statistical
analysis: 5AZA + HDAC inhibitor > 5AZA or HDAC inhibi-
tor p < 0.01.

enhancement of their antineoplastic effect as compared to
each agent alone (p < 0.01) for the TC71 EWS cells (Figure
4). A clear synergistic interaction was observed between
5AZA-CdR and MS-275 or LAQ as defined by Valeriote
and Lin [15].

The antineoplastic activity of 5AZA-CdR is related to its
reactivation of TSGs silenced by aberrant methylation.
Since the combination of 5AZA-CdR and MS-275 pro-
duced the most potent synergistic antineoplastic interac-
tion on the TC71 EWS cells, we investigated their
reactivation of the TSGs, ECAD and TSLC1 in this cell line
(Figure 5). We observed that the combination of 5AZA-
CdR and MS-275 produced a synergistic reactivation of

http://www.cancerci.com/content/8/1/16

the expression of these genes as compared to either agent
alone.

Discussion

There is an urgent need to develop new approaches for the
chemotherapy of advanced EWS. The inhibitor of DNA
methylation, 5AZA-CdR, is an interesting agent to investi-
gate for tumor therapy, since it can reactivate silenced
TSGs [3]. This epigenetic agent has proven effective in
patients with hematological malignancies [4,5], and has
shown some promising activity in patients with advanced
lung cancer [16]. The HDAC inhibitors are another class
of epigenetic agents that are of interest in the context of
cancer therapy. These inhibitors convert chromatin to an
open, transcription-facilitating conformation [6], and
have been shown to have diverse actions on tumor cells,
including activation of growth-inhibiting genes, induc-
tion of apoptosis, inhibition of cell cycle progression, and
inhibition of human tumor xenografts in nude mice
[8,17,18]. Several HDAC inhibitors are currently under
clinical investigation in patients with solid tumors [9].

In this study, we first evaluated the single-agent antineo-
plastic action of 5AZA-CdR and five different HDAC
inhibitors on human TC71 and TC32 EWS cell lines. In
assays on loss of clonogenicity and inhibition of DNA
synthesis, we observed good dose-response curves with
5AZA-CdR and all of the HDAC inhibitors. Both classes of
epigenetic agents showed potential as single agents for the
treatment of EWS.

Since a landmark study showed that an inhibitor of DNA
methylation in combination with an HDAC inhibitor
produced a synergistic reactivation of TSGs in neoplastic
cells [10], we next investigated whether 5AZA-CdR in
combination with HDAC inhibitors produces an additive
or synergistic antineoplastic effect on EWS cells. In the clo-
nogenic assay, we observed that 5AZA-CdR in combina-
tion with different HDAC inhibitors (TSA, LAQ, PB, Depsi
and MS-275) produced an additive or synergistic antineo-
plastic interaction against TC71 EWS cells. We previously
reported a synergistic antineoplastic interaction between
5AZA-CdR and some of these HDAC inhibitors for breast
and lung tumor cell lines [11,12].

Conclusion

In particular, the combination of 5AZA-CdR and MS-275
showed a marked synergistic interaction with respect to
antineoplastic activity against EWS cells. This combina-
tion also produced a synergistic reactivation of two TSGs:
ECAD and TSLC1. A previous report showed that MS-275
has significant in vitro and in vivo antitumor activity
against EWS [17,18], and MS-275 showed promising
results in a phase I study on patients with EWS [19]. These
previous findings and our present results combine to sug-
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gest that 5AZA-CdR and MS-275 may be a good combina-
tion of epigenetic agents to investigate in patients with
advanced EWS.
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