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Abstract

Background: The prototypical antiprogestin mifepristone exhibits potent growth inhibition
activity towards ovarian cancer cells in vitro and in vivo. The aim of this research was to establish
whether mifepristone is capable of inhibiting cell proliferation and inducing apoptotic cell death
regardless of the degree of sensitivity ovarian cancer cells exhibit to cisplatin.

Methods: OV2008, OV2008/C13, A2780, A2780/CP70, Caov-3, and SK-OV-3 cell lines exhibiting
a range of sensitivities to cisplatin were used. Growth inhibition, cell viability, and sub-diploid DNA
content in response to treatment with escalating doses of either mifepristone or cisplatin were
assessed by microcapillary cytometry. Apoptotic cell death was evaluated by measuring genomic
DNA fragmentation and cleavage of caspase-3 and poly (ADP ribose) polymerase (PARP).

Results: The sensitivities to cisplatin manifested by the cell lines were OV2008 > A2780 > Caov-
3 > SK-OV-3 > OV2008/C13 > A2780/CP70. Mifepristone inhibited the growth of all six cell lines
in a dose-related manner with 1C;, ranging from ~6—12 uM and without significant correlation with
the relative sensitivities the cells displayed for cisplatin. Moreover, at the highest concentration
studied, mifepristone triggered apoptotic death in all six cell lines as evidenced by the increase in
sub-diploid fragmented DNA content and cleavage of caspase-3 and of its downstream substrate

PARP.

Conclusion: Mifepristone is cytotoxic towards ovarian cancer cells independent of the sensitivity
exhibited by the cells to cisplatin, displaying cytostatic effects at lower concentrations and lethal
effects at higher concentrations. Mifepristone monotherapy emerges as a valuable therapeutic

alternative for platinum-resistant ovarian cancers.

Background

Current treatment for ovarian cancer begins with cytore-
ductive surgery followed by platinum-based chemother-
apy [1-3]. However, long-term survival remains low
because acquisition of resistance to platinum derivatives
is a common feature for this disease, taking place with

high frequency in patients with recurrent ovarian cancer
[4-7]. This resistance is caused by the failure of a sufficient
amount of platinum to reach the target DNA and/or the
failure to achieve cell death after platinum-DNA adduct
formation by development of more efficient DNA repair
mechanisms or by increased tolerance to platinum-
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induced DNA damage [8,9]. Hence, finding new treat-
ment alternatives for platinum-insensitive ovarian cancers
is of critical importance.

In preclinical studies previously conducted in our labora-
tory, the antiprogestin steroid mifepristone was found to
be highly effective as a single agent in vitro and in vivo
abrogating growth of human epithelial ovarian cancer
cells [10]. We demonstrated that the growth inhibitory
effect of mifepristone on ovarian cancer cells was associ-
ated with inhibition of DNA synthesis, down-regulation
of transcription factor E2F1 needed for S phase progres-
sion, and inhibition of the activity of cell cycle regulatory
kinase, cyclin dependent kinase 2 (Cdk2). This is likely
due to increased association of Cdk2 with the Cdk inhib-
itors p219pr! and p27kiP! which are greatly up-regulated in
response to the drug. All these molecular events down-
stream of mifepristone action lead to blockage of the cell
cycle at the G1-to-S phase transition [10]. In the same
study it was observed that mifepristone displayed similar
growth inhibition potency among SK-OV-3, OV2008, and
Caov-3 cell lines [10]. To note is that whereas OV2008
cells were reported as being highly sensitive to cisplatin
[11], SK-OV-3 cells were originally obtained from a
patient with intrinsic resistance to clinically achievable
doses of cisplatin [12], and Caov-3 cells were reported to
be resistant to cisplatin [13,14]. Based on this informa-
tion, it is reasonable to speculate with the possibility that
mifepristone may be useful in abrogating ovarian cancer
cell growth irrespective of the sensitivity the cells display
for cisplatin.

The tumor suppressor p53 encodes for a transcription fac-
tor which is involved in a multiplicity of cellular functions
including cell cycle [15,16], cell death [17,18], cell differ-
entiation [19], and DNA damage [18,20] and repair
[21,22] pathways. In ovarian cancer, mutations in the p53
gene correlate with resistance to platinum-based chemo-
therapy and shortened survival [23]. In addition, p53 is
non-functional in 70% of ovarian tumors [24], whereas
preclinical studies suggest this tumor suppressor is a deter-
minant of cisplatin sensitivity in ovarian cancer cells [25-
27].

It is reasonable to contemplate the possibility that if both
the sensitivity to platinum and the p53 genetic back-
ground of ovarian cancer cells do not condition their
response to the growth inhibition activity of mifepristone,
such findings would have great clinical relevance. Thus, in
the present work we first set out to study the growth inhi-
bition activity of mifepristone among ovarian cancer cell
lines having different sensitivities to platinum derivatives.
We studied the action of mifepristone not only in ovarian
cancer cells with different genetic backgrounds, but also
among ovarian cancer cell line pairs consisting of cispla-
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tin-sensitive parental lines and stable cisplatin-resistant
sublines derived by in vitro selection with stepwise expo-
sure to increasing doses of cisplatin. In addition, because
of the differences in the p53 genetic status of the cell lines
studied, the experiments indirectly allowed us to provide
evidence as to whether the p53 genetic background
impacts the response of the ovarian cancer cells to mife-
pristone.

Methods

Cell lines and drugs

The human ovarian carcinoma cell lines, OV2008,
OV2008/C13, A2780, and A2780/CP70, were obtained
from Dr. Stephen Howell (University of California, San
Diego) and were maintained in RPMI 1640 (Mediatech,
Herndon, VA) supplemented with 5% heat inactivated
FBS (Atlanta Biologicals, Lawrencenville, GA) and 10 mM
HEPES (Mediatech), 4 mM L-glutamine (Mediatech), 1
mM sodium pyruvate (Mediatech), 1 X non-essential
amino acids (Mediatech), 100 IU penicillin (Mediatech)
and 100 pg/ml streptomycin (Mediatech). Caov-3 and SK-
OV-3 ovarian cancer cells were obtained from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA) and
were routinely maintained in RPMI 1640 (Mediatech)
supplemented with 5% FBS (Atlanta Biologicals), 10 mM
HEPES (Mediatech), 4 mM L-glutamine (Mediatech),
0.45% D (+) glucose (Sigma Chemical Company, St.
Louis, MO), 1 mM sodium pyruvate (Mediatech), 1 X
non-essential amino acids (Mediatech), 100 IU penicillin
(Mediatech), 100 pug/ml streptomycin (Mediatech), and
0.01 mg/ml human insulin (Roche, Indianapolis, IN). All
cell lines were cultured at 37°C in a humidified atmos-
phere in the presence of 5% CO,.

The stock of mifepristone (Sigma) was 116.5 mM solution
in DMSO. The maximal concentration of DMSO was
0.02% (v/v). The stock of cisplatin (cis-diamminedichlo-
roplatinum 1II) (Sigma) was 3 mM solution in 0.9% NaClL.
Cells were exposed to cisplatin for only 1 h. Thereafter, the
medium was replaced with fresh cisplatin-free medium.
Cells exposed to mifepristone were cultured in the contin-
uous presence of the drug throughout the studies.

Cell proliferation and viability

Triplicate cultures were trypsinized, pelleted by centrifu-
gation at 500 g for 5 min, and washed with PBS. The cells
were resuspended in ViaCount reagent (Guava Technolo-
gies, Hayward, CA) and studied using the Guava
ViaCount application in the Guava EasyCyte Mini micro-
capillary cytometer (Guava Technologies). This assay pro-
vides an absolute cell count and viability data on a cell
suspension, automating results like cell counts in a hemo-
cytometer chamber with the trypan blue dye exclusion
method for assessing cell viability. The cells are drawn
into a capillary flow cell of known dimensions at a pre-
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cisely controlled rate for measured periods of time. Abso-
lute cell counts are obtained by knowing the exact
sampling volumes. Viable and non-viable cells are
assessed by the differential permeability of two DNA-
binding dyes in the reagent. One dye is membrane perme-
able and stains all nucleated cells. The other dye only pen-
etrates cells with compromised membrane integrity (i.e.
non-viable cells). The data are acquired and analyzed
using the CytoSoft 4.1 software (Guava Technologies).

For the cells treated with either cisplatin or mifepristone,
three inhibition concentration 50% or ICs, values aver-
aged for each cell line and drug were obtained. The ICs,
values were calculated using the drug interaction software
(Calcusyn, Biosoft, Cambridge, UK), which was designed
to study drug interaction and calculates the median effec-
tive dose, Dm, which is analogous to the ICs,.

Determination of sub-GI DNA content

After treatment, cells were trypsinized, pelleted by centrif-
ugation at 500 g for 5 min, washed with PBS, and fixed
with 4% paraformaldehyde. Cells were once again washed
with PBS and pelleted by centrifugation at 500 g for 5 min.
Then, approximately 100,000-200,000 cells were resus-
pended in 200 pl of cell cycle buffer [3.8 mM sodium cit-
rate (Sigma), 7 U/ml RNase A (Sigma), 0.1% (v/v) Triton
X-100 (Sigma), and 0.05 mg/ml propidium iodide
(Sigma)] at a concentration of 500-1000 cells/ul. Cells
were analyzed for the capacity of their DNA to bind pro-
pidium iodide utilizing the Guava EasyCyte Mini micro-
capillary cytometer and the cell cycle application of the
CytoSoft 4.1 software (Guava Technologies), with special
emphasis on the analysis of the cellular fragments with
hypodiploid DNA content.

SDS-PAGE and Western blotting

Cells were scraped, pelleted, washed twice with PBS, and
lysed by the addition of two volumes of radioimmuno-
precipitation assay buffer (RIPA) containing 50 mM Tris-
HCI (pH 7.4), 150 mM NaCl, 1% NP-40 (Sigma), 0.25%
sodium deoxycholate (Sigma), 1 mM EDTA, 1 mM PMSF
(Sigma), 1 pg/ml pepstatin (Sigma), 1 mM orthovanadate
(Sigma) and 1 mM sodium fluoride (Sigma). Cells were
disrupted by passing them through a 21 gauge needle, and
gently rocked on ice for 30 min. Lysates were centrifuged
at 16,000 g for 15 min at 4°C, and the supernatant was
considered the whole cell extract, which was assayed for
protein content by using the bicinchoninic acid method
(BCA; Pierce, Rockford, IL). Equivalent amounts of pro-
tein (50 pug) per point were loaded in 12% (w/v) acryla-
mide gels, subjected to SDS-PAGE and transferred to
PVDF membranes. The blots were blocked in 5% (v/v)
nonfat milk in TBS containing 0.1% (v/v) Tween 20 (T).
Blots were then probed overnight with primary antibodies
against poly (ADP-ribose) polymerase (PARP) (#9542;
1:1000; Cell Signaling Technologies, Danvers, MA) or cas-
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pase-3 (#9662; 1:1000; Cell Signaling). The membranes
were washed 3 x 5 min in TBS-T and incubated with 1:
10,000 dilution of peroxidase-conjugate secondary anti-
body (#111-035-003; Jackson ImmunoResearch Labora-
tories, West Grove, PA) for 30 min at room temperature.
The blots were again washed, developed by chemilumi-
nescence, and exposed to radiographic film. Blots were
also probed with an antibody directed against B-Actin
(clone AC-15; 1:20,000; Sigma) to control for protein
loading.

DNA fragmentation

Floating and adherent cells were pelleted and digested
overnight at 50°C in a buffer composed of 100 mM NaCl,
10 mM Tris HCI (pH 8.0), 25 mM EDTA (pH 8.0), 0.5%
SDS and 0.1 mg/ml proteinase K (Life Technologies,
Rockville, MD). The genomic DNA was extracted from the
digested cells with phenol/chloroform/isoamyl alcohol
(25:24:1, v/v/v), precipitated, and digested for 60 min at
37°Cwith 1 pg/ml ribonuclease (deoxyribonuclease-free;
Roche, Indianapolis, IN). After extraction and precipita-
tion, an equal amount of DNA for each sample (2 ng) was
separated by electrophoresis on a 2.5% agarose gel,
impregnated with SYBR Gold nucleic acid gel stain
(Molecular Probes, Eugene, OR) and photographed with
the Amersham Typhoon Fluorescence imaging system
(Amersham Biosciences Corp., Piscataway, NJ). A 100 bp
DNA ladder (Promega, Madison, WI) was utilized for
determining the size of the fragments of DNA.

Statistical analysis

All data are reported as means + SEM, and statistical sig-
nificance was defined as p < 0.05. To compare cell growth,
cell viability, sub-diploid DNA distribution, and ICs val-
ues, one-way ANOVA followed by the Newman-Keuls'
multiple comparison test or two-way ANOVA followed by
the Bonferroni's multiple comparison test were used as
appropriate. In addition, a Pearson correlation statistical
test was utilized to quantify the degree to which the IC;
for mifepristone and cisplatin for each cell line relate to
one another.

Results

Growth inhibition and lethality of cisplatin towards
ovarian cancer cells of similar genetic backgrounds but
different platinum sensitivities

We utilized two pairs of human ovarian cancer cell lines,
each pair consisting of a cisplatin-sensitive parental line
and a stably cisplatin-resistant subline derived by in vitro
selection with cisplatin. The resistance of these cell lines to
cisplatin, determined using a clonogenic survival assay
and a 1-h exposure to cisplatin, has been previously
reported to be 8.1 fold for A2780/CP70 vs. A2780, and
5.7 fold for OV2008/C13 vs. OV2008 [11]. The different
sensitivity of these ovarian cancer cell lines to cisplatin
was further confirmed in our laboratory. Cells were
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exposed to 0, 5, 10, 25, 50, 100, or 200 uM cisplatin for 1
h, and the culture was continued for 72 h in cisplatin-free
media. At the end of the experiment, non-adherent and
adherent cells were harvested, and their number and via-
bility was assessed by microcytometry. The experiment
was repeated three times utilizing different cell line pas-
sages. The cisplatin ICs calculated for the cell lines were,
as expected, significantly lower for OV2008 cells when
compared to OV2008/C13 cells, and significantly lower
for A2780 cells when compared to A2780/CP70 cells (Fig-
ure 1A and 1C, and Table 1). These results confirm the
predictions that OV2008/C13 and A2780/CP70 are less
sensitive to cisplatin than their sisters OV2008 and
A2780, respectively. The different sensitivity to cisplatin
was also manifested in the significant reduction in viabil-
ity of OV2008 and A2780 cells in response to cisplatin
exposure when compared to the response of OV2008/C13
and A2780/CP70 cells, respectively (Figure 1B and 1D).
Furthermore, sub-G1 DNA content, which is usually asso-
ciated with apoptotic cell death [28], increased more sig-
nificantly in response to cisplatin in OV2008 and A2780
cells when compared to the levels observed in OV2008/
C13 and A2780/CP70 cells (Figure 2, left panels in A and
B). The apoptotic nature of the cell death process triggered
by cisplatin was confirmed by fragmentation of the
genomic DNA which was substantially more evident in
OV2008 and A2780 cells when compared to the DNA
fragmentation observed in OV2008/C13 and A2780/
CP70 cells in response to treatment with 100 uM cisplatin
for 1 h (Figure 2, right panels in A and B). Finally, the dif-
ferent response to cisplatin was highlighted by the cleav-
age of the marker of apoptosis, 35 kDa procaspase-3, to
presumably active 19 and 17 kDa fragments, which was
evident in OV2008 and A2780 cells, but not in OV2008/
C13 and A2780/CP70 cells (Figure 2C and 2D). Together,
results in Figures 1 and 2 confirm that the two sister ovar-
ian cancer cell line pairs, OV2008 and OV2008/C13, and
A2780 and A2780/CP70, although carrying similar
genetic backgrounds, responded very differently to cispla-
tin-induced lethality.

http://www.cancerci.com/content/9/1/4

Growth inhibition and lethality of mifepristone towards
ovarian cancer cells occurs regardless of cisplatin
sensitivities

To study if the cell pairs OV2008 and OV2008/C13, and
A2780 and A2780/CP70 responded similarly to the toxic-
ity of mifepristone, the cells were plated and exposed for
72 hto 0, 5, 10, 20 or 40 uM mifepristone. The antipro-
gestin growth inhibited OV2008 and OV2008/C13 simi-
larly, with ICg,, that were indistinguishable from one
another (Figure 3A and Table 1). In the case of the A2780
and A2780/CP70 pair, mifepristone blocked growth in a
dose-dependent manner; however, the IC;, for A2780 was
significantly lower than that for A2780/CP70 (Figure 3C
and Table 1). Mifepristone was cytostatic to all cell lines
studied at concentrations ranging from 0-10 puM, but
shows some lethality towards the OV2008 and OV2008/
C13 pair at the 20 uM concentration, which was more evi-
dent at the concentration of 40 uM (Figure 3B). In the
A2780 and A2780/CP70 pair, the lethality of mifepristone
was manifested only at the concentration of 40 uM (Fig-
ure 3D). The lethality induced by mifepristone to the
ovarian cancer cell lines was further confirmed by the
detection of cellular particles containing hypodiploid
DNA content in coincidence with the treatment done with
40 uM of the drug in the four cell lines studied (Figure 4A
and 4B), without apparent differences in the behavior of
the cisplatin-sensitive versus the cisplatin-resistant sibling
cells. The presence of cellular particles with deficient DNA
content as represented by the sub-G1 region of the cell
cycle histogram in propidium iodide-stained cells, sug-
gested that cell death occurred by apoptosis [28]. This was
confirmed by the detection of the characteristic ladder of
DNA denoting DNA fragmentation in the four cell lines
exposed to 40 puM mifepristone (Figure 4C and 4D).
Finally, the lethality induced by mifepristone in all cell
lines, without apparent distinction of platinum-sensitivi-
ties, was associated with another marker of apoptotic
death, the cleavage of the caspase-3 target PARP from the
full length 116 kDa form to a 89 kDa fragment [29] (Fig-
ure 4E and 4F). In OV2008 and OV2008/C13 cells, cleav-

Table I: IC;,, for mifepristone and IC;, for cisplatin in various ovarian cancer cell lines of different p53 genetic backgrounds and

platinum sensitivities.

Cell line IC;o MF ( M) IC;,CDDP ( M) Reported p53 status
OoVv2008 8.8+ 0.8 (5) 02+£0.1 (3) wt [30]

OVv2008/CI3 8.1 £0.6 (3) 498+ 10 (3) wt [30,38]

A2780 5.9+0.6 (3) 6.0+ 1.3(3) wt [39,40,52]
A2780/CP70 1.7 £ 0.6 3)* 550 11 (3) mut [30,38-40]
SK-OV-3 12.6 £ 0.1 (3)* 18.1 £0.6 (3) mut [31,33,34]
Caov-3 74+18(3) 152+ 1.4(3) mut [31,32]

Cells were treated with mifepristone (MF) or cisplatin (CDDP) as described in Figure |A and IC, Figure 3A and 3C, and Figure 5A, to calculate the
concentration of the drugs needed to achieve 50% growth inhibition (ICsy). The experiments were repeated at least three times with different
cellular passages, each time in triplicates. The numbers in parentheses indicate the number of experiments carried out for each cell line. ICgq are
expressed as the mean + SEM. *p < 0.05 compared with the other cell lines treated with mifepristone. The numbers in brackets indicate references

that reported the p53 genetic status of the depicted cell lines.

Page 4 of 13

(page number not for citation purposes)



Cancer Cell International 2009, 9:4

A

http://www.cancerci.com/content/9/1/4

1059 - 0V2008 1009, . @R OV2008
— 80- -o- OV2008/C13 N Tt 1 0Vv2008/C13
3> 804 I +
= >
g € 60+ o 2
33 5 801
(0 % 404 L t
< ~ 40 t
204 ] t
0-
) T T T ) 0-AEL 8 - --l-—l-_l.-
0 50 100150 200 0 5 10 25 50 100 20
CDDP (uM) CDDP (uM)
C 1001 o A2780 D 100- Em A2780
— 80- -O0- A2780/CP70 - A A 1 A2780/CP70
° 80+ t
e 5 > It
60+ = t I
£5 = 60+
O o
;_.,9 “ 40+ <
° > 40-
é 20 = X +
20+ T
” 1
f ¥ T T 1 0Ly - n - —
0 50 100 150 200 0 5 10 25 50 100 200
CDDP (pM) CDDP (uM)
Figure |

Growth inhibition and lethality of cisplatin towards OV2008, OV2008/C13, A2780 and A2780/CP70 cells. Cells
were cultured in the presence of the indicated concentrations of cisplatin for | h and maintained in cisplatin-free medium for 3
days. (A) and (C), the total number of cells was recorded at the beginning of the experiment and after 3 days of treatment. The
difference between number of cells in vehicle-treated controls at 0 h and after 3 days of culture was considered to be 100%.
The growth of the treated groups is expressed as percentage of control. The experiment was repeated three times with differ-
ent cell line passages to calculate the IC;, (see averaged data on Table I). Depicted are representative experiments. (B) and
(D), after treatment, viability was assessed by microcapillary cytometry. Results are the average of triplicate counts + SEM. *p
< 0.05, #p < 0.01 and Tp < 0.001 vs. control (0 uM cisplatin) for the respective cell line.

age of caspase-3 was observed in parallel to the cleavage of
its target PARP (Figure 4E). In A2780 and A2780/CP70
cells, the decline in full length caspase-3 followed the
cleavage of PARP, whereas the cleaved caspase-3 frag-
ments, although present, were less evident (Figure 4F).
Altogether, results in Figures 3 and 4 demonstrate that
despite the differential sensitivity to cisplatin displayed by
the two pairs of sister ovarian cancer cell lines, they
responded to the toxicity of mifepristone in a similar fash-
ion. Mifepristone was cytostatic at lower concentrations
and lethal at higher concentrations in both, cisplatin-sen-

sitive OV2008 and A2780 cells, and cisplatin-resistant
OV2008/C13 and A2780/CP70 cells.

Mifepristone inhibits growth and kills ovarian cancer cells
of different p53 genetic backgrounds in association with
genomic DNA fragmentation and activation of caspase-3
To explore whether mifepristone can inhibit the growth of
ovarian cancer cells regardless of their p53 genetic sta-
tuses, we studied the response to mifepristone of OV2008
cells that express wild type p53 [30], Caov-3 cells which
express an mRNA carrying a point mutation that results in
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Figure 2

Sub-G1 DNA Content, DNA fragmentation, and cleavage of caspase-3 in OV2008, OV2008/C13, A2780 and
A2780/CP70 cells treated with cisplatin. (A, left panel) OV2008 and OV2008/CI 3 cells were treated with or without the
depicted concentrations of cisplatin for | h. Seventy-two hours later, floating and adherent cells were collected, fixed with 4%
paraformaldehyde, stained with propidium iodide, and analyzed by microcytometric analysis using cell cycle software. (A, right
panel) In a similar experiment, cells were exposed to a fixed 100 uM cisplatin concentration for | h and were harvested 48 h
later; genomic DNA was isolated, separated by electrophoresis on a 2% agarose gel, impregnated with SYBR Gold nucleic acid
stain, examined with an ultraviolet transilluminator, and photographed. (B) This graph depicts results from experiments similar
to those shown in (A), but using A2780 and A2780/CP70 cells instead. *p < 0.05, #p < 0.0l and tp < 0.001 vs. control (0 uM
cisplatin) for the respective cell line. (C and D) Cells were harvested at the indicated times after |-h exposure to 100 uM cis-
platin, whole cell proteins were isolated, equivalent amounts of proteins were electrophoresed, transferred to a PVDF mem-

brane, and exposed to anti-caspase-3 or [3-actin antibodies.

a chain termination signal likely to generate a truncated
peptide not detected by Western blot [31,32], and SK-OV-
3 cells carrying a deletion of a single nucleotide as a con-
sequence of which no p53 mRNA transcripts are expressed
[31,33,34]. The three cell lines were treated or not treated
with increasing doses of mifepristone for 72 h. At the end
of the experiment, cells were evaluated and analyzed by
microcapillary cytometry for cell number, cell viability,
sub-G1 DNA content, genomic DNA fragmentation and
expression of caspase-3 and PARP. Results shown in Fig-
ure 5A illustrate that all cell lines were growth inhibited by
mifepristone in a dose-dependent manner. At the highest
dose utilized (40 uM) mifepristone inhibited the growth
of the three cell lines greater than 90%. SK-OV-3 cells were
found to have a mifepristone IC;, concentration signifi-
cantly higher than that of OV2008 and Caov-3 cells, both
of which had similar mifepristone ICy,, (Figure 5A and
Table 1). Mifepristone showed some lethality towards
OV2008 and Caov-3 cells at the 20 uM concentration, but
not on SK-OV-3 cells. At the concentration of 40 uM,

mifepristone very strongly reduced the viability of the
three cell lines (Figure 5B). This lethal effect of mifepris-
tone was reflected by the increased percentage of cellular
particles with hypodiploid DNA content (Figure 5C), and
fragmentation of the genomic DNA in a characteristic lad-
der (Figure 5D). Finally, the cell death process triggered by
mifepristone in the three ovarian cancer cell lines was
associated with activation of caspase-3 marked by the
cleavage of full-length pro-caspase-3 into 17 and 19 kDa
fragments, which paralleled the cleavage of the caspase-3
downstream substrate PARP to the 89 kDa fragment (Fig-
ure 5E).

The response to mifepristone-induced cytotoxicity does
not correlate with the sensitivity the ovarian cancer cells
displayed to cisplatin

Because we analyzed the response to six different ovarian
cancer cell lines to cisplatin and mifepristone in parallel,
with experiments done separately three times with three
different cell line passages, we considered it valid to ana-
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Growth inhibition and lethality of mifepristone towards OV2008, OV2008/C13, A2780 and A2780/CP70 cells.
Cells were cultured in the presence of the indicated concentrations of mifepristone for 72 h. (A) and (C), the total number of
cells was recorded at the beginning of the experiment and after the 3 days of treatment. The difference between number of
cells in vehicle-treated controls at 0 h and after 3 days of culture was considered to be 100%. The growth of the treated
groups is expressed as percentage of control. The experiment was repeated three times with different cell line passages to cal-
culate the IC;, (see Table | for averaged data). Depicted are representative experiments. (B) and (D), after treatment, viability
was assessed by microcapillary cytometry. Results are the average of triplicate counts + SEM. tp < 0.001 vs. control (0 uM

mifepristone) for the respective cell line.

lyze whether or not the ICs,, found for mifepristone and
the IC;,, found for cisplatin among the cell lines relate to
one another. To answer this question, a Pearson's correla-
tion study statistics was performed to establish the rela-
tionship between the ICs, values obtained for each drug.
Analysis of data shown in Table 1 indicates the lack of sta-
tistically significant difference in the response of the cells
to mifepristone despite the broad ranges of responses to
cisplatin (r = 0.3931; p > 0.05). Whereas the IC, for cis-

platin ranged from < 1 uM to as high as 55 pM, the IC,
for mifepristone ranged only from ~6-12 uM.

Discussion

Mifepristone inhibited ovarian cancer cell growth despite
the fact that the cell lines studied had similar genetic back-
grounds but very different sensitivities to cisplatin
acquired by in vitro selection of clones upon challenges
with cisplatin. The cisplatin-sensitive OV2008 cells were
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Sub-G| DNA Content, DNA fragmentation, and activation of caspase-3 in OV2008, OV2008/CI13, A2780 and
A2780/CP70 cells treated with mifepristone. OV2008 and OV2008/C13 cells (A) or A2780 and A2780/CP70 cells (B)
were treated with or without the depicted concentrations of mifepristone. Seventy-two hours later, floating and adherent cells
were collected, fixed with 4% paraformaldehyde, stained with propidium iodide, and analyzed by microcytometric analysis using
cell cycle software. Tp < 0.001 vs. control (0 uM mifepristone). In a similar experiment OV2008 and OV2008/CI1 3 cells (C) or
A2780 and A2780/CP70 cells (D) were exposed to the various concentrations of mifepristone. Cells were harvested 72 h
later, and genomic DNA was isolated, separated by electrophoresis on a 2% agarose gel, impregnated with SYBR Gold nucleic
acid stain, examined with an ultraviolet transilluminator, and photographed. In another experiment, OV2008 and OV2008/CI 3
cells (E) or A2780 and A2780/CP70 cells (F) were exposed to various concentrations of mifepristone and harvested 72 h later.
Whole cell proteins were isolated, equivalent amounts of proteins were electrophoresed, transferred to a PYDF membrane,
and exposed to anti-caspase-3, anti-PARP, or [-actin antibodies.

originally established from a patient with serous cystoad-
enocarcinoma of the ovary [35,36], and the cisplatin-
resistant OV2008/C13 cells were generated from OV2008
cells by monthly in vitro selection with 1 uM cisplatin
[35]. The cisplatin-sensitive A2780 cells were originally

obtained from an untreated patient and were made resist-
ant to cisplatin in vitro by stepwise exposure to a final con-
centration of 20 puM cisplatin and identified as A2870/
CP70 [37]. Whereas the cisplatin-resistant OV2008/C13
cells maintained p53 wild type expression during the
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Figure 5

Effect of mifepristone on growth, viability, fragmentation of genomic DNA, and on expression of caspase-3 and
of its downstream substrate poly (ADP) ribose polymerase (PARP) in OV2008, Caov-3, and SK-OV-3 cells.
Cells were plated in equal number, allowed to attach to the plate surface for 24 h, and were then treated with either vehicle
(DMSO) or the indicated doses of mifepristone in cell specific culture media for 72 h. Cells were then trypsinized, stained, and
counted by microcapillary cytometry. The experiments were repeated at least three times in triplicates for each of the doses
tested. A representative experiment is shown for each of the cell lines. (A) The total number of cells was recorded at the
beginning of the experiment and after 3 days of treatment. The difference between number of cells in vehicle-treated controls
at 0 h and after 3 days of culture was considered to be 100%. The growth of the treated groups is expressed as percentage of
control. (B) This experiment was similar to that described in previous panel. Following the plating and treatment protocol, cells
were collected after 72 h and viable cells were recorded by microcytometry using the Guava ViaCount application. Bars, mean
+ SEM. #p < 0.0l and tp < 0.001 when compared to the control (0 uM mifepristone) for each cell line. (C) Following plating and
treatment protocol, cells were collected after 72 h, fixed in 4% paraformaldehyde, stained with propidium iodide, and analyzed
by cytometry using the Guava cell cycle application. Bars, mean + SEM. #p < 0.01; Tp < 0.00| when compared to 0 uM mifepris-
tone. (D) Genomic DNA was isolated and separated by electrophoresis on a 2% agarose gel, impregnated with SYBR Gold
nucleic acid stain, examined with an ultraviolet transilluminator, and photographed with the Amersham Typhoon fluorescence
imaging system. A 100 base pair marker and a positive control (+ Ctrl) of fragmented DNA generated by treating OV2008 cells
with cisplatin were run in parallel. (E) Cells were treated with the indicated concentrations of mifepristone for 72 h, whole cell
proteins were isolated, electrophoresed, electrotransferred to a PYDF membrane, and exposed to anti-caspase-3 and anti-
PARP antibodies. 3-Actin was used as loading control.

process of in vitro challenge with cisplatin when compared
to their sister OV2008 cells [30,38], that was not the case
for the A2780/CP70 cells that acquired a p53 mutation
during such an in vitro selection process [39,40]. This phe-
nomenon is not surprising as it has been shown that there
is a survival advantage of p53 mutant cells in the presence

of genotoxic cisplatin [27,41]. The tumor suppressor p53
appears to be a determinant of cisplatin sensitivity since
mutant p53 status is often associated with cisplatin insen-
sitivity [26], whereas reintroduction of wild type p53 via
adenovirus gene transfer into A2780/CP70 cells signifi-
cantly sensitized these cells to cisplatin lethality [42].
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However, it has also been reported that the mutation of
the p53 gene in the A2870/CP70 cells does not lead to
expression of a mutant p53 protein when the cells are
challenged with cisplatin; conversely, when the challenge
is with ionizing radiation, they do express increasing lev-
els of a mutant p53 protein capable of up-regulating the
p53-target gene p21¢Pl, and of showing transcriptional
activity in a functional assay [39]. Thus, it is the signal
transduction pathway connecting cisplatin action and
p53 gene expression what appears to be impaired in
A2780/CP70 cells. This might be related to the fact that
whereas OV2008 and OV2008/C13 cells have similar
mifepristone ICs,, the mifepristone IC;, of A2780/CP70
was significantly higher than that of A2780 cells. Yet,
although with slightly different potency, it can be con-
cluded that mifepristone was very effective at blocking
growth in the four ovarian cancer cell line pairs investi-
gated considering the broad range of cisplatin IC5, (< 1 to
55 uM) and the narrow range of mifepristone I1Cs (~6-
12 uM).

Notably, mifepristone was cytostatic at concentrations
lower than 20 uM, but it was lethal at concentrations
higher than 20 uM. The cytostatic nature of concentra-
tions of mifepristone up to 20 uM towards ovarian cancer
cells was previously shown in our laboratory by demon-
strating the reversibility of the growth inhibition effect
when the drug was removed from the culture [10]. Fur-
thermore, we have recently demonstrated that intertwin-
ing cytostatic concentrations of mifepristone in between
courses of lethal cisplatin chemotherapy not only resulted
in an efficacious strategy to prevent repopulation of can-
cer cells in between lethal platinum treatment intervals,
but it also potentiated cisplatin killing efficacy [43]. Inter-
estingly, however, in the present work we are showing that
concentrations of mifepristone higher than that needed to
achieve cytostasis are per se lethal to ovarian cancer cells.
This lethality was illustrated by the reduced viability of the
cells, the increase in cellular particles with hypodiploid
fragmented DNA content, and the cleavage of the cell
death associated caspase, caspase-3, in parallel with the
cleavage of the widely accepted marker of cell death and a
substrate for caspase-3, poly (ADP) ribose polymerase
(PARP) [29]. The lethality of concentrations of mifepris-
tone over 40 uM towards ovarian cancer cells was first sug-
gested in 1996 by Rose and Barnea in OVCAR-3 and
A2780 cells [44]. Yet, the results presented here are the
first to demonstrate that the lethality of mifepristone
monotherapy towards ovarian cancer cells is related to a
caspase-associated apoptotic process. More importantly
the toxicity of mifepristone did not discriminate among
ovarian cancer cell lines with very different sensitivities to
cisplatin, suggesting that mifepristone monotherapy
could be useful for treating patients who have become
platinum-resistant, for which the therapeutic alternatives
have very disappointing outcomes [1,4,7].

http://www.cancerci.com/content/9/1/4

The dose-dependent cytostatic and lethal effects of mife-
pristone towards ovarian cancer cells, which we will refer
to globally as cytotoxicity, have been shown to also occur
in breast cancer cells. A recent work using the MCF-7
breast cancer cell line illustrated that combination of
mifepristone and the antiestrogen 4-hydroxytamoxifen
had greater cytostatic and lethal activities than either
monotherapy, whereas the lethality of the treatment was
associated with genomic DNA fragmentation and cleav-
age of PARP [45]. In addition, it has been shown that
MCF-7 made resistant to 4-hydroxytamoxifen also
respond to mifepristone monotherapy undergoing apop-
totic death [46]; finally, although at higher concentra-
tions, mifepristone was also cytotoxic to progesterone
receptor- and estrogen receptor-negative MDA-MB-231
breast cancer cells [47].

At present the role played by progesterone receptors in the
cytotoxic activity of mifepristone remains unclear. We
have reported that mifepristone has progesterone-like
activity inhibiting growth of ovarian cancer cells [10].
Likewise in MCEF-7 breast cancer cells it was shown that
progesterone, instead of reversing the growth inhibitory
activity of mifepristone, contributed to its growth inhibi-
tion effect [45]. A progesterone-like growth inhibitory
action of mifepristone was also shown in estrogen-resist-
ant, progesterone receptor expressing T47Dco breast can-
cer cells [48]. In addition, although mifepristone can bind
to glucocorticoid and progesterone receptors with similar
affinity [49], glucocorticoid receptors do not seem to
mediate mifepristone action. In OV2008 ovarian cancer
cells we could not mimic the growth inhibition effect of
mifepristone when using equimolar concentrations of the
glucocorticoid agonist dexamethasone (results not
shown), whereas in MCF-7 breast cancer cells, dexameth-
asone was unable to reverse the inhibitory action of mife-
pristone [45]. Thus, it remains to be seen whether
mifepristone utilizes cognate progesterone or glucocorti-
coid receptor-mediated endocrine mechanisms to drive its
cytostatic and lethal effects on cancer cells.

While indirectly, in the present work we also analyzed
whether the different p53 genetic status of the cells
impacts the cytotoxicity of mifepristone. Normal function
of the p53 tumor suppressor gene is associated with
enhanced sensitivity to chemotherapy; several studies
have suggested that loss of wild type p53 function may be
a major cause of failure to respond to chemotherapy and
radiotherapy [50,51]. Supporting this concept, in a study
conducted utilizing the 60 cancer cell lines of the National
Cancer Institute anticancer drug screen program, the
majority of clinically active agents, including alkylating
agents, antimetabolites, and topoisomerase inhibitors,
tended to exhibit growth suppression more in the cell
lines with normal p53 status than in the cell lines with
mutant p53 status, with the exception of the anti-
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mitogenic agents [33]. This exception was confirmed in
ovarian cancer cell lines where it was shown that the p53
status does not affect the sensitivity of the cells to the
microtubule-stabilizing agent paclitaxel [52,53]. There-
fore, although it is generally assumed that loss of normal
p53 function can confer resistance to DNA-damage agents
as a consequence of reduced susceptibility to apoptosis,
the relevance of p53 mutations in chemosensitivity has
exceptions and controversies particularly in terms of the
potential functional activity of mutant p53 proteins
[51,54-56]. Consequently, it is apparent that there are
drugs for which the p53 background does not impact
drug-sensitivity; in the present work we provide evidence
that mifepristone behaves in that manner, inhibiting
growth and triggering death of ovarian cancer cells which
have been largely described as having different p53
genetic statuses (Table 1). For instance, Caov-3 cells that
carry a point mutation leading to expression of an abnor-
mal transcript encoding an inactive p53 [31,32], and SK-
OV-3 cells that carry a single nucleotide deletion in the
P53 gene and are not able to generate a p53 transcript
[31,33,56,57], both have defects in their apoptotic
machinery that associates with resistance to standard plat-
inum therapy [58-60]. Conversely, OV2008 and A2780
cells expressing wild type p53 are very sensitive to cyto-
toxic drugs such as cisplatin [14,25], paclitaxel [61,62], or
doxorubicin [63-65], rapidly undergoing apoptosis. Our
data demonstrate that mifepristone, at concentrations
beyond those used to achieve cytostasis has lethal activity
triggering a caspase-associated apoptotic process in all six
ovarian cancer cell lines studied regardless of their p53
genetic backgrounds and sensitivities to cisplatin.
Although the potency of the growth inhibition by mife-
pristone was significantly higher in OV2008, OV2008/
C13, and A2780 cells, all carrying wild type p53, when
compared with SK-OV-3 and A2780/CP70 cells carrying
p53 mutations, the calculated IC; only ranged from 8 to
12 puM, suggesting that the inhibition is biologically rele-
vant despite the p53 genetic backgrounds of the cells. Fur-
thermore, the IC;, for mifepristone in Caov-3 carrying a
mutant p53 gene is indistinguishable from that of the
three wild type-carrying p53 cell lines (OV2008, OV2008/
C13, and A2780), further supporting the notion that the
p53 background is not relevant for the growth inhibition
and the lethality triggered by mifepristone in ovarian can-
cer cells.

Conclusion

The results obtained and summarized in Table 1 highlight
the lack of correlation between the 1Cs,, for mifepristone
and the ICs, for cisplatin obtained for the ovarian cancer
cell lines studied, and confirm the hypothesis that mife-
pristone growth inhibits ovarian cancer cells regardless of
their sensitivities to cisplatin. Furthermore, we found that
mifepristone, when used al lower concentration, shows
cytostatic effects, whereas at higher concentration, it

http://www.cancerci.com/content/9/1/4

shows lethal effects towards all ovarian cancer cell lines
studied, triggering a caspase-associated apoptotic death
mechanism regardless of their degree of sensitivity to cis-
platin and apparent p53 genetic status. The significance of
this work lies in that it provides preclinical evidence sug-
gesting that mifepristone monotherapy can be an alterna-
tive to treat ovarian cancers intrinsically resistant to
clinically achievable doses of cisplatin, or recurrent ovar-
ian cancer tumors which frequently have become plati-
num resistant and lack p53 function.
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