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Abstract

Cadherin, Snail, Zeb1

Background: Transforming growth factor beta (TGF-3) plays major roles in tumorigenesis by regulating cell growth,
epithelial-to-mesenchymal transition (EMT), migration/invasion and metastasis. The epithelial markers E-cadherin,
claudin-3 and claudin-4, commonly decreased in human adenocarcinomas are actually up regulated during ovarian
carcinogenesis. In human ovarian cancer TGF-31 may either suppress or promote tumor progression, but whether
other TGF-B isoforms (TGF-32 and TGF-33) exert similar effects is not known.

Methods: In this study we investigated the ability of the TGF-{3 isoforms (TGF-31-3) to induce proliferation and migration
by BrdU labeling, scratch wound and trans-filter migration assays in the human serous adenocarcinoma cell-line
NIH-OVCARS3. Transepithelial resistance was measured and EMT observed by light-microscopy. Expression of
adherens-, tight-junction and EMT-related transcription factors was analyzed by gRT-PCR and immunoblotting.

Results: All TGF-B isoforms dose-dependently inhibited NIH-OVCAR3 cell growth, stimulated tumor cell migration
with similar efficiency. The mesenchymal marker N-cadherin and claudin-1 expression was induced and occludin down
regulated. However, migrating cells retained an epithelial shape and E-cadherin expression. The E-cadherin repressor
SNAIL mRNA levels remained low independently of TGF-31-3 treatment while ZEBT expression was enhanced.

Conclusions: TGF-31, TGF-B2 and TGF-33 promote migration of NIH-OVCAR3 ovarian cancer cells independently of cell
proliferation and without conversion to a complete EMT phenotype. Epithelial ovarian cancer commonly metastasis to
the surrounding tissue or inside the peritoneum rather than invading blood vessels to set distance metastasis. Our
result raises the question whether ovarian cancer primarily spread via collective migration than via single cell invasion.
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Background
Epithelial derived epithelial ovarian cancer (EOC) ac-
counts for more than 90% of all ovarian malignancies
and is the most lethal gynecologic malignancy due to
difficulties in diagnosing early stage disease [1]. More
than 70% of EOC patients are diagnosed at an advanced
stage with widespread dissemination in the peritoneal
cavity. Therefore, increased understanding of molecular
changes involved in ovarian cancer progression may lead
to identification of novel targets for therapy.
Epithelial-to-mesenchymal transition (EMT) occurs in
normal physiological processes essential for embryogenesis,
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tissue morphogenesis and wound healing but is also tightly
linked to pathological conditions including fibrosis and
cancer progression [2,3]. During EMT, epithelial cells typ-
ically lose their epithelial characteristics, including loss of
cell polarity and cell-cell contact and acquire a spindle-
shaped migrating phenotype. The key event of EMT is the
switch of E-cadherin to N-cadherin, which renders the sin-
gle cell more motile and invasive. Transforming growth-
factor p (TGE-P) is a major inducer of EMT [2,3]. Several
transcriptional factors including the zinc finger transcrip-
tion factors Snail, Slug and Zeb play active roles conduct-
ing the EMT process [4]. TGF-B-induced EMT has been
suggested to be associated with development and progres-
sion of EOC [5,6]. And our group have previously demon-
strated that TGF-P induces typical EMT response in
primary cultured human ovarian surface epithelium (OSE)
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accompanied by breakdown of epithelial barrier, down
regulation of tight junction proteins claudin-1 and occludin
and a switch from E-cadherin to N-cadherin expression
[7]. The TGF-Bl-induced morphological changes in OSE
might be necessary to maintain the mixed epithelial-
mesenchymal characteristics of native OSE and prevent in-
appropriate epithelialization of normal OSE, a proposed
process for pre-neoplastic lesions in EOC development
[8,9]. The outcome of TGF-p stimulation in OSE and EOC
may thus be fundamentally different. EMT is far from well
understood in relation to the development/progression/mi-
gration/invasion of epithelial ovarian cancer.

TGEF-p exists as three isoforms, TGF-B1, TGF-f2 and
TGEF-B3 [10]. The three isoforms, TGF-f1-3 have more
than 97% sequence identity in mammalian tissue and sig-
nal through activation of TGF-f receptors [11]. Clinical
studies have provided evidence that the three isoforms are
overexpressed and co-localized in ovarian cancers [11-13]
and associated with advanced stage disease and reduced
survival [12]. TGF-P1 has been described to induce EMT
and an enhanced metastatic potential in OVCA429 ovar-
ian cancer cells, a clear cell adenocarcinoma cell line [5,6].
However whether all three TGF-J isoforms are equally po-
tent EMT inducers in all histologic subtypes of EOC has
not been investigated.

In this study we investigated the ability of the TGF-f
isoforms (TGF-B1-3) to induce proliferation and migra-
tion by BrdU labeling and scratch wound and trans-filter
migration assays in the human serous adenocarcinoma
cell-line NIH-OVCAR-3 cell-line. After TGF-p1-3 treat-
ment EMT was assessed by quantitative changes in the
expression of key molecules (N-cadherin, E-cadherin,
occludin, claudins, Snail and ZEB) both at transcrip-
tional and protein level. Morphologic changes of the
cells were evaluated in light microscopy and transepithe-
lial resistance was measured.

Methods

Cells, reagents and antibodies

The ovarian cancer cell-line NIH-OVCAR3 was purchased
from American Type Culture Collection (ATCC, Manas-
sas, VA) and cultured in a 1:1 mixture of M199/MCDB105
medium (Sigma Chemicals, St Louis, MO) supplemented
with heat inactivated fetal bovine serum (FBS, Invitrogen
Ltd, Paisley, UK) and penicillin-streptomycin (100 IU/ml-
100 pg/ml; Life Technologies Ltd) in humidified atmos-
phere at 37°C. Recombinant human TGF-$1, TGF-$2 and
TGF-B3 were purchased from R&D Systems (Abingdon,
UK). For immunoblotting and real time PCR analysis,
NIH-OVCARS cells were cultured at a density 6 x 10*/well
in 12 wells plate until 60% confluent. After 24 h culture in
1% EBS, the cells were stimulated with TGF-p1, -2 and -3
in 1:1 mixture of M199/MCDB105 medium with 1% FBS
for each experiment. Mouse monoclonal antibodies against
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N-cadherin and E-cadherin were obtained from BD Bio-
science (San Jose, CA). Rabbit polyclonal against claudin 1
and mouse monoclonal against occludin were purchased
from Zymed Laboratories (South San Francisco, CA). All
research has been conducted in accordance with the dec-
laration of Helsinki and the local ethical review board in
Gothenburg.

Cell proliferation — BrdU labeling

Cell proliferation was determined by measurement of
BrdU incorporation during DNA synthesis using a col-
orimetric assay Cell Proliferation ELISA, BrdU kit
(Roche Applied Science, Mannheim, Germany), accord-
ing to the manufacturer’s instruction. NIH-OVCAR3
cells were cultured in a 96-well plate at a density 1 x 10*
cells/well in 100 pl culture medium at 37°C for 24 h and
then treated with TGF-f1, TGF-f2 or TGF-B3 (1-10-
50 ng/ml) in 100 pl culture medium with 1% FBS or 0%
EBS for 72 h. 100 uM BrdU in labeling solution was
added to the wells and the cells were incubated for add-
itional 4 h at 37°C. Labeled cells were fixed and DNA
was denatured by incubation in FixDenat (200 pl/well)
for 30 min and thereafter, 100 pl/well anti-BrdU-POD
working solution was added and incubated for 90 min.
The cells were rinsed three times with PBS and incubated
with 100 ml substrate solution containing tetramethyl-
benzidine for 5 min and finally, 25 pl 1 M H,SO, was
added to each well for 1 min on a shaker at 300 rpm. Ab-
sorbance of the samples was measured using a spectro-
photometric plate reader at 450 nm with a reference
wavelength at 690 nm. All steps were performed in room
temperature (RT). Culture medium without FBS was used
as a control for nonspecific binding. Experiment was
performed in triplicate wells and repeated four times.

Cell migration - scratch-wound assay

The NIH-OVCARS3 cells were cultured in 6-well dishes
(seeding density 1 x 10°cells/well). Confluent cell mono-
layers was disrupted by standardized wound scratching
using a sterile 200 pl pipette tip and incubated in culture
medium with 1% FBS without or with 10 ng/ml TGEF-f1,
TGEF-B2 or TGE-P3 for 72 h. Migration of cells into the
bare area and recovering of monolayer was evaluated
every 12 h until 72 h by a phase contrast microscope
and digitally photographed (Nikon Diaphot 300; Nikon,
Tokyo, Japan).

Cell-invasion filter assay

Filter transmigration of NIH-OVCAR3 cells was mea-
sured using Transwell” 6.5 mm insert (Costar®, Corning
Incorporated, Corning, NY) and BD BioCoat™ invasion
chambers with (BD Biosciences, Bedford, MA) both with
8.0 um pore size. The NIH-OVCAR3 cells (1 x 10° cells
per well in 300 pl) in culture medium with 0.1% BSA,
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were seeded in the upper chamber of the filter inserts and
TGF-B1, TGF-B2 or TGF-B3 (10 ng/ml) enriched medium
was added to the lower chamber. After incubation for
72 h at 37°C all cells that did not enter the filter were re-
moved by gently scraping with a wet cotton swab on the
upper side of the filter. Cells that migrated to the bottom
filter surface were fixed by soaking insert in 4% formalde-
hyde for 2 min, stained with hematoxylin and eosin and
air-dried. Filters cut out from inserts were mounted up
side down on glass slides. Cells were counted under light
microscope. The experiment was performed three times.

Immunofluorescence

NIH-OVCAR3 cells were grown on © 19 mm glass
cover slips (Histolab, Histolab Products AB, Gothen-
burg, Sweden) in a 12 wells plate until 60-70% conflu-
ence. Starvation with 1% FBS medium for 24 h, then
stimulated with TGF-B1 10 ng/ml for 24 h, 48 h and
72 h. Cells were fixed in ice-cold methanol for 10 min
and then rinsed briefly and stored in phosphate-
buffered saline (PBS) two times. The cultured cells on
coverslips were incubated with 1% BSA in PBS,
followed by primary E-cadherin monoclonal antibody
(1:1000) for 1 h at room temperature. Bound anti-
bodies were visualized by ALEXA fluor secondary
anti-mouse antibody (1:500, Molecular Probes, Eugene,
Oregon, USA). The coverslip were mounted with the
cells facing towards the microscope slide with a drop
of vectashield mounting medium with DAPI (Vector
Laboratories, Cambridgeshire, UK). The coverslips
were sealed with rubber glue to prevent drying and
movement under microscope.

Immunoblotting

NIH-OVCAR3 cells were lysed using Mammalian
Cell Lysis Kit (MCL1, Sigma-Aldrich, Saint Louis,
Missouri, USA) and total protein content was esti-
mated using the Micro BCA™ Protein Assay Kit
(Pierce, Rockford, IL, USA). Twenty-five micrograms
protein from each sample were boiled at 70°C for
10 min and loaded onto a SDS-polyacrylamide gel
(NuPAGE® Novex 4-12% Bis-Tris Midi Gel, Invitro-
gen, Carlsbad, CA) along with Precision Plus Protein™
standards (Bio-Rad Laboratories, Hercules, CA). After
electrophoresis, proteins were transferred to polyviny-
lidene fluoride membrane (Invitrogen, Carlsbad, CA)
using a blotting system (iBlot™ Gel Transfer Device,
Invitrogen, Carlsbad, CA) and incubated with primary
antibody mouse monoclonal anti-N-cadherin (1:5000)
and E-cadherin (1:5000) as well as rabbit polyclonal
anti-claudinl (1:800) and occludin (1:800) at 4°C
overnight. In the next day, the membranes were
washed with PBS and incubated with ECL™
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peroxidase labeled second anti-mouse/rabbit antibody
(1: 10000) (GE Healthcare, Bio-Science, Buckingham-
shire, UK) in RT for 1 h, followed by Amersham™
ECL Advanced™ Western Blotting Detection Kit, (GE
Healthcare, Bio-Science, Buckinghamshire, UK) ac-
cording to manufactures instruction. The chemilu-
minescent signal was visualized by a LAS-4000 CCD
camera (Fujifilm, Tokyo, Japan) allowing individual
bands to be quantified by densitometry using the
Quantity one software (Bio-Rad Laboratories). The
loading was evaluated by staining the gels with
Coomassie blue. Signal intensities of the individual
protein were normalized to the gels stained with
Coomassie blue and presented as ratios that represent
arbitrary densitometric units (ADU) of relative abun-
dance [14,15].

Quantitative real time PCR

Total RNA was extracted from cultured NIH-OVCAR3
with or without TGF-f1-3 treatment for 0, 24 and 72 h
using Qiagen Micro plus kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instruction. RNA con-
centrations were determined by Nanodrop ND-1000
(Thermo Fisher Scientific, Wilmington, DE, USA). Com-
plementary DNA (cDNA) was synthesized from 1 pg
total RNA using the High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster city, CA USA)
according to the manufacturer’s protocol. Quantitative RT-
PCR was carried out using TagMan® Gene Expression As-
says (Applied Biosystems) for each of the following genes
with specific primers: E-cadherin (Hs00170423_m1), N-
cadherin (Hs00983062_m1), occludin (Hs00170162_m1l),
claudin 1 (Hs00221623_m1), snail (Hs00195591_m1), and
zebl (Hs01566407_m1) (Applied Biosystems). Large ribo-
somal protein (Hu RPLPO: 4333761 F) was used as an en-
dogenous control. Each amplification reaction consisted of
10 ng ¢cDNA, 1 x probe-mix and 1 x TagMan® Gene Ex-
pression Master Mix to a final volume of 25 pl. After con-
trol for similar amplification efficiency of the target gene
and endogenous control, relative expressions were calcu-
lated with the comparative Ct method (AACt). The mRNA
expression of target genes was normalized to expression of
the endogenous control. All samples were run in duplicate
for both target and control genes and a mean of these
values were used as a single observation in the presentation
of data and in the statistical analysis.

Transepithelial resistance (TER) measurements

Transepithelial resistance (TER) was measured by the Milli-
cell Electrical Resistance System (Millipore Corp., Bedford,
MA) with cells grown on Costar” Transwell® Permeable
Support 04 pm Polyester Membrane 6.5 mm Insert
(Cornig Incorporated, Corning, NY). NIH-OVCAR3 were
seeded at a density 1 x 10° cells per insert in 300 pl culture
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medium with 10% FBS in the Corning Transwell insert.
When the cells reach confluent, the cells were treated with
TGEF-B1, TGF-f2 or TGF-f3 (10 ng/ml) in the same
medium for up to further 96 h. Cells cultured without
TGE-p were included as controls. TER was monitored at
different time points after TGF-p addition and calculated
by subtracting the background resistance of a blank filter
that contained only medium and by multiplying the surface
area of the filter membrane (0,33 cm? for the 6.5 mm in-
serts) [7].

Statistics

Statistical analyses were performed using STATISTICA
7.1 (StatSoft.com). Calculation of means and standard
errors of the mean were performed with Excel Microsoft
Office 2007. Statistical differences between treated cells
and control groups regarding cell proliferation, cell mi-
gration, mRNA and protein expression were calculated
using the Student’s test. P value less than 0.05 was con-
sidered as statistically significant.

Results

Inhibition of cell growth by TGF-1, TGF-B2 and TGF-$3

in NIH-OVCARS3 cells

To minimize the possibility that any effect on migration
depend on altered proliferation rate, experiments were
conducted in low serum. As expected from earlier pub-
lished data, administration of TGF-B1 to NIH-OVCAR3
cells resulted in growth inhibition. NIH-OVCAR3 where
also equally suppressed by TGF-B2 and TGEF-B3 treat-
ment (Figure 1). Addition of TGF-f1-3 at 1-10 ng/ml
did not significantly alter BrdU-labeling whereas 50 ng/ml
decreased tumor cell proliferation (p < 0.05). Importantly,
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Figure 1 TGF-B1, TGF-B2 or TGF-B3 inhibit NIH-OVCAR3 cell
growth. Cells were treated with any TGF-{3 isoforms at indicated
concentrations for 72 h. Cell proliferation was determined by BrdU in-
corporation. Experiments were performed in quadruplicate; with the data
represent the mean of the quadruplicate of each group + SE. Values were
compared with their respective control without TGF- using Student's
ttest. *P < 0.05
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similar inhibitory effect of TGF-B1-3 on cell growth was
observed in cells cultured with and without FBS, since the
purpose of this study was to elucidate the potential stimu-
latory effect of TGF-f isoforms on ovarian tumor cell mi-
gration and whether it is related to EMT. The OVCAR-3
ovarian cancer cell line express both TGE-$ type I and II
receptors [16].

Effect of TGF-f3 isoforms on NIH-OVCAR3 morphology and
cell migration

NIH-OVCARS3 as well as normal ovarian epithelium is
previously known to grow with typical cobblestone
appearance, express E-cadherin and possess junctions
typical of epithelial cells [7]. One hallmark of EMT is
the phenotypic change in epithelial cell morphology as
a response to TGF-B stimulation. Surprisingly, NIH-
OVCAR3 cells displayed a cobblestone shape up to
5 days with TGF-B1, TGF-f2 or TGF-B3 treatment
without signs of transition to a mesenchymal phenotype
(Figure 2). This was evident in both the sub-confluent
and confluent culture phase.

NIH-OVCARS3 cells were grown to confluence for the
assessment of TGF-B induced migration in a scratch
wound assay in low serum conditions. In the absence of
TGF-B most of the wounded area remained free of cells
72 h after injury (Figure 3). This indicated that NIH-
OVCAR3 has a low spontaneous migrating capacity.
However, TGF-p promoted wound closure by >50%
in the same time period. All three TGF-B isoforms
appeared to be equally potent. Interestingly, although
migrating, NIH-OVCAR3 cells were slightly enlarged
and the epithelial shape was not altered in response to
TGE-P (Figure 3). Further, migration across permeable
filter with and without matrix coating was investigated.
Results showed that NIH-OVCARS3 cells were unable to
cross the filter even when TGF-$ was present in the
opposite culture medium (data not shown).

Effect of TGF-f isoforms on cadherin expression in
NIH-OVCAR3

Another hallmark of TGF-p induced EMT is down-
regulation of E-cadherin and up-regulation of N-cadherin
expression. As shown in Figure 4B, the expression of E-cad-
herin mRNA and protein was not affected by any TGF-
isoform treatment for up to 72 h. With immunoblotting we
could detect a stronger and a weaker E-cadherin band cor-
responding to molecular weight of approximately 120 kDa
and 135 kDa. They accounted for the precursor and proc-
essed E-cadherin species and were present regardless of
treatment indicating that its turnover likely was unchanged.
The cell membrane bound localization of E-cadherin
was preserved and distinct after 72 h TGF-p stimulation
(Figure 2b). N-cadherin was significantly (p <0.05)
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Figure 2 Light micrograph and immunofluorescens pictures of
cultured NIH-OVCARS3 cells treated with and without 10 ng/ml
TGF-B1, TGF-B2 or TGF-f3 for 72 h. A. There was no change of
phenotype in any TGF-{3 isoform treated NIH-OVCAR3 cells compared
with controls. B. Immunofluorescens staining of cultured TGF-31 treated
NIH-OVCARS after 0 h and 72 h. Cell-membrane bound E-cadherin was
seen at both time points with and without TGF-31.

increased by TGF-p at both mRNA and protein levels
(Figure 4A). In fact, in untreated NIH-OVCAR3 cells
N-cadherin was barely detectable. The increased ex-
pression was evident after 24 h and more pronounced
after 72 h treatment in particular by TGF-B1 stimula-
tion. TGE-B induced down-regulation of E-cadherin is
normally transcriptionally regulated by the Snail-family
via SMAD signaling pathway. In accordance with the
observation that expression of E-cadherin did not
change after TGF-B1-3 treatment of NIH-OVCARS3 the
mRNA level of transcription factor Snail was not in-
creased (Figure 5A). Interestingly, significant (p < 0.01)
up-regulation of the EMT-related transcription factor
ZEB1 mRNA was noted after both 24 h and 72 h
(Figure 5B) while no changes was seen in the regulation
of another EMT associated transcription factor Twist
(data not shown).
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Effect of TGF-B isoforms on tight junctions in
NIH-OVCAR3

Tight junctions are essential for maintenance of the epithe-
lial phenotype. During EMT, one of the earliest events is
the disruption of tight junctions and delocalization of tight
junction proteins. In particular claudin-1 is implicated as
an active player in EMT and tumor progression. We
therefore studied whether TGF-pf1, TGF-f2 or TGF-3
stimulation changed the expression of the tight junc-
tion proteins occludin and claudin-1, -3, -4 and -7. In
the TGE-B treated NIH-OVCAR3 cells we found sig-
nificantly (p <0.05) decreased occludin protein levels
but not corresponding changes in mRNA expression
(Figure 6A). In contrast, claudin-1 was significantly
(p<0.05) increased by the TGF-B isoforms at both
mRNA and protein levels (Figure 6B). No significant
changes were found examining the expression of
claudin-3, -4 and -7, however there was a tendency for
decreased expression of claudin-3 after 72 h TGF-$1-3
treatment. These changes in expression pattern of tight
junction proteins were accompanied by loss of the
epithelial barrier function in NIH-OVCAR3 cultured
on Transwell filters (Figure 7).

Discussion

Although the role of TGF-B1 in regulating cell prolif-
eration and EMT in ovarian cancers has been studied,
little is known about the function of TGF-$2 and
TGEF-B3 in ovarian tumor progression. Clinical studies
have also shown that the three isoforms are overex-
pressed in ovarian cancers with the predominant
expression patterns either dual or triple co-expression
[11-13] suggesting that TGF-B1, TGF-B2 and TGF-33
may function similarly. In this study, we observed that
all three TGF-P isoforms stimulated an up-regulation
of N-cadherin and migration of NIH-OVCAR3 cells
without down regulation of E-cadherin expression or
concomitant epithelial to mesenchymal transition. Further-
more, these TGF-P isoforms significantly inhibited ovarian
cancer cell growth in a dose-dependent manner, which was
in accordance with the inhibitory effect of TGF-f1 on
NIH-OVCARS3 cells in previous studies [17,18].

TGEF-P may also function as a tumor promoter by indu-
cing EMT along with cell migration and invasion [6,19,20].
Our data suggest that the ovarian cancer cell-line used
went into a partial or incomplete EMT [21] with capacity
for 2-dimensional migration after TGF-B treatment. Dur-
ing transition from epithelial to mesenchymal phenotype it
seems to exist an intermediate phase, expressing two sets
of distinct markers [22] not earlier characterized in ovarian
cancer. EMT is typically characterized by a functional tran-
sition of polarized epithelial cells into mobile mesenchy-
mal cells. The switch of E-cadherin to N-cadherin
accompanied with EMT has long been thought as the
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Figure 3 Cell migration was evaluated by scratch wound assay. Confluent cells were treated with 10 ng/ml TGF-B1, TGF-B2 or TGF-33 in
medium with 1% FBS for 72 h. Wound closure was monitored by light microscopy at 0 and 72 h.

72 hours

main reason for the disruption of tight epithelial cell-cell
contacts. In the present study we found migrating
ovarian cancer cells with unchanged E-cadherin and
increased N-cadherin expression after TGF-p treatment
and normal epithelial morphology. Recent studies have
shown that E-cadherin can be required for intestinal
wound healing [23] and that collective migration of
colon and squamous cell carcinoma is stabilized and
depending on the presence of E-cadherin [21,24]. It is
possible that the continuous expression of E-cadherin
keeps the cells from entering the mesenchymal phenotype.

Our previous study on normal human ovarian surface
epithelium has shown that the expression of Snail,
Slug and Zebl were increased by TGF-B1 along with a
switch from E-cadherin to N-cadherin, decreased occlu-
din expression and induction of complete EMT [7].
Complete EMT has also been described after TGF-

treatment in clearcell ovarian cancer, another ovarian
cancer histologic sub-type [5,6,25]. The zinc finger tran-
scription factor Snail, which is a prompt repressor of E-
cadherin expression [4], was not affected by TGF-p in
OVCARS3. 1t is likely that E-cadherin escape the ex-
pected down regulation due to the lack of Snail expres-
sion. However, in our present study TGF-B induced
increased expression of Zebl, also a known repressor of
E-cadherin [26,27].

E-cadherin has been well established as a tumor
suppressor in a variety of cancer types. Our data adds to
the growing evidence that indicates alternative roles for E-
cadherin, particularly in ovarian cancers [28]. Unlike other
adenocarcinomas such as prostate cancer, E-cadherin
expression is increased in late stage EOC where inva-
sion and metastasis is noticed in the whole abdomen
and expression of E-cadherin was not correlated to
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Figure 4 Effect of TGF-B1, TGF-B2 or TGF-3 on the mRNA and protein expression of adherens junction molecules. (A) Significant
increase of N-cadherin expression was observed in TGF- treated NIH-OVCAR3 cells compared with controls whereas (B) there was no difference
in the mRNA and protein expression of E-cadherin between TGF-f treated NIH-OVCAR3 cells and controls. *P < 0.05.
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patients’ survival in serous EOC [29,30]. High levels of
E-cadherin are ubiquitous expressed in primary ovarian
carcinomas, but is low in normal ovarian tissues. E-
cadherin is also maintained when ovarian carcinomas
metastasize to peritoneum and omentum [30,31]. Previ-
ous studies on cultured breast cancer cells have indi-
cated that decreased expression of E-cadherin does not
necessarily correlate with invasion [32,33]. Our data
supports above clinical findings and suggest that EOC
rather spread in the abdomen through collective migra-
tion of cancer cells with retained E-cadherin expression
then as single cells, reviewed by [21,34].

In the present study we observed coexpression of E-
cadherin and N-cadherin in the TGF-f treated ovarian
cancer cells without changes of morphological feature,

slight decrease of occludin, and reduced transepithelial
resistance all indicating dysfunctional tight junctions. In-
creased claudin-1 could have strengthened the junction
but recent studies suggest that claudin-1 can induce an
EMT invasive phenotype without alterations in morph-
ology [27]. In this process Claudin-1 also up-regulates
Zeb-1 [26,35]. Moreover, N-cadherin can promote inva-
sion and motility even in the presence of E-cadherin in
breast cancer cells, suggesting that N-cadherin has a
dominant effect over the suggested tumor suppressor
functions of E-cadherin [32,33]. Similarly, our study
demonstrated the three TGF-f isoforms could induce a
significant increase of N-cadherin and claudin-1 expression
at both mRNA and protein level and increase migration in
the serous adenocarcinoma cell line, NIH-OVCAR3 in the
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Figure 5 Effect of TGF-B1, TGF-B2 or TGF-83 on mRNA and protein expression of transcription factors. There was (A) no difference in the
mRNA expression of Snail between TGF-f treated NIH-OVCAR3 cells and controls, but (B) an increase of mRNA expression of Zeb 1 was observed
in TGF-3 treated NIH-OVCAR3 cells compared with controls. *P < 0.05.

presence of E-cadherin, which suggests the expression
of E-cadherin does not preclude the TGF- induced
enhanced migration of NIH-OVCARS3.

Ninety percent of ovarian cancer is of epithelial origin.
Still EOC is a very heterogeneous disease comprising of
a diverse group of neoplasms exhibiting a wide range
morphological characteristics, clinical manifestations,
genetic alterations, and tumor behaviors [25,36]. It is his-
tologically sub-grouped into serous, mucinous, endome-
trioid and clear-cell adenocarinomas. The pato-histology
of NIH-OVCAR3 used in the present study is defined
as serous ovarian adenocarcinoma, which is the most
common type and represents 60% of EOC. In a clear-
cell ovarian cancer cell-line all three TGF-P isoforms
were capable of inducing complete EMT, E-cadherin

repression, mesenchymal transition and invasion [6].
Interestingly, histologic subtype is one main difference
between our studies possibly explaining that none of
the three TGF-f isoforms could induce complete EMT
in NIH-OVCARS3 cells. The initiating events in ovarian
cancer development are poorly understood. Recent data
based on specific genetic alterations and unique mo-
lecular signatures suggest that high-grad serous ovarian
cancer could originate from cells within the distal fallo-
pian tube rather than the ovary, while low-grade serous
and the other cancer histologic subtypes are thought to
arise from ovarian surface epithelium lining the ovary
[36]. NIH-OVCAR3, which is originating from a high-
grade serous ovarian cancer could theoretically started in
the fallopian tube and not in the ovary.
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Figure 6 Effect of TGF-$1, TGF-B2 or TGF-B3 on mRNA and protein expression of tight junction molecules. There was a significant
decrease of occludin protein in TGF-3 treated NIH-OVCAR3 cells compared with controls (A), while an increase was noticed of both mRNA and
protein expression of claudin 1 in TGF-B treated NIH-OVCAR3 cells compared with controls (B). *P < 0.05.
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Figure 7 Effect of TGF- isoforms on transepithelial resistance
(TER) in NIH-OVCARS3 cells. Treatment of TGF-31, TGF-32 or TGF-33
caused a successive decrease in TER after 24 h and reached a significant
decrease at 72 h (*P < 0.05). In non-treated cells TER continued to in-
crease to a maximum level of 125 Qcm? at 48 h and 72 h.

Conclusion

The present study describes an atypical response to TGF-p
and its isoforms 1-3 with regard to migration, which may
be described as an incomplete EMT in the most common
type of epithelial ovarian cancer. Epithelial ovarian cancer
commonly metastasize to the surrounding tissue or inside
the peritoneum rather than invade blood vessels to set
distance metastasis. Our result raises the question whether
ovarian cancer primarily spread via collective migration
than via single cell invasion.
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