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Abstract

Background: Chemotherapy either before or after surgery is a common breast cancer treatment. Long-term, high
dose treatments with chemotherapeutic drugs often result in undesirable side effects, frequent recurrences and
resistances to therapy.

Methods: The anti-cancer drug, gemcitabine (GEM) was used in combination with pulse power technology with
nanosecond pulsed electric fields (nsPEFs) for treatment of human breast cancer cells in vitro. Two strategies include
sensitizing mammary tumor cells with GEM before nsPEF treatment or sensitizing cells with nsPEFs before GEM
treatment. Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with 250 65 ns-duration pulses and electric
fields of 15, 20 or 25 kV/cm before or after treatment with 0.38 μM GEM.

Results: Both cell lines exhibited robust synergism for loss of cell viability 24 h and 48 h after treatment; treatment
with GEM before nsPEFs was the preferred order. In clonogenic assays, only MDA-MB-231 cells showed synergism;
again GEM before nsPEFs was the preferred order. In apoptosis/necrosis assays with Annexin-V-FITC/propidium
iodide 2 h after treatment, both cell lines exhibited apoptosis as a major cell death mechanism, but only MDA-MB-231
cells exhibited modest synergism. However, unlike viability assays, nsPEF treatment before GEM was preferred.
MDA-MB-231 cells exhibited much greater levels of necrosis then in MCF-7 cells, which were very low. Synergy
was robust and greater when nsPEF treatment was before GEM.

Conclusions: Combination treatments with low GEM concentrations and modest nsPEFs provide enhanced
cytotoxicity in two breast cancer cell lines. The treatment order is flexible, although long-term survival and short-term
cell death analyses indicated different treatment order preferences. Based on synergism, apoptosis mechanisms
for both agents were more similar in MCF-7 than in MDA-MB-231 cells. In contrast, necrosis mechanisms for the
two agents were distinctly different in MDA-MB-231, but too low to reliably evaluate in MCF-7 cells. While disease
mechanisms in the two cell lines are different based on the differential synergistic response to treatments, combination
treatment with GEM and nsPEFs should provide an advantageous therapy for breast cancer ablation in vivo.

Keywords: Breast cancer, MCF-7, MDA-MB-231, Nanosecond pulsed electric fields (nsPEFs), Non-thermal, Gemcitabine,
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Background
Breast cancer is the most common malignancy in women
that affected an estimated three million women worldwide
in 2008 alone and is a major cause of morbidity and
mortality [1]. Breast cancer growth rates vary considerably
among cancer patients; they grow significantly faster in
younger women [2-7], in recurrent cancers [2] and in
patients with BRCA1 and BRCA2 mutations. [4]. Inci-
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dences of ductal carcinoma in situ (DCIS) have increased
5-fold over the last 30 years (5.8-32.5/100000). Although
the incidence of invasive breast cancer has increased
much less, it is much more common than DCIS (124.3/
100000) [7].
While surgical approaches are frequent, chemotherapy

is a major approach in treating breast cancer, often
with anthracyclines and taxanes. However, there are
significant toxicities with both drugs [8]. In locally
advanced and metastatic breast cancers, gemcitabine
(GEM) has been used in anthracycline-resistant breast
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cancer in combination with paclitaxel [9] or cisplatin
[10,11]. In HER2-positive metastatic disease, GEM also
has been used in combination with trastuzumab, a mono-
clonal antibody that inhibits HER2/neu (ErbB-2) signaling
[12,13]. However, resistances to all of these agents are
common. Associations between resistance and acquisition
of epithelial mesenchymal transition and cancer stem
cell-like phenotypes may be responsible [14]. Specifically,
cisplatin or paclitaxel treated residual cells displayed
higher proliferation markers and cancer stem cell markers
and exhibited significantly higher tumour burden than
untreated cells in a mouse xenograph model [15].
Gemcitabine (dFdC or GEM), an analog of deoxycytidine,

is an anticancer nucleoside pro-drug that is phosphorylated
to mono- di- and tri-phosphorylated metabolites dFdCMP,
dFdCDP and dFdCTP, respectively. It is well characterized
as a radiosensitizer. One likely metabolic action is inhibition
of ribonucleotide reductase, leading to a depletion of dATP
[16,17]. Maximum radiosensitization occurs when cells are
distributed in S-phase and dATP is diminished. GEM
metabolites have other effects on regulatory processes that
enhance GEM actions causing a unique “self-potentiation”
effect [18].
In most recent clinical trials for breast cancer, GEM

was used in combinations with typical chemotherapeutic
drugs and/or monoclonal antibodies to growth factors.
Only a few trials have investigated unique approaches to
address these diseases [19,20]. While many treatment
regimens have shown some promise, treatment failures
are not uncommon and drug resistances continue to be
major barriers for successful treatments. Resistances
against most if not all chemotherapeutic agents appear
to be inevitable and many resistance mechanisms have
been characterized [21-23]. For women with triple-negative
breast cancer, survival time from distant recurrence to
death was 9 months [24]. Clearly, unique treatment options
need to be investigated beyond adding and/or deleting
chemotherapeutic agents in a cocktail of drugs.
One novel pre-clinical treatment strategy uses pulse

power technology, which is used in high power physics
and engineering applications; it is now being developed
for medical applications [25]. This unique strategy delivers
electric pulses with low, non-thermal energy (mJ/cc),
but instantaneous high power (GW) for ultra-short
durations (nanoseconds) and high electric fields (10s of
kV/cm), giving rise to nanosecond pulsed electric fields
(nsPEFs). When considered in the frequency domain, these
extremely short pulse durations and/or their short (fast) rise
and fall times are transformed into high frequency com-
ponents that have greater possibilities for permeabilizing
intracellular vesicles [26] or dissipating the mitochondria
membrane potential [27]. NsPEFs can also trigger other
cell functions, including intracellular calcium fluctuations
[28,29], phosphatidylserine translocation [30], DNA damage
[31,32], unique stress responses [33] as well as activation of
several different kinase signaling pathways and phosphoryl-
ation of their downstream substrates [34-36]. They have
also been shown to induce apoptosis and other forms of
cell death [37,38].
Pulse power using nsPEFs with repetitive pulses has

been shown to eliminate mouse B16f10 melanoma [39]
and was shown to induce apoptosis and other forms of
cell death in B16f10 melanoma [40] and mouse Hepa1-6
hepatocellular carcinoma (HCC) [41] in vivo. Successful
elimination of mouse and human basal cell carcinomas
[42,43], squamous cell carcinoma [44] and human pan-
creatic carcinoma have also been reported [45]. In vitro
studies demonstrated induction of caspase-dependent and
caspase-independent cell death mechanisms through intrin-
sic mitochondria-mediated pathways; extrinsic apoptosis
pathways were not required for nsPEF-induced cell death
[38]. This shows that nsPEFs can bypass cancer mutations
that evade apoptosis induction through mechanisms at
either the DISC or the apoptosome, two major complexes
responsible for caspase-activation and apoptosis [46].
Considering that mechanisms of action of these treat-

ments are likely different, it is possible to achieve higher
therapeutic effects with lower, non-toxic concentrations
of GEM when combined with nsPEFs. We applied this
novel technology of nsPEF in combination with GEM,
which has been shown to eradicate MCF-7 and MDA-
MB-231 cells in vitro [47]. Since nsPEFs have been shown
to delete other cancers, because breast tumor would be
readily accessible to nsPEF electrodes and because GEM
has been used as a sensitizing drug, investigations were
carried to determine if low, non-toxic concentrations of
GEM could be used to sensitize breast cancer cells to
nsPEFs or nsPEFs could be used to sensitize cells to
low doses of GEM such that electric fields and/or fewer
pulse numbers could be used. Results not only indicate
enhanced efficacy for combinations of nsPEFs and GEM,
but also reveal some insight into differences in cell
death and cancer disease mechanisms for MCF-7 and
MDA-MB-231 breast cancer cells in response to GEM
and nsPEFs.

Results
Breast cancer cell sensitivity to gemcitabine
Survival rates of two cell lines treated with GEM are
shown in Figure 1. The percent survival for both cell
lines was less 48 h after treatment compared to 24 h.
Inhibition caused by 0.038 μM and 0.38 μM GEM was
not statistically significant in either cell line 24 or 48 h
after treatment. Since cell death 24 h after treatment
had not reached 50%, IC50 values were determined at
that time. After 48 h IC50 values for MCF-7 and MDA-
MB-231 exposed to GEM are 13.49 μM and 9.54 μM,
respectively. In order to include a concentration of GEM



Figure 1 Dose Responses for gemcitabine – The survival fractions are shown for MCF-7cells (A) and MDA-MB-231 cells (B) treated with
indicated concentrations of gemcitabine for 24 h (black squares) and 48 h (red circles). IC50 values for 48 h treatment are indicated in the text.
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that was below levels of toxicity, 0.38 μM GEM was chosen
for all combination treatment with various nsPEF strengths.

Cytotoxicity induced by combination treatment with
NsPEF and gemcitabine
Two strategies for treatments with combinations of nsPEFs
and GEM were used. One approach was to treat with a low
concentration of GEM to sensitize cells to nsPEF treatment.
The other approach was to use nsPEFs to sensitize cells to
low GEM treatment. The former approach is analogous to
radiosensitization with chemotherapeutic agents sensitizing
cells or tumors to radiation treatment.
Figure 2 shows survival studies 24 (A) and 48 (B) when

MCF-7 cells were treated with GEM before and after
treatment with nsPEFs. In order to maximize potentials
for synergism, a low concentration of GEM was used with
increasing nsPEF treatments with electric fields from
5–25 kV/cm. Tables at the bottom of Figures A and B
indicate synergism quotients for corresponding bar graphs
above that show specific results of GEM alone, nsPEF
alone and combinations with different orders of treatment.
The synergism quotient is defined as the ratio of the effect
of the combination treatment divided by the sum of the
two individual responses. A quotient greater than one
indicates that the combination treatment is better. GEM
alone caused about a 5% decrease in viability and electric
fields alone caused linear decrease in viability from no
significant effect at 5 kV/cm to about 50% cell death at
25 kV/cm. As shown by the synergism quotient in
Tables below the figure for 24 h (Figure 2A) and the
48 h (Figure 2B) after treatment, regardless of the order
of treatments, there was a biphasic effect on synergism,
with synergism greater for 10 and 15 kV/cm than at lower
or higher electric fields. Another trend was that synergism
was greater after 24 h than 48 h after treatments. Finally
for both 24 h and 48 h survival experiments, treatments
with GEM before nsPEFs were better than GEM treat-
ments after nsPEFs. When cells were first treated with
GEM, synergism quotients were from >4 at 24 h and > 3
at 48 h. A similar pattern was seen when cell were treated
with GEM after nsPEFs treatment, but the quotients were
around 2. Observations of synergism at 24 h and 48 h after
treatment indicated that survival mechanisms differed for
GEM and nsPEFs in MCF-7 cells.
Figure 3 shows the same survival experiments in the

same order for MDA-MB-231 cells as that shown for
MCF-7. The 24 h experiments are in Figure 3A and 48 h
experiments are in Figure 3B. GEM alone caused about
a 5% decrease in viability and electric fields alone caused no
significant decrease in viability at 5 kV/cm to about 40%
decrease at 25 kV/cm. However, unlike the linear decline in
survival, nsPEF effects plateaued between 15 and 20 kV/
cm. Synergism was biphasic with greater synergism seen at
10 kV/cm, but synergism tended to be greater at higher
electric fields due to the nsPEF plateau at higher electric
fields. Nevertheless, synergism was greater at 24 h than
48 h regardless of the treatment order. Like that seen for
MCF-7, in MDA-MB-231 cells for both 24 h and 48 h
survival experiments, treatments with GEM before nsPEFs
were better than GEM after nsPEFs. When cells were
treated with GEM first, synergism quotients were from
to >6 at 24 h to >2 at 48 h. Observations of synergism at
24 h and 48 h after treatment indicated that survival mecha-
nisms differed for GEM and nsPEFs in MDA-MB-231 cells.

Effects of nsPEF, gemcitabine and combination treatment
on clonogenics in MCF-7 and MDA-MB-231 cells
In order to determine effects of GEM, nsPEFs and combina-
tions of both on populations of cells to undergo unlimited
cell division and form colonies, Figure 4 shows clonogenic
assays for MCF-7 cells with GEM before and before nsPEFs
(panel A) and for MDA-MB-231 cells with GEM before and
after nsPEFs (panel B). Clonogenic survival is shown on
the y-axis and nsPEFs in kV/cm are shown on the x-axis.
The tables under each figure show synergism quotients
for the respective treatments in each cell line.



Figure 2 MCF-7 cell survival after treatment with gemcitabine, nsPEFs and combination – Experiments were carried out with MCF-7
cells as described in Methods for survival 24 h (A) and 48 h (B) after nsPEF treatment. Synergism quotients (SQ) are shown for both
treatment orders. The statistical significance among groups of nsPEFs, GEM and combination treatment was calculated with ANOVA analysis in
SPSS. The significance between two groups (two orders of treatments) was calculated with Student-t test.
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MCF-7 cells did not exhibit synergism at any electric
field tested for combinations of GEM and nsPEFs regard-
less of the order of treatment. In contrast, MDA-MB-231
cells did show synergism between 10 and 20 kV/cm, espe-
cially when GEM treatment was prior to nsPEF treatment.
Synergism at 25 kV/cm was less meaningful since survival
values were so low. Lower synergism might be expected at
later times since one or both agents could have optimally
activated their respective pathway.
By the end of the clonogenic assay, all cell signaling

pathways will have been fully expressed and likely with
redundancy; the final results here indicate the end conse-
quences of the treatments. Thus, the aftermath of MCF-7
cell response to GEM and nsPEFs suggests that they share
common mechanisms of cell death. In contrast, the after-
effect of MDA-MB-231 cell responses suggests that GEM
and nsPEFs have different mechanisms for cell death. In
this way, GEM and nsPEFs have different effects on these
two human mammary cell lines.

Apoptosis and necrosis mechanisms in response to
combination treatments with NsPEFs and gemcitabine
The survival and clonogenics assays suggest that there are
differences between cell death mechanisms for MCF-7
and MDA-MB 231 cells. In order to characterize cell
death mechanisms into two different categories, Annexin-
V-FITC (Annexin) and propidium iodide (PI) assays for
apoptosis and necrosis (permeabilized cell membrane)
were carried out by flow cytometry. Figure 5 shows a
typical experiment with each cell line that was used to
generate data in Figures 6 and 7.
Figure 5A shows an experiment with MCF-7 cells that

were pulsed with 25 kV/cm with or without GEM added
after the pulses. After treatment, MCF-7 cells exhibited
little or no Annexin-V positive or PI/Annexin-V positive
cells with GEM alone. After the nsPEF treatment, significant
numbers of cells became Annexin-V positive (lower right
quadrant) and small cell numbers were positive for both
markers (upper right quadrant). Still, as indicated by the
synergistic quotients less than 1.0, there were no synergistic
responses when both agents were present for either cell
death condition. Figure 5B shows the same experiment
design with MDA-MB-231 cells. These cells exhibited
little or no Annexin-V positive or PI/Annexin-V positive
cells with GEM alone. In contrast, pulses with an electric
field strength of 15 kV/cm produced cells positive for both
cell death markers. When both agents were included,
there were significant synergistic responses for Annexin-V
positive cells only (lower right quadrant; nearly twice as
many positive cells as the sum of the two individual



Figure 3 MDA-MB-231 cell survival after gemcitabine, nsPEFs and combined treatment - Experiments were carried out with MDA-MB-231
cells as described in Methods for survival 24 h (A) and 48 h (B). Synergism quotients (SQ) are shown for both treatment orders. The statistical
significance among groups of nsPEFs, GEM and combination treatment was calculated with ANOVA analysis in SPSS. The significance between two
groups (two orders of treatments) was calculated with Student-t test.
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responses) as well as synergist responses for cells positive
for both markers (upper right quadrant; more than 7
times the response with the combination than the sum of
the two individual responses.
Figure 6A shows Annexin+/PI- (apoptosis) and Figure 6B

shows Annexin+/PI + (necrosis) for MCF-7 cells 2 hours
after treatment with GEM treatment before and after
nsPEFs. The tables below each figure indicate synergism
for GEM before and after nsPEF treatment. Using these
measurements, the occurrence of apoptosis was much
greater than necrosis in MCF-7 cells; however, there
was no synergism with apoptosis regardless of the order
of treatments. The occurrence of necrosis was so low
that synergism values were less meaningful. At this 2 h
snapshot in MCF-7 cells, GEM and nsPEFs both induce
apoptosis through the same or similar pathways without
much expression of necrosis.
Figure 7A shows Annexin+/PI- (apoptosis) and Figure 7B

shows Annexin+/PI + (necrosis) for MDA-MB-231 cells
2 hours after treatment with GEM before and after nsPEFs.
The tables below each figure indicate synergism for GEM
before and after nsPEF treatment. In contrast to MCF-7
cells, MDA-MB-231 cells exhibited about equal levels of
apoptosis and necrosis. While there was no synergism
for apoptosis with either treatment order, there was
some synergism for necrosis in MDA-MB 231 cells and
in contrast to survival and clonogenics, synergism was
slightly stronger when nsPEFs sensitized cells to GEM. At
this 2 h snapshot in MDA-MB-231 cells, GEM and nsPEFs
both induce apoptosis through the same or similar path-
ways, but they induce different mechanisms of necrosis.

Discussion
NsPEFs have been shown to eliminate a number of
different tumor types in several different animal models
including tumors implanted ectopically, orthotopically
or as xenographs. (See [25] for a review). NsPEFs are
non-thermal and no safety concerns or side effects have
been reported in pre-clinical studies. Effects of nsPEFs
have not been determined for breast cancer cells and
cancer therapy nearly always includes more than one
treatment either sequentially or simultaneously. The strat-
egy here was to look for agents that sensitize to enhance
efficacy of a second treatment. Searching for optimal
therapeutic sensitizers has been a cancer therapy goal
for over 50 years and GEM has been known as a potent
sensitizer for 3 decades [16]. A common approach has
been to use chemotherapeutic agents to sensitize cancer
cells to ionizing radiation. However, other combinations
include sensitizing cancer cells with anti-angiogenic factors,



Figure 4 Clonogenic survival for MCF-7 cell and MDA-MB-231 after gemcitabine, nsPEFs and combined treatment – Clonogenic survival
assays and statistics are described in Methods for MCF-7 cells (A) and MDA-MB-231 cells (B). Synergism quotients (SQ) are shown for both
treatment orders.

Figure 5 Typical figures analyzing Annexin-V-FITC binding and propidium iodide (PI) staining for MCF-7 and MDA-MB-231 cells treated
with gemcitabine, nsPEFs and combinations. Experiments were carried out as described in Methods and shown with GEM alone (0.38 μM),
nsPEF alone at indicated electric fields and GEM after treatment with nsPEFs. Panel A shows an experiment with MCF-7 cells and panel B show
an experiment with MDA-MB-231 cells. Cell populations are shown in quadrants with Annexin-V-FITC levels indicated on the X-axis and PI staining
indicated on the Y-axis. Cells with Annexin-V-FITC labeling only are considered apoptotic (lower right quadrant) and cells with Annexin-V-FITC and PI
labeling are considered necrotic (upper right quadrant). Synergism quotients are shown for each cell death type in the respective quadrants. A typical
experiment is shown for each cell line.
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Figure 6 Cell apoptosis and necrosis for MCF-7 cell after gemcitabine, nsPEF and combined treatment – Experiments were carried out
as described in Methods. Panel A shows MCF-7 cell responses for apoptosis (PI-/FITC+) and panel B shows MCF-7 cell response for necrosis
(PI+/FITC+). GEM was used at 0.38 μM. Data show the apoptotic or necrotic percentages in 10,000 cells analyzed by flow cytometry.
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EGFR blockade or Cox-2 inhibitors, among others [17].
The strategy used in the present study was to use an agent
that is active against a variety of tumors at a low, non-toxic
dose so that it sensitizes tumors to another agent, thus
resulting in a synergistic response. This has two practical
advantages. First, in the present paper both the sensitizing
agent and nsPEFs can be used at more modest “doses”
meaning low, non-toxic concentrations of GEM and lower
electric fields and/or fewer pulses for nsPEFs. Second,
because synergism between two agents indicates that they
have different mechanisms of action, seeking the presence
or absence of synergism for several different GEM and
nsPEF responses introduces some new considerations
about mechanisms of action for these cancer therapies
on two human mammary cell lines. Going a step further,
differences in agent-induced cell death and/or survival
mechanisms between these two cell types implies that their
breast cancer disease mechanisms are very likely different.
Combinations of GEM and nsPEFs resulted in the

presence of synergism for 24 h and 48 h survival with
both mammary cancer cell types. Therefore, at these
indicated times, the overall responses to these agents
must have been initiated from different sites and/or
propagated through different pathways for survival and/or
cell death. For 24–48 h survival, synergism was strongest
at earlier times and at intermediate electric fields. Under
these conditions, both treatments were acting below their
IC50 values, perhaps at their IC15–30 values so that the
“window” or “headroom” for synergism is sufficiently
available. When any one treatment approaches its
maximum effect, the window or headroom is reduced
and synergism cannot be readily observed.
Observations of apoptosis and necrosis 2 h after treat-

ment provided a relatively early snapshot of initial cell
responses to GEM, nsPEFs and combination treatments.
The GEM-nsPEF-induced cell death mechanisms were
different for the two cell types indicating that their
cancer disease mechanisms were also likely different.
For MCF-7 cells, apoptosis was a major mechanism with
very low levels of necrosis. In contrast, MDA-MB-231
cells expressed similar levels of apoptosis and necrosis.
Interestingly, there was no synergism for apoptosis in
MCF-7 and low synergism levels in MDA-MB-231 cells.
Thus, these agents likely use similar mechanisms and/or
share common pathways for cell death induction.
Although several GEM-induced mechanisms are likely

operative, a major action is to inhibit DNA synthesis by
inhibiting ribonucleotide reductase thereby depleting
intracellular pools of dCTP/dATP [48], leading to apop-
tosis through a caspase-8 and mitochondria pathway(s)
[49]. However, cell death and apoptosis mechanisms are
likely cell- and stimuli-dependent. Likewise for nsPEFs,



Figure 7 Cell apoptosis and necrosis for MDA-MB-231 cell after gemcitabine, nsPEF and combined treatment - Experiments were carried
out as described in Methods. Panel A shows MDA-MB-231 cell responses for apoptosis (PI-/FITC+) and panel B shows MDA-MB-231 cell response for
necrosis (PI+/FITC+). GEM was used at 0.38 μM. Data show the apoptotic or necrotic percentages in 10,000 cells analyzed by flow cytometry.
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several cell death mechanisms are likely working, but
one defined in vitro mechanism is through dissipation of
the mitochondrial membrane potential, which is rapid
and significant [27]. This is consistent with the observed
cytochrome c release from mitochondria [37] and caspase-
dependent (apoptosis) (as well as caspase-independent)
mechanism(s) through an intrinsic pathway(s) as defined
in Jurkat cells in vitro [38]. However, there is other
indirect evidence that extrinsic apoptosis mechanisms
may also be operative [50-52]. Based on the absence of
synergism shown here, GEM and nsPEFs are hypothesized
to activate apoptosis by similar mechanisms. While specific
pathways could be different, it is possible that actions
through intrinsic and/or extrinsic pathways that co-activate
caspase-3 could function additively in response to these
two cell death stimuli. Synergism for apoptosis is not
uncommon. For example, it often occurs when a sensitiz-
ing agent induces expression of a receptor that is used by
the second agent [53].
One possible scenario could be that GEM-induced DNA

damage leads to increased expression of Noxa and Puma,
which induce cytochrome c release from mitochondria.
NsPEF-induced loss of the mitochondria membrane
potential could also cause cytochrome c release through a
shared pathway with GEM. These mechanisms would not
necessarily show synergism for apoptosis.
Major actions of GEM and nsPEFs on MDA-MB-231
were nearly equal for apoptosis and necrosis. However, in
contrast to MCF-7 cells, MDA-MB-231 cells exhibited
significant synergism for necrosis. Given that these cells
are seen as intact entities by flow cytometry, they are not
immediately eliminated through an acute cell injury and
membrane rupture and are likely undergoing programmed
necrosis or necroptosis [54]. The presence of GEM-nsPEF-
induced synergism suggests that different necroptotic
mechanisms are operative in MDA-MB-231 cells and
they can be differentially activated by GEM and nsPEFs.
Necroptosis has now been shown to function in physio-
logical processes during development and homeostasis as
well as in pathological activities including inflammatory
diseases [55]. Necroptosis is relatively well defined through
cell death receptors. When ligands bind to death receptors,
the cytoplasmic receptor tail recruits multiple proteins
that form supramolecular complexes that can initiate
cell survival, apoptosis or necroptosis depending on the
composition of the complex. While the makeup of these
complexes depends on the activated death receptor, phos-
phorylation of RIP1-RIP3 kinase complexes appears to be
important for induction of necroptosis [56]. Although
necroptosis pathways in response to GEM or nsPEFs have
not been investigated and specific control of RIP1 and/or
RIP3 phosphorylation that regulates cell survival remains
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to be determined, differential regulation of phosphoryl-
ation provides potentially powerful sites for synergistic or
cooperative regulation of cell signaling.
That GEM can sensitize mammary cancer cells to nsPEF

is analogous to radiosensitization with GEM sensitizing
tumor cells to radiation [16]. However, the sensitization of
cells by GEM and nsPEFs is greater than that observed
with radiosensitization. Synergism quotients or enhance-
ment ratios with nsPEFs and GEM here were as high a
6 or 7, while enhancement ratios for radiosensitization
were 1.36 to 1.81 [48] and 1.30 to 2.82 [57]. Sensitization
of cells with GEM and nsPEFs also differs from radiosensi-
tization, because radiosensitization is not reversible; GEM
can sensitize cells to radiation, but radiation cannot
sensitize cells to GEM. In contrast, for GEM and nsPEFs,
either agent can sensitize the other. However, in general
GEM is a better sensitizer for nsPEFs as opposed to
nsPEFs sensitizing GEM. GEM-induced inhibition of
ribonucleotide reductase, the subsequent depletion of
the dATP pools and redistribution of cells into S-phase is
required for GEM sensitization to radiation [57,58]. GEM
also has some effects on apoptosis; however, the role of
apoptosis in radiosensitization depends on the cell line
rather than representing a general property of the drug
[48]. In other words, it may be due to the cancer disease
mechanism(s) in the cell. This is also likely to be the case
for GEM sensitization to nsPEFs.
When clonogenics were analyzed for these cells, only

MDA-MB-231 showed synergistic responses, indicating
that in the final aftermath of treatment, GEM and nsPEFs
induced different mechanisms of survival/cell death. It
was interesting that MCF-7 cells exhibited synergism 24 h
and 48 h after treatment with GEM and nsPEFs, yet did
not show synergism with clonogenic nor for apoptosis nor
necrosis. This can possibly be explained by a wide range
of mechanisms that are activated directly and indirectly by
these agents that not only include cell death pathways but
also stress, autophagy and cell survival mechanisms. Thus,
synergism with MCF-7 cells in 24 h and 48 h survival
studies may include mechanisms and pathways associated
more with repair and survival than with cell death.
Although GEM and nsPEF combination treatments

have not been used in an animal model, there are several
different strategies to consider for using these combined
treatments in vivo. For example, based on these data,
animals could be treated first with low, non-toxic con-
centrations of GEM for various times to sensitize tumors
to nsPEFs. GEM treatment could be administered system-
ically or locally, and could be present or absent when
nsPEF treatment occurs. It would also be reasonable to
first treat with nsPEFs and then GEM. In any scenario,
there are advantages to these strategies that could decrease
recurrence and lower incidence of drug resistance. With
any of these treatment protocols, cancer cells would not be
exposed to long term drug treatment, which can induce
different cancers with resistant phenotypes over time; the
GEM dose is low and treatment time limited and conse-
quences of a single nsPEF treatment is fast. Although it
has not been directly shown, another possible advantage is
that high nsPEFs can very likely eliminate cancer stem
cells because unlike chemotherapy, nsPEF ablation can
eliminate all cells regardless of their proliferation rates
when electric fields are sufficiently high [59].

Conclusions
These studies show enhanced cytotoxicity when GEM and
nsPEFs are combined. The treatment order is flexible
because either agent can sensitize the other. Analysis of
synergism indicates that GEM and nsPEFs share common
mechanisms and pathways of cell death, especially in
MCF-7 cells; however, the two agents exhibit different
mechanisms of necrosis, most likely necroptosis, in
MDA-MB-231 cells. These findings also indicate that
mechanisms of oncogenesis are different in the two cell
lines. Finally, these studies show that combination treat-
ment with GEM and nsPEFs should provide an advanta-
geous therapy for breast cancer ablation in vivo.

Methods
NsPEF generator
The nsPEF generator was established on a transmission
line circuit that was charged from a high-voltage power
supply [60]. The breakdown voltage was adjusted by the
distance of spark gap. The waveforms were monitored
using a digital phosphor oscilloscope (DPO4054. Tektro-
nix. USA) equipped with a high voltage probe (P6015A.
Tektronix.USA).

Cell lines and cell culture
Human breast cancer cell line MCF-7 and MDA-MB-231
were gifts from Prof. Jiangzhong Xi of the Department
of Biomedical Engineering in Peking University. Both
cell lines were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, ATCC formula) with 10% FBS (Sijiqing,
Hangzhou, China) and supplemented with 1% penicillin-
streptomycin. Cells were maintained in the atmosphere of
5% CO2 at 37°C.

NsPEF applications
Cells were cultured as monolayers and maintained in
exponential growth in a humidified atmosphere with 5%
CO2/95% at 37°C. When cells were 60-70% confluent
they were detach from dishes with 0.25% trypsin (Gibco)
and then suspended in complete growth medium. A
400 μl cell suspension (1.2 × 106/ml) was dispensed into
cuvettes (Bio-Rad) with 2 mm gaps and exposed to 250
pulses with duration of 65 ns and electric field strengths
of 15 kV/cm, 20 kV/cm and 25 kV/cm. The temperature
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of the cell suspension was recorded every 15 seconds
during pulsing. After 250 pulses at 25 kV/cm, the
temperature in the cell suspension increased less than
2°C (23.6-25.2°C). The temperature change was within
the tolerance of cells, so the measured effects were not
due to thermal changes of nsPEF.

Gemcitabine exposure and combination treatments of
gemcitabine and nsPEF
For gemcitabine treatment, cells were detached with tryp-
sin and then dispensed into 96-well plates and incubated
with GEM (0.038, 0.38, 3.8, 38.0, and 380.0 μM) for 24 h
or 48 h and then assayed with MTT. For nsPEF treatment,
cells were detached and dispensed in cuvettes and treated
with nsPEFs at electric fields of 0 15, 20 and 25 kV/cm.
Cells were then seeded into 96-well plates and cultured
for 24 h/48 h before MTT assays. In the treatment of sen-
sitizing cells with nsPEFs before GEM treatment, cells
were detached and treated with nsPEFs, then dispensed
into 96-well plates and incubated with GEM for 24 h and
48 h before MTT assay. In the treatment of sensitizing
cells with GEM before nsPEFs exposure, cells were
incubated with 0.38 μM GEM for 24 h before they were
detached with trypsin and pulsed. Cells were then seeded
into 96 well plates, incubated for 24 h before MTT assays.
A synergism quotient is defined as the effect (response) of
the combination treatment divided by the sum of the two
individual effects (responses). Thus, any value greater
than 1.0 indicates synergism. The presence of synergism
indicates that the two treatments act at different sites
and/or through different mechanisms of action for the
measured response. The absence of synergism indicates
that the two treatments act at common sites and/or
through common pathways.

Cell viability
Cells were dispensed into 96-well plates and incubated
with 20 μl freshly prepared MTT solution (5 mg/ml) at
37°C. For each sample there were 6 replicates. After
4 hours, culture medium was removed and 150 μl DMSO
was added to dissolve the purple formazan crystals, and
then OD values were obtained by a microplate reader at
492 nm. The survival fraction (SF) was calculated as:

SF ¼ ODT

ODC
� 100%

where ODC and ODT were the optical absorption (OD)
values for control and treated groups, respectively.

Flow cytometry
Was performed according to instructions of the Annexin
V-FITC apoptosis kit (Sigma). For individual treatments,
0.38 μM GEM was incubated for 24 h and then analyzed
by flow cytometry. Cells were treated with nsPEFs and
analyzed 2 h later by flow cytometry. For combination
treatments GEM was incubated for 24 h, then treated
with nsPEFs and analyzed by flow cytometry 2 h later.
Alternatively, cells were treated with nsPEFs and then
0.38 μM GEM was added and incubated for 2 h before
analysis by flow cytometry. After treatments, 1 × 106 cells
were harvested and washed twice by PBS and resuspended
in 500 μl binding buffer. Then 5 μl Annexin-FITC and
5 μl propidium iodide (PI) were added to the suspension
and incubated in dark for 15 min before detection by
flow cytometry (FACSCalibur). Viable cells are defined
as Annexin V-FITC and PI negative; apoptotic cells are
defined as Annexin V-FITC positive, PI negative; necrotic
cells are defined as Annexin V-FITC and PI positive.

Clonogenic assay
Cells in log phase growth were collected and exposed to
nsPEFs and then seeded into 6-well plates in complete
growth medium. For GEM treatment or the combination
treatment, medium with 0.38 μM GEM was then added
to cells. Cells were incubated at 37°C for 7 days. After
washing twice with PBS, cells were fixed with 4%
glutaraldehyde for 30 min and then dyed with Giemsa
solution. Cell colonies with greater than 50 cells were
counted with microscope. Plating efficiency (PE) and cell
survival SF ¼ NPT

NCT�PE � 100% fraction (SF) were calculated

as following:

PE ¼ NPC

NCC
� 100%

where NPC was the number of colonies counted and NCC

was the number cells seeded in the control group, while
NPT and NCT were the number of colonies counted and
cells seeded, respectively, in the treated group.

Statistical analysis
All data were processed by Origin Professional 8.0 soft-
ware. The statistical significance among groups of nsPEF,
GEM and combination treatment was calculated with
ANOVA analysis in SPSS. The significance between two
groups (two orders of treatments) was calculated with
Student-t test) and considered when p < 0.05.
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