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Arf6 regulates EGF-induced internalization of
E-cadherin in breast cancer cells
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Abstract

E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal
transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer
cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6
on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed
that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml.
Meanwhile, EGF treatment markedly increased Arf6 activation. Arfé was involved in complexes of £-cadherin, and
more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and
immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6é siRNA suppressed
EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential
role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arfé on promoting

breast cancer cell metastasis.
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Introduction

Epithelial-mesenchymal transition (EMT) is an essential
phenotypic conversion that has been implicated in the
initiation of metastasis for breast cancer progression
[1,2]. At the invasive front of the breast tumor, EMT is
provoked by signals that cells receive from their micro-
environment, such as TGF-B, Wnt, and EGF [3-5]. In the
subsequent EMT processes, breast cancer cells lose cell-cell
junction, and gain migratory and invasive properties, pro-
viding them a distinct advantage in tumor progression and
metastasis. However, the molecular mechanisms underlying
loss of cell-cell junction are poorly understood.

E-cadherin is a major component of the adherens junc-
tion (AJ), at which it provides cell-cell adhesion through
homophilic binding between molecules on adjacent epithe-
lial cells [6]. Previous studies reported that E-cadherin
loss results in breakage of cell-cell adhesion, and in-
duction of multiple transcription factors, which con-
tributes to EMT and metastatic dissemination [7]. As
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we know, the situation of E-cadherin in epithelial cells
is not a static state; it undergoes constitutive internal-
ization and trafficking back to the plasma membrane
at the basolateral membrane, and is subject to stringent
cellular control [8,9]. Although loss of surface E-cadherin
has often been linked to repression of E-cadherin ex-
pression, excessive internalization and/or degradation
of E-cadherin is also responsible for the down-regulation
of surface E-cadherin [10]. In fact, E-cadherin internaliza-
tion in response to HGF is accompanied by the disruption
of cell-cell adhesion and scattering of cells [11]. Neverthe-
less, the mechanisms governing E-cadherin internalization
in breast cancer cells are still need to be explored.

Arf6, a member of the ADP-ribosylation factor (Arf)
family, has emerged as a critical regulator of membrane
traffic and cytoskeletal organization [12]. Like all GTPases,
Arf6 interact with two general types of regulatory proteins:
guanine nucleotide exchange factors (GEFs) and GTPase-
activating proteins (GAPs). In a study of Mardin-Darby ca-
nine kidney (MDCK) epithelial cells, overexpression of
SMAP1, a GAP for Arf6, strongly inhibited basal, as well
as phorbolester-induced, internalization of E-cadherin [13].
By contrast, GEP100, a GEF for Arf6, links EGER signaling
to Arf6 activation to induce invasive activities of breast
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cancer cells [14]. Since Arf6 has been proposed to function
as a critical determinant of disassembly of AJs and cell mi-
gration, and loss of functional E-cadherin is regarded as a
hallmark of EMT and cancer cell invasiveness, thus, it
is interesting to explore whether the Arf6 is involved
in E-cadherin internalization in breast cancer cells.
Recent studies including the results from our laboratory
showed that Arf6 activation could be induced by EGF and
act as a mediator of cell migration and invasion in various
types of cancer including breast cancer cells [14-17]. Here,
we used human breast cancer cell lines MCF-7 and T47D
to examine the effects of EGF on E-cadherin internaliza-
tion. Using immunofluorescence and immunoblotting
analysis, we further explored the involvement of Arf6 in
EGEF-induced alteration of E-cadherin internalization.

Materials and methods
Cell culture and transfection
Human breast cancer cell line MCF-7, T47D (ATCC,
Manassas, VA) was maintained at 37°C in Dulbecco’s
modified Eagle’s medium (DMEM, high glucose) (Hyclone,
ThermoScientific, Waltham, MA) supplemented with 10%
(v/v) fetal bovine serum (FBS) (Hyclone), 100 U/mL peni-
cillin and 0.1 mg/mL streptomycin in a humidified incuba-
tor with 5% CO,. Cells were made quiescent by serum
starvation overnight followed by treatment with recombin-
ant human EGF (rhEGE, R&D Systems, Minneapolis, MN).
Full-length Arf6-T27N (kindly provided by Dr. Julie G.
Donaldson, Laboratory of Cell Biology, NIH) was cloned
into pEGFP-N1 vector. Cells, when approximately 80%
confluent, were transfected with empty vector or pEGFP-
N1 expressing Arf6-T27N using Lipofectamine 2000 as
instructed by the manufacturer (Invitrogen, Carlsbad,
CA). The sequences of small interfering RNA (siRNA) for
Arf6 were as follows: #1, 5'-GUGGCAAAUAAUGAG
UAAUTT-3, #2, 5'-GCGACCACUAUGAUAAUAUTT-3,
and #3, 5'-GACGCCAUAAUCCUCAUCUTT-3’; and the
sequence of control siRNA was 5'-UUCUCCGAACGUGU
CACGUTT-3" (GenePharma Co., Shanghai, China). Cells
were transfected with control siRNA or Arf6 siRNA with Li-
pofectamine 2000, according to the manufacturer’s instruc-
tion. Cells were allowed to grow for 24 to 48 h post
transfection. Before EGF treatment, cells were made quies-
cent by serum starvation overnight.

Immunoblotting analysis

Subconfluent cells were washed with PBS, and lysed with
RIPA lysis buffer (150 mmol/L NaCl, 50 mmol/L Tris—HCl
(pH 7.4), 1% Triton X-100, 1% sodium deoxycholate, 0.1%
SDS) with 1 mmol/L sodium orthovanadate, 1 mmol/L
PMSE, and 1% cocktail of protease inhibitors (Sigma, St.
Louis, MO). The lysates were clarified by centrifugation at
12000 g for 20 min at 4°C and separated by SDS-PAGE
followed by transfer onto nitrocellulose membranes. The
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following antibodies were used: mouse anti-E-cadherin
antibody (BD Biosciences, San Jose, CA), goat anti-
biotin antibody (Sigma), mouse anti-GAPDH antibody
(KangChen Bio-tech, Shanghai, China), rabbit anti-
GEP antibody (Cell Signaling Technology, Beverly, MA),
rabbit anti-Arf6 antibody (Abcam, Cambridge, MA). Pro-
tein bands were detected by incubating with horseradish
peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology) and visualized with ECL reagent (Milli-
pore). Digital images of immunoblots were obtained with
a Chemidoc XRS and analyzed using the image analysis
program Quantity One (Bio-Rad, Hercules, CA).

Immunofluorescence microscopy

Cells adhered on glass cover slips were fixed with 4%
paraformaldehyde for 20 min, washed with PBS, and
then permeabilized in 0.1% Triton X-100/PBS. After
blocking in PBS containing 1% bovine serum albumin
(BSA) for 1 h at room temperature, the cells were incu-
bated with primary antibody overnight at 4°C followed
by incubation with FITC or rhodamine conjugated sec-
ondary antibody for 1 h at room temperature within a
moist chamber. Following wash with PBS, the cover slips
were mounted on glass slides with DAPI Fluoromount
G (Southern Biotech, Birmingham, AL). Images were ac-
quired with an Olympus BX51 microscope coupled with
an Olympus DP70 and prepared for publication with
Adobe Photoshop (Adobe Systems, Unterschleissheim,
Germany).

Pulldown assays

Active Arf6 was measured as instructed by the manufac-
turer (Promega, Madison, WI). GST-GGA3 (a gift from
Drs. James E. Casanova and Kathryn Davis, University of
Virginia, VA) was used for capturing active Arf6 in cell
lysates. Briefly, the GST fusion proteins were purified
from BL21 bacteria and isolated by incubation with
MagneGST Glutathione Particles (Promega) for 30 min at
4°C. After treatment of cells with the appropriate stimuli,
cells were lysed and equal volumes of total cellular protein
were incubated with particles carrying GST-fusion protein
for 1 h on a rotating wheel at 4°C. The particles were then
washed five times with Binding/Wash Buffer (4.2 mmol/L
Na,HPO,, 2 mmol/L. KH,PO,, 280 mmol/L NaCl, and
10 mmol/L KCI, pH 7.2), solubilized in 1 x SDS sample
buffer and then subjected to SDS-PAGE and immuno-
blotted with antibody against Arf6.

Internalization assay

Quantification of internalized biotinylated E-cadherin at the
cell surface was carried out by international assay. Briefly,
the cell surface was labeled for 1 h on ice with 0.2 mg/mL
cleavable, membrane-impermeable EZ Link Sulfo-NHS-SS-
Biotin (Thermo Fisher Scientific Inc, Rockford, IL) in PBS
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supplemented with 1 mmol/L CaCl, and 1 mmol/L MgCl,.
After quenching with DMEM, one sample of the cells was
directly lysed and the remaining samples were incubated in
DMEM with or without EGF at 37°C for the indicated
periods. Subsequently, surface biotin was stripped by
two 20 min washes of glutathione solution (50 mmol/L
glutathione, 75 mmol/L NaCl, 75 mmol/L NaOH, and
1% BSA) at 0°C. Remaining biotinylated proteins were
sequestered inside cells by endocytosis and were there-
fore protected from glutathione stripping. Cells were
then washed, lysed and incubated with streptavidin
beads (Sigma) overnight at 4°C to capture the biotinyl-
ated proteins, and then the samples were resolved by
SDS-PAGE and immunoblotted with antibody against
E-cadherin.

Page 3 of 9

Co-immunoprecipitation

Cells were lysed in lysis buffer as described above and
200 pg fresh protein was incubated with anti-E-cadherin
antibody at 4°C overnight followed by 2 h incubation
with Protein A + G Agarose (Beyotime, Nantong, China).
The beads were washed three times, solubilized in 1 x
SDS sample buffer and resolved by SDS-PAGE followed
by immunoblotting analysis.

Statistical analysis

Data were analyzed by Image] and statistical analyses
were carried out using the SPSS software version 15.0
(SPSS Inc., Chicago, IL). Student’s ¢ test was used to
analyze differences between two groups. Statistical sig-
nificance was considered when P < 0.05.
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Figure 1 EGF promotes internalization of E-cadherin in MCF-7 cells. (A) Levels of biotin-labeled £-cadherin in MCF-7 cells under EGF (50 ng/mL)
treatment for up to 60 min were analyzed by internalization assays. (B) Levels of biotin-labeled £-cadherin under different concentrations of EGF for
15 min were analyzed by internalization assays. (C) Representative micrographs of cells treated with EGF (50 ng/mL) for 15 min and stained for
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distribution of £-cadherin using FITC-conjugated secondary antibody (green). Cells were counterstained with DAPI (blue). Images are representative
of at least 3 independent determinations. Scale bar, 10 um. *: P < 0.05, **: P < 0.01, referring to the difference between cells treated with and those
without EGF.
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Results

EGF induces internalization of E-cadherin in breast cancer
cells

To assess the effect of EGF on E-cadherin internalization
in breast cancer cells, we treated MCF-7 cells with EGF,
and measured internalized E-cadherin levels by internal-
ization assays. As described in Materials and Methods,
surface proteins of MCE-7 cells were labeled with cleav-
able biotin. Compared with control cells, a greater amount
of biotinylated E-cadherin accumulated in the cytoplasm
of MCEF-7 cells treated with EGF for 15 min (Figure 1A).
To determine the optimal concentration of EGF for
E-cadherin internalization, we allowed surface-biotinylated
E-cadherin to be internalized over a range of EGF con-
centrations. We found that EGF potently stimulated E-
cadherin internalization, which peaked at 50 ng/ml
EGF, with an approximately 2-fold increase over untreated
cells (Figure 1B). Of note, the total amount of E-cadherin
remained unchanged after EGF stimulation in all cells
(Figure 1B). Furthermore, immunofluorescence assays
revealed a significantly greater number of internalized
E-cadherin particles in MCEF-7 cells following incuba-
tion with 50 ng/mL EGF than that of untreated cells
(Figure 1C). Accordingly, EGF was used at 50 ng/mL
in subsequent experiments.
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E-cadherin forms complexes with Arf6

Although Arf6 was proved to be involved in EGF-induced
E-cadherin internalization, the precise mechanisms under-
lying this regulation were poorly known. We therefore we
sought to examine whether tyrosine phosphorylation of
E-cadherin occurred in our experimental system. MCF-7
cells treated with EGF at different time points were lysed,
and followed by immunoprecipitation and immunoblot-
ting as indicated. We found that E-cadherin only showed
visible signs of basal tyrosine phosphorylation, which was
elevated after stimulation with EGF and peaked at 15-30
min (Figure 2A). Next, we analyzed whether a physical
interaction between Arf6 and E-cadherin existed in
MCE-7 cells. We examined the physical interaction be-
tween these two proteins in MCF-7 cell lysates by co-
immunoprecipitation assay using an anti-Arf6 antibody.
We observed that the association between Arf6 and
E-cadherin was significantly increased in EGF-treated
cells than that in untreated cells (Figure 2B). To deter-
mine if this association was related with Arf6 activation,
we turned to pulldown assay. Likewise, activated Arf6 was
found to associate with E-cadherin, and E-cadherin was
pulled down in greater amounts with Arf6 when the activ-
ity of the latter was increased (Figure 2C). These results
showed that E-cadherin became associated with Arf6
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Figure 2 EGF stimulates interaction of E-cadherin with Arf6. (A) Effect of EGF on the tyrosine phosphorylation of £-cadherin under EGF
(50 ng/mL) treatment for up to 30 min were determined by immunoprecipitation; GAPDH was used as a loading control. n =3 for the
experiments above. (B) Cells treated with EGF (50 ng/mL, 15 min) were immunoprecipitated with anti-Arf6 antibody, followed by immunoblotting
for E-cadherin. The second top panel shows immunoprecipitated Arfé. (C) Co-immunoprecipitation of £-cadherin by activated Arfé was determined.
Expression of activated Arf6 in total cell lysates is shown in the bottom panels. n = 3 for all experiments. *: P < 0.05, **: P < 0.01, referring to the
difference between cells treated with and those without EGF.
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during internalization, which may profit from the activa-
tion of Arf6.

EGF-induced E-cadherin internalization requires Arf6
activation

We next examined whether endogenous Arf6 activation
also changed after EGF treatment by pulldown assays.
We observed that Arf6-GTP was significantly elevated at
5 min after stimulation with 50 ng/mL EGF with max-
imal activation at 15 min (Figure 3A), suggesting that
Arf6 may participate in the regulation of E-cadherin
internalization. To confirm this supposition, we trans-
fected MCEF-7 cells with GFP-tagged Arf6-T27N plas-
mid, a dominant negative construct of Arf6. The
internalization assays showed that internalized biotinyl-
ated E-cadherin by EGF was much less in Arf6-T27N
transfected cells than those transfected with empty GFP
vectors (Figure 3B). As shown in FigdA&4B, Arf6 siRNA
(#2) greatly knocked down Arf6 expression in T47D
(Figure 4A) and MCEF-7 cells (Figure 4B), as assessed
by immunoblotting analysis. Accordingly, Arf6 siRNA
(#2) was used in subsequent experiments. As expected,
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Arf6 knockdown resulted in a significant reduction of
EGF-induced E-cadherin internalization in both T47D
(Figure 4C) and MCEF-7 cells (Figure 4D). The results
were confirmed by immunofluorescence assays show-
ing that EGF-induced E-cadherin internalization was
largely abolished by transfection with Arf6-T27N plas-
mid in MCEF-7 cells (Figure 5A). In T47D cells, EGE-
induced E-cadherin internalization was also suppressed
by transfection with Arf6 siRNA (Figure 5B). Taken to-
gether, these results demonstrated that Arf6 activation is
required for EGF-induced E-cadherin internalization in
breast cancer cells.

Discussion

EGF signaling is implicated in regulating mammary
gland morphogenesis and development, while aberrant
EGER activity is associated with EMT-associated migra-
tion and invasion in normal and malignant mammary
epithelial cells [5]. The focus of this study was to de-
termine the mechanism through which EGF regulates
E-cadherin distribution in breast cancer cells, which is
regarded as the first step of EMT. Our results indicate
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Figure 3 Arf6 activation is required for internalization of E-cadherin by EGF. (A) MCF-7 cells were treated with EGF (50 ng/mL) for up to
60 min, and Arf6 activation were determined by pulldown assay. **: P < 0.01, referring to the difference between cells treated with and those
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referring to the difference between cells transfected with Arf6 siRNA plus EGF and the cells transfected with control siRNA plus EGF.
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that Arf6 plays an important role in the regulation of
E-cadherin internalization in response to EGF, and
suggest that Arf6 may exert its function by physically
interacting with E-cadherin in breast cancer.

A primary observation in the present study is that
EGF enhances internalization of E-cadherin from cell
membranes without affecting the total protein level of
E-cadherin, suggesting that E-cadherin is internalized
but not degraded in our observation period. In parallel,
enhanced co-localization between E-cadherin and early
endosome antigen 1 (EEA1) was observed (Additional
file 1: Figure S1). EEA1 has an important role in endoso-
mal trafficking and is localized exclusively to early endo-
somes. The results suggest that E-cadherin is localized
to endosomes after EGF stimulation and then may be
targeted to either the recycling or lysosome-dependent
degradation pathway.

An association between E-cadherin phosphorylation
and its internalization has been reported. In some cell
types, E-cadherin is known to be highly phosphorylated
within the Ser cluster in the cytoplasmic domain [18].
Interestingly, we observed that EGF stimulation was ac-
companied by increased tyrosine phosphorylation of
E-cadherin. Our result is confirmed by the demonstration
that point mutation of tyrosine phosphorylated site of vascu-
lar E-cadherin prevents vascular E-cadherin internalization
in response to bradykinin [19]. Although phosphorylation of
E-cadherin by PKD1 is reportedly associated with increased
cellular aggregation and decreased cellular motility in
prostate cancer [20], our result is consistent with the
demonstration that E-cadherin tyrosine-phosphorylation
status contributes to its ubiquitination and subsequent
increase in cell migration [21]. Therefore, it may be
reasonable to think that in MCEF-7 breast cancer cells,



Xu et al. Cancer Cell International (2015) 15:11

Page 7 of 9

A E-cad

Vector

Vector
+EGF

Arf6-T27N
+EGF

B E-cad

siControl

SiControl
+EGF

SiArf6
+EGF

—>

Figure 5 Effect of Arf6 inactivation on E-cadherin location in breast cancer cells. (A) Representative micrographs of MCF-7 cells treated with
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immunofluorescence assay. The arrow shows that cells transfected with Arf6 sSiRNA showed weaker £-cadherin internalization than control cells
after EGF treatment. Scale bar, 10 um. Images are representative of at least 3 independent determinations.
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EGF-induced E-cadherin internalization could be me-
diated by its tyrosine phosphorylation modifications.
Arf6 can be activated by various growth factors, such
as vascular growth factor [22], colony-stimulating factor
[23], and G protein coupled receptor agonists [24]. Re-
cent studies including the results from our laboratory
showed that EGF treatment also could induce Arf6 acti-
vation and increased breast cancer cell migratory poten-
tial [14-16]. It should be mentioned that several studies
have examined the role of Arf6 function in E-cadherin
trafficking, but controversy still remains. Palacios et al.
reported that the expression of Arf6-Q67L, a dominant

positive construct of Arf6, induced a loss of E-cadherin
from AJs in MDCK cells [25]. In HepG2 cells, depletion
of GEP100, one special GEF for Arf6, resulted in upregu-
lation of E-cadherin content and blockade of E-cadherin
redistribution induced by HGF [26]. Conversely, Paterson
et al. found that expression of Arf6-Q67L prevented
internalization of E-cadherin into diffuse small vesicles,
while Arf6-T27N expression had no apparent effect on
E-cadherin internalization [27]. We show here that EGF
triggers a rapid stimulation of Arf6 activity. When Arfé
activity was blocked by ectopic expression of a dominant-
negative Arf6 mutant, or silenced by Arf6 siRNA, EGE-
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stimulated E-cadherin internalization was dramatically di-
minished. Therefore, our results suggest that Arf6 activa-
tion serves as a mediator of EGF-stimulated E-cadherin
internalization in breast cancer cell. The different results
gained by different groups may be due to the different cell
systems used and receptor-coupled status in these studies.

E-cadherin can form multicomponent complexes with
EGEFR and other receptor tyrosine kinases (RTKs) at the
basolateral areas of polarized epithelial cells [28-30].
Here, we noticed that Arf6 binds to E-cadherin in MCEF-
7 cells. Bach et al. have announced that M-cadherin re-
cruited a multi-protein “fusion complex” composed of
Arf6, Trio, and Racl in C2C12 mouse myoblasts [31].
As members of the cadherin superfamily, E- and M-cad-
herin share similar structures, and it is not surprising
that E-cadherin can associate with Arf6. Our results also
showed that co-localization between Arf6 and E-cadherin
became stronger in EGF-stimulated cells. In addition,
E-cadherin became associated with more Arf6 with in-
creased activation of Arf6, which decreased when Arf6
was inactivated. Therefore, it is reasonable to think that
Arf6 may promote E-cadherin internalization through
physical association with E-cadherin on its activated state,
although the domain in Arf6 that binds to E-cadherin
needs to be further investigated.

In summary, this study highlights the role of Arf6 that
accounts for E-cadherin internalization. Arf6 may function
on its GTP-bounded status to promote EGF-stimulated
E-cadherin internalization in breast cancer cells. These
findings are of potential pathophysiological importance
for understanding Arf6 which mechanistically behaves
as a tumor promoter that leads to structural loss of ad-
hesion and contributes to aggressive phenotypes in
breast cancer.

Additional file

Additional file 1: Figure S1. Internalized £-cadherin enters the early
endosomal compartment. Representative micrographs of cells treated
with EGF (50 ng/mL) for 15 and 60 min and stained for distribution of
E-cadherin using FITC-conjugated secondary antibody (green) and
EEA1 using rhodamine-conjugated secondary antibody (red). Scale bar,
10 pm.
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