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Abstract

Background: Germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene predispose individuals
to clear cell renal carcinomas, hemangioblastomas, and pheochromocytomas. The VHL gene product forms an
ubiquitin E3 ligase complex, with regulation of hypoxia-inducible factor alpha (HIF-q) as its best known function.
Lack of VHL expression has been shown previously to sensitize renal cells to apoptosis caused by certain cellular
stresses. In this report, the role of HIF-a in apoptosis was investigated using two parent VHL-null renal carcinoma
cell lines.

Methods: 786-O and RCC10 renal carcinoma cell lines with manipulated levels of VHL, HIF-1q, or HIF-2a were
subjected to cellular stresses and analyzed by western blotting for the abundance of apoptotic markers.

Results: Cell lines expressing mutant VHL proteins that were unable to regulate HIF-a had increased levels of
apoptosis when irradiated with ultraviolet (UV) light. The influences of the two major isoforms of HIF-a, HIF-1a

and HIF-2a, on apoptosis, were compared by creating cell lines in which levels of each isoform were modulated
via short hairpin RNA interference. In UV-irradiated cells, HIF-2a expression was determined to promote apoptosis,
whereas HIF-1a was anti-apoptotic. In cells deprived of either glucose or serum, HIF-1a expression was generally
anti-apoptotic, while HIF-2a expression was observed to either promote apoptosis or have less of an influence on
apoptosis, depending on the cell line used.

Conclusions: HIF-1a and HIF-2a exerted distinct effects in each of the conditions tested, with expression of HIF-Ta

largely blocking apoptosis and HIF-2a generally promoting apoptosis. These results reinforce that HIF-1a and HIF-2a
have distinct biological roles and that their relative expression levels may influence some therapeutic interventions

that are dependent on apoptosis.
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Background

Inactivation of the von Hippel-Lindau (VHL) tumor sup-
pressor gene occurs in VHL disease, an inherited cancer
syndrome that predisposes affected individuals to a num-
ber of benign and malignant tumors that may affect vari-
ous organs such as the kidneys, the central nervous
system, the retina, and the pancreas [1]. The VHL protein
(pVHL) is a part of an ubiquitin E3 ligase complex that
targets proteins for proteolysis [2,3]. One important target
of pVHL ubiquitination is hypoxia-inducible factor alpha
(HIF-a), a subunit of the transcription factor HIF, which
up-regulates hypoxia inducible genes [4-6]. Renal cell
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carcinoma is particularly dependent on loss of func-
tional VHL and the ensuing up-regulation of HIF-a and
HIF transcriptional targets [7].

Although loss of VHL can lead to up-regulation of
both HIF-1a and HIF-2a isoforms, there are some func-
tional differences that exist between these two isoforms.
While there are many common transcriptional targets, it
appears that each HIF-a isoform has some distinct genes
that it can transactivate [8]. For example, HIF-1a, but not
HIF-2a can direct expression of glycolytic genes [9] and
HIF-2a, but not HIF-la can up-regulate expression of
cyclin D1, transforming growth factor alpha (TGF-a) and
vascular endothelial growth factor VEGF [8,10]. Through
opposing functional interactions with the cMyc oncopro-
tein, HIF-1a has been seen to slow down the cell cycle
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and tumor growth, whereas HIF-2a has been seen to pro-
mote cell proliferation [11]. In renal carcinoma, loss of
VHL can lead to sustained up-regulation of both HIF-1a
and HIF-2a isoforms in some tumors or only HIF-2a in
other tumors, but not solely HIF-1a [12]. Accordingly, it
is not surprising that HIF-2a, but not HIF-1a, has been
seen as the major driver of renal tumorigenesis [7,13].

Previous studies have shown that VHL expression can
protect renal cells against some pro-apoptotic cellular
stresses. Reintroduction of pVHL into VHL-deficient cells
leads to protection from the cytotoxic effects of serum
withdrawal, glucose deprivation, impaired protein process-
ing, chemical hypoxia, and UV radiation [14-17]. It is
likely that VHL exerts some of these effects through regu-
lation of HIF-a, although it is presently unclear whether
regulation of HIF-1a or HIF-2a is more important for this
effect. While some differences in the regulation of pro-
and anti-apoptotic genes by HIF-1a and HIF-2a have been
described [8,9,18], it has not been fully elucidated whether
there are distinct influences of HIF-1a versus HIF-2a on
apoptosis due to various stimuli. Here, we carry out a set
of experiments to investigate whether expression levels of
HIF-1a and HIF-2a have differential effects on apoptosis
in renal cells subjected to certain stresses.
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Results

Apoptosis in UV-treated 786-0 cells with mutant VHL
proteins correlates to HIF-2a levels

Prior experiments had showed that VHL expression pro-
tects 786-O cells from UV-mediated apoptosis [16]. To
see whether various mutant VHL proteins share this prop-
erty, a panel of VHL mutants corresponding to all VHL
disease subtypes [19] was stably expressed in 786-O cells
(Figure 1A, top panel) (VHL type 1: del 114-178 and RC
161/2 QW,; type 2A: Y98H; type 2B: R167W; type 2C:
L188V). As seen previously, cells expressing mutant VHL
that is associated with type 1 VHL disease, as well as con-
trol cells had high levels of HIF-2a (Figure 1A, middle
panel), the only HIF-a isoform that is expressed in the
786-0O cell line [4]. The cell lines were subjected to UV
treatment and apoptosis was observed via western blotting
for poly (ADP-ribose) polymerase (PARP), with presence
of an 85 kDa cleaved PARP fragment indicating apoptosis
(Figure 1B, top panel). The control and type 1 mutant
VHL cell lines containing increased HIF-2a showed
higher levels of the cleaved PARP. One type 2B VHL
mutant, R167W, which had previously demonstrated
slightly higher levels of HIF-2a than other type 2 mu-
tants in previous assays [19], also showed slightly
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Figure 1 Apoptosis in UV-treated 786-0O cells with mutant VHL proteins correlates to HIF-2a levels. (A) 786-O cells stably expressing either
an empty vector construct (control), wild-type VHLp30 (WT VHL), or various mutant VHLp30 proteins (as indicated) were grown to confluence

and lysed. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were performed for VHL, HIF-2a, and a-tubulin. VHL del
114-178 is a deletion of amino acid residues 114-178, whereas the rest of the VHL mutants are amino acid substitutions. (B) The 786-O cell lines
in (A) were grown to confluence and treated with ultraviolet (UV) light and lysed one day later. Cell lysates were equally loaded and separated

by SDS-PAGE. Western blots were performed for poly (ADP-ribose) polymerase (PARP) and a-tubulin. The positions of the 116 kDa uncleaved
PARP product and the 85 kDa cleaved fragment are indicated to the left. (C) Control 786-O cells and 786-O cells stably expressing wild-type
VHLp19 (WT VHL) were grown to confluence and either left untreated or treated with ultraviolet (UV) light and lysed one day later. Western
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elevated levels of the cleaved PARP fragment. As a con-
trol, untreated 786-O cells showed no observable cleaved
PARP (Figure 1C). Thus, in 786-O cells, UV-mediated
apoptosis appears to be correlated to levels of HIF-2a.

To determine whether this phenomenon was restricted
to 786-O cells or more universal to renal carcinoma cells,
RCCI10 cells expressing the same constructs [19] were used
(Figure 2A, top panel). RCC10 cells express both HIF-1a
and HIF-2a [20] and control cells and cells containing
VHL mutants associated with type 1 VHL disease showed
tandemly up-regulated HIF-la and HIF-2«a (Figure 2A,
middle panels). The cell lines were subjected to UV treat-
ment and PARP western blotting (Figure 2B, top panel).
Again, higher levels of PARP cleavage were seen in cells
expressing type 1 VHL disease mutants. As a second
assay for apoptosis, the cleavage of caspase-3, which
occurs as cells execute an apoptotic program, was ana-
lyzed (Figure 2B, middle panel). The caspase-3 western
blot was in agreement with the PARP blot, with notice-
ably more apoptosis in the type 1 VHL expressing cell
lines that had increased HIF-a. As a control, untreated
RCC10 cells showed no observable cleaved PARP or
caspase-3 (Figure 2C). Thus, in both 786-O and RCC10
cells, UV-mediated apoptosis is greatest in cells with
up-regulated HIF-a.
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Reduction of HIF-2a levels in 786-0 provides partial
protection from UV-mediated apoptosis

To assay whether there is a direct contribution of HIF-a
toward the apoptosis observed, a set of 786-O cells in
which HIF-2a levels had been lowered by short hairpin
RNA (shRNA) vectors [21] was employed (Figure 3). In
cells containing the HIF-2a shRNA, protein levels of HIF-
2a and the HIF-inducible gene product, GLUT-1, were
comparable to the levels in cells in which VHL has been
reintroduced (Figure 3A). UV treatment was performed
on the cell lines. Compared to cells with a control vector,
cells with lowered levels of HIF-2a had reduced abun-
dance of cleaved PARP and cleaved caspase-3, although
this was not decreased to the levels seen with cells in
which VHL was replaced (Figure 3B). Thus, reduction in
HIF-2a provided partial protection from UV-mediated
apoptosis, indicating that its expression may either pro-
mote or be necessary for apoptosis after UV treatment.

To extend these analyses and determine whether the
contribution of HIF-2a toward apoptosis was also ob-
served with other forms of cellular stress, similar analyses
were performed following conditions of glucose starvation
(Figure 3C) and serum starvation (Figure 3D). Unlike with
UV-treatment, reduction of HIF-2a levels had little effect
on apoptosis caused by these stresses, whereas VHL was

control

WT VHL

Del 114-178
RC 161/2 QW
Y98H

R167W

VHLp30=%
VHL del 114-178—»

HIF-1o —»

HIF-20 —»

a-tubulin —

Del 114-178
RC 161/2

control
WT VHL
Y98H
R167Q

PARP—»

cleaved PARP —»|

cleaved caspase-3 2}

a-tubulin —

L188V

L188V

Figure 2 Apoptosis in UV-treated RCC10 cells with mutant VHL proteins correlates to HIF-2a levels. (A) RCC10 cells stably expressing
either an empty vector construct (control), wild-type VHLp30 (WT VHL), or various mutant VHLp30 proteins [19] were grown to confluence and
lysed. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were performed for VHL, HIF-2a, and a-tubulin. (B) The RCC10
cell lines in (A) were grown to confluence and treated with UV light and lysed one day later. Cell lysates were equally loaded and separated by
SDS-PAGE. Western blots were performed for PARP, cleaved caspase-3, and a-tubulin. (C) Control RCC10 cells and RCC10 cells stably expressing
wild-type VHLp30 (WT VHL) were grown to confluence and either left untreated or treated with ultraviolet (UV) light and lysed one day later.
Western blots were performed for PARP, cleaved caspase-3, and a-tubulin as in (B).
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Figure 3 Reduction of HIF-2a levels leads to protection in UV-triggered apoptosis, but not for apoptosis caused by glucose and

serum starvation in 786-0 cells. (A) Parental 786-O or those either stably expressing wild-type VHLp19 or stably infected with a control vector
(pSuperRetro) or a pool of two HIF-2a shRNAs vectors [21] were grown to confluence and lysed. Cell lysates were equally loaded and separated
by SDS-PAGE. Western blots were performed for HIF-2a, GLUT-1, VHL, and a-tubulin. (B) The 786-O cell lines described in (A) were grown to
confluence and treated with UV light and lysed one day later. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were
performed for PARP, cleaved caspase-3, and a-tubulin. (C) The 786-O cell lines described in (A) were glucose starved for 24 hours as described in
Methods. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were performed for PARP, cleaved caspase-3, and a-tubulin.
(D) The 786-O cell lines described in (A) were serum starved for 2 days as described in Methods. Cell lysates were equally loaded and separated
by SDS-PAGE. Western blots were performed for PARP, cleaved caspase-3, and a-tubulin.
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seen to exert a protective effect. Thus, in 786-O cells,
VHLs cell survival effects under glucose and serum star-
vation conditions are likely to occur independently of
HIF-2« regulation.

Reduction of HIF-1a and HIF-2a levels leads to differential
effects on apoptosis in RCC10 cells
Again, RCC10 cells were utilized to ascertain whether
observations with 786-O cells were more generalizable
among renal carcinoma cells. A set of stable RCC10 cell
lines was created in which either VHLp30 was expressed
or control, HIF-1a, or HIF-2a shRNAs were expressed
(Figure 4). When VHL was expressed, HIF-1a and HIF-2a
were noticeably down-regulated, as expected (Figure 4A,
top 3 panels). Of note, in cells with lowered HIF-2a, HIF-
1o levels were increased (Figure 4A, second panel). Knock-
down of either HIF-1a or HIF-2a did not reduce levels of
GLUT-1 (Figure 4A, fourth panel).

The RCC10 cell lines were subjected to UV treatment
(Figure 4B). Similar to what was observed in 786-0O,
RCC10 cells with lowered levels of HIF-2a had decreased

abundance of cleaved PARP and cleaved caspase-3, com-
parable to the levels seen in cells with reintroduced VHL.
Interestingly, knockdown of HIF-1a caused an increase in
cleaved PARP and caspase-3 as compared to control cells.
Thus, in UV treated RCC10 cells, HIF-2a expression may
promote apoptosis, whereas HIF-1a expression appears to
inhibit it.

Apoptosis was also assayed for the RCC10 shRNA cell
lines under conditions of glucose and serum starvation.
Upon glucose deprivation, cells with lowered levels of
HIF-2a showed decreased levels of cleaved PARP and
caspase-3, whereas cells with lowered HIF-la had in-
creased levels of these apoptotic markers (Figure 4C). Pro-
tection from apoptosis in cells with HIF-2a shRNA was
seen for multiple time points of incubation in glucose-free
media (24, 36, and 48 hours), although this effect was
slightly diminished with longer incubations (Figure 5).
Under conditions of serum starvation, cells with lowered
HIF-2a again had decreased levels of cleaved PARP and
caspase-3 compared to control cells (Figure 4D). This ef-
fect was seen at multiple time points (2, 4, and 6 days in
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Figure 4 Reduction of HIF-1a and HIF-2a levels leads to differential effects on apoptosis in RCC10 cells. (A) RCC10 cells stably expressing
wild-type VHLP30 or expressing a control shRNA targeting luciferase (Luc shRNA) or a pool of two shRNAs targeting either HIF-1a or HIF-2a
were created. These cells were grown to confluence and lysed. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were
performed for VHL, HIF-1q, HIF-2a, GLUT-1, and a-tubulin. (B) The RCC10 cell lines described in (A) were grown to confluence and treated with
ultraviolet (UV) light and lysed one day later. Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were performed for
PARP, cleaved caspase-3, and a-tubulin. (C) The RCC10 cell lines described in (A) were glucose starved for 24 hours as described in Methods.
Cell lysates were equally loaded and separated by SDS-PAGE. Western blots were performed for PARP, cleaved caspase-3, and a-tubulin. (D) The
RCC10 cell lines described in (A) were serum starved for 2 days as described in Methods. Cell lysates were equally loaded and separated by
SDS-PAGE. Western blots were performed for PARP, cleaved caspase-3, and a-tubulin. Similar results were seen with serum starvation for 4 and

6 days (data not shown).
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Figure 5 Protection from apoptosis in cells with HIF-2a shRNA
is seen for multiple glucose starvation time points. RCC10 cells
stably expressing wild-type VHLp30, shRNA targeting luciferase (Luc
shRNA), or a pool of two shRNAs targeting either HIF-1a or HIF-2a
were glucose starved for 24, 36, or 48 hours, as indicated above the
blot. Cell lysates were equally loaded and separated by SDS-PAGE.
Western blots were performed for PARP, cleaved caspase-3,

and a-tubulin.

serum-free media, data not shown). Together, these
results indicate that under conditions of glucose and
serum starvation, removal of HIF-2«a protects RCC10
cells against apoptosis, indicating that either HIF-2a ex-
pression promotes apoptosis or, given that cells with
HIF-2a shRNA had higher HIF-1a levels, that HIF-1a
expression may inhibit apoptosis caused by these cellu-
lar stresses.

Discussion

In VHL-null cells expressing mutant VHL proteins, UV-
mediated apoptosis was correlated with type I mutations
that had high levels of HIF-a. The distinct contributions
of HIF-1a versus HIF-2a toward apoptosis were then in-
vestigated using VHL-deficient renal carcinoma cell lines
and manipulation of HIF-1a and HIF-2a expression. Re-
duction of HIF-2a levels led to decreased apoptosis with
UV treatment. This result implies that the expression of
HIF-2a is pro-apoptotic in UV treated cells. In UV-
treated RCC10 cells, reduction of HIF-1a levels had the
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opposite effect, increasing apoptosis, suggesting that the
expression of HIF-1a is normally anti-apoptotic. There-
fore, there appears to be distinct effects of the two HIF-«
isoforms on apoptosis in UV-treated cells. HIF-2a promo-
tion of apoptosis may be a more important determinant
than HIF-1a with UV treatment because RCC10 cells that
have up-regulated levels of both HIF-1a and HIF-2a were
susceptible to UV-initiated apoptosis (see Figure 2). Alter-
natively, it is possible that there is a greater abundance of
HIF-2a than HIF-1a in RCC10 cells that is responsible for
this effect, although this cannot be discerned using avail-
able antibodies to these isoforms.

The influences of HIF-1la and HIF-2a expression on
apoptosis caused by additional stresses were also deter-
mined. For serum and glucose starved cells, knockdown
of HIF-2a had little effect in 786-O cells, but decreased
apoptosis in RCC10 cells. One important difference be-
tween these cell lines is that 786-O cells express only HIF-
2a, whereas RCC10 cells express both HIF-a isoforms.
Notably, knockdown of HIF-1a in RCC10 cells led to in-
creased apoptosis in glucose-starved cells indicating that
HIF-1a is anti-apoptotic for this stress. Moreover, there
was an apparent increase of HIF-la in RCC10 HIF-2a
knockdown cells that coincided with reduced apoptosis.
Thus, it is possible that the anti-apoptotic effects of HIF-
la are responsible for at least part of the reduction in
apoptosis seen in HIF-2a shRNA cells upon glucose or
serum withdrawal. This notion would also provide an ex-
planation for the apparent lack of effect of HIF-2a shRNA
in glucose and serum starved 786-O cells. However, re-
gardless of the exact mechanism, these findings indicate
overall differential influences on apoptosis by the HIF-a
isoforms under serum and glucose starvation conditions,
similar to UV irradiation.

While the same general trends were observed using
786-O and RCC10 cells, there were some slight differ-
ences in apoptosis (additional to the one mentioned
above) that may relate to the HIF-a isoforms in these
cells. For example, with 786-O cells, serum starvation
caused the smallest induction of apoptosis out of the
three stimuli used here, with longer exposures on west-
ern blots needed to visualize the cleaved apoptotic
markers (data not shown). This effect was not observed
with RCC10 cells. 786-O cells were in general more sus-
ceptible to apoptosis due to glucose starvation, with in-
cubations past 24 hours resulting in cells that detached
from the culture dishes, albeit less so for cells containing
VHL (data not shown), whereas incubations of RCC10
cells in glucose-free media were possible for over 48 hours.
While the lack of expression of the anti-apoptotic HIF-1a
may be invoked for the latter finding, it is also likely that
786-0 cells are more malignant than RCC10 (as seen by
shorter doubling time for 786-O cells, data not shown),
which may also result in a greater need for glucose and
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increased resistance to serum withdrawal. Of note, these
observations also highlight the notion that different apop-
totic regulators and/or pathways are likely to be engaged
for the different apoptotic stresses. Note that although the
apoptosis reported here may occur by different pathways,
these pathways all converge on activation of caspases.
Caspase-3, used as a marker in this report, is a central
player in the apoptotic cascade, functioning as an effector
caspase [22]. Cleavage of the other apoptosis marker used
here, PARP, is downstream of caspase activation (reviewed
in [23]), although PARP can also be cleaved by caspase-7
[24]. In the majority of assays here, PARP and caspase
cleavage coincided, adding strength to their validity.

There are likely many factors that may account for the
opposite effects of HIF-la and HIF-2a on apoptosis
observed in this study. Differences in the genes that
HIF-1a and HIF-2a transactivate or repress are more
likely to be involved. For example, HIF-1a, but not HIF-
2a, promotes expression of glycolytic genes, which may
cause cells either to be more efficient at glucose utilization
or allow them to utilize other molecules as energy sources,
resulting in decreased apoptosis in glucose starvation
conditions, in agreement with the present findings. Other
differential transcriptional targets involved in apoptosis in-
clude BNip3, which has been reported to be up-regulated
by HIF-la [8,25], cIAP, which may be up-regulated by
HIF-2a [9], and ARC (Apoptosis Repressor with a Card
Domain), which is up-regulated by HIF-1a [18], to name
a few. In addition, some of the differential effects of
HIF-1a and HIF-2a on apoptosis may be related to non-
transcriptional effects, perhaps through differences in
protein interactions. Opposite effects of HIF-la and
HIF-2a on mdm?2 binding and p53 transcriptional activ-
ity have been noted (reviewed in [26]). Different roles of
HIF-1a and HIF-2a in regulation of mTOR, which is
involved in cellular survival decisions, have also been
proposed (reviewed in [26]). Promotion of c-myc activ-
ity by HIF-2a and not HIF-1a [11], which can potentiate
apoptosis in some circumstances, may also be a contrib-
uting factor and is in agreement with the promotion of
apoptosis by HIF-2a observed in this report. Given the
complexity of HIF-la and HIF-2a biology, it is very
likely the underlying causes for the differences in apop-
tosis as a result of HIF-1a or HIF-2a expression observed
here are multifactorial. Further studies to explore these
mechanisms are indicated, especially since HIF-la and
HIF-2u’s effects on apoptosis are likely to have implica-
tions toward clinical interventions that depend on apop-
tosis as their mode of action.

Methods

Cell lines and cell culture

293T and 786-0O cells were obtained from the American
Type Culture Collection. RCC10 renal carcinoma cells
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were generously provided by Miguel Esteban (Imperial
College, London). All cells were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM) containing either
10% Serum Supreme (BioWhitaker) or 10% fetal calf
serum (FCS). Media was supplemented with penicillin-
streptomycin (100 U/ml and 100 pg/ml, respectively).

Retroviral expression vectors, retroviral infection and cell
lines

Wild-type and mutant VHLp30 retroviral expression
constructs have been previously described [19]. Two
retroviral vectors directing expression of shRNA target-
ing HIF-1a were created in pSuperRetro as described
[27], using CTGATGACCAGCAACTTGA as one 19-mer
HIF-1la target sequence and GCCACTTCGAAGTAG
TGCT as another target sequence. Two retroviral ShRNA
vectors targeting HIF-2a, also pSuperRetro-based [7],
were generously provided by Dr. William Kaelin (Dana
Farber Cancer Center).

To produce retroviral supernatants, the recombinant
retroviral vectors were co-transfected with the retroviral
packing plasmid, pCL-Ampho [28], into 293T cells, as
previously described [19,21]. To create stable pools of
retrovirally-infected cells, cells were incubated overnight
in a mixture (1:1) of retroviral supernatants and fresh
medium that was supplemented with polybrene (10 pg/
ml). The mixture was removed and replaced with fresh
media the next day. For the HIF-1a and HIF-2a shRNA
retroviruses, a pool of the two retroviruses for each
shRNA target was used (with equal amounts of each
retroviral supernatant). Three days following infection,
the cells were replated and incubated for 10 to 14 days
in media containing puromycin (0.5 pg/ml) to allow for
proper selection.

786-O cells stably infected with control or HIF-2«
shRNA retroviruses or stably transfected with VHLp19
have been described previously [19,21]. RCC10 cells sta-
bly infected with wild-type and mutant VHLp30 con-
structs have been described previously [19].

Apoptotic cell stresses

Cell stresses were applied to cells grown at confluency.
For UV treatment, media was aspirated from culture
dishes, which were then placed under the germicidal UV
lamp (UVC, 254 nm wavelength) in a tissue culture hood
for 20 seconds (approximately 60 J/m?*). Media was re-
placed immediately after UV exposure and the cells were
incubated for 24 hours prior to lysis. For glucose and
serum starvation, the media was removed from culture
dishes and the cells were rinsed with phosphate buffered
saline (PBS). The PBS was removed and cells were incu-
bated with either glucose-free DMEM (Gibco/Life Tech-
nologies, Grand Island, NY) supplemented with 10% FCS
(for glucose starvation) or DMEM lacking FCS (for serum
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starvation). Cells were grown for 24-96 hours (depending
on cell type and treatment), after which they were lysed.

Western blotting

Cells grown on 60-mm culture dishes until confluent were
rinsed with PBS and then lysed by incubating with 150 pl
of lysis buffer (50 mM HEPES (pH 7.6), 250 mM NadCl,
0.5% Nonidet P-40, 0.5% Triton X-100, 5 mM EDTA,
1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM
Na,VO3 and 2 pg/ml each of aprotinin, bestatin, and
leupeptin) at 4°C for 30 minutes. Lysed cells were scraped
with a plastic scraper, resuspended by pipetting, collected,
and were spun down in a refrigerated microcentrifuge for
15 minutes to remove all insoluble material. The super-
natant was collected and a Bradford protein assay (Bio-Rad,
Hercules, CA) was performed to determine protein concen-
trations. Equal amounts of protein for each well of a gel,
ranging from 25-50 pg among the different blots per-
formed, were mixed with an equivalent volume of 2x SDS
buffer and were separated by SDS-PAGE. The separated
proteins were then transferred to a polyvinylidene difluor-
ide (PVDF) membrane overnight at 30 volts for 16 hours
and western blotting was then performed as described.

Antibodies

VHL mAb 11E12, which has been previously described
[29], HIF-2a rabbit antibody (Novus Biological, Littleton,
CO), GLUT-1 rabbit antibody (Alpha Diagnostic, San
Antonio, TX), and caspase-3 and Bcl-2 rabbit antibodies
(Cell Signaling, Danvers, MA) were used at a 1:1000
dilution in western blots. HIF-1a mouse antibody (BD
Biosciences, Franklin Lakes, NJ) was used at a 1:250 dilu-
tion. PARP-1/2 rabbit antibody (Santa Cruz Biotechnology,
Santa Cruz, CA) was used at a 1:200 dilution in western
blots. Anti-mouse IgG-HRP and anti-rabbit IgG-HRP
secondary antibodies (Southern Biotech, Birmingham AL)
were used at a 1:2286 dilution.

Conclusions

HIF-1a and HIF-2a exerted contrasting effects in all con-
ditions tested. In UV-irradiated cells, HIF-2a expression
promoted apoptosis, whereas HIF-1a was anti-apoptotic.
In glucose or serum starved cells, HIF-1a expression was
largely anti-apoptotic, while HIF-2a expression generally
promoted apoptosis or had less of an influence, depending
on the cell line used. These results reinforce that HIF-1a
and HIF-2a have distinct biological roles. Moreover, their
relative expression levels may influence some therapeutic
interventions that are dependent on apoptosis and thus
should be taken into account.
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