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REVIEW

Resistance to receptor tyrosine kinase 
inhibitors in solid tumors: can we improve 
the cancer fighting strategy by blocking 
autophagy?
Sanja Aveic*   and Gian Paolo Tonini

Abstract 

A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in the transfor-
mation of malignant cells. Constitutive and abnormal activation of RTKs may occur in tumors either through hyperac-
tivation of mutated RTKs or via functional upregulation by RTK-coding gene amplification. In several types of cancer 
prognosis and therapeutic responses were found to be associated with deregulated activation of one or more RTKs. 
Therefore, targeting various RTKs remains a significant challenge in the treatment of patients with diverse malignan-
cies. However, a frequent issue with the use of RTK inhibitors is drug resistance. Autophagy activation during treat-
ment with RTK inhibitors has been commonly observed as an obstacle to more efficacious therapy and has been 
associated with the limited efficacy of RTK inhibitors. In the present review, we discuss autophagy activation after the 
administration of RTK inhibitors and summarize the achievements of combination RTK/autophagy inhibitor therapy in 
overcoming the reported resistance to RTK inhibitors in a growing number of cancers.
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Background
Intersection between receptor tyrosine kinases 
and autophagy
Receptor tyrosine kinases (RTKs) are transmembrane 
glycoproteins that participate in the transduction of 
external signals into cells [1]. Due to their intrinsic enzy-
matic activity, RTKs transmit a cascade of reactive phos-
phorylation events after interacting with extracellular 
signaling molecules, leading to cell growth, migration, 
differentiation, survival or apoptosis. The final response 
depends on the nature of the received signal [2]. Under 
physiological conditions, the release of growth factors 
or other extracellular ligands from cells, and hence their 
binding to RTKs, is strictly regulated and well balanced 
[3]. In general, once the signal is received, cross-linking of 
neighboring RTKs is required for message propagation in 

terms of the phosphorylation cascade. This step enables 
the autophosphorylation of tyrosine residues on RTKs, 
which stimulates the kinase activity of the RTK itself. 
Afterwards, the phosphate groups are transferred from 
the ATP to tyrosine residues of RTK-docking proteins 
in the cytoplasmic interface [4]. Phosphorylated tyros-
ine residues, which enhance the enzymatic activity of 
RTKs, can be recognized by several cytoplasmic proteins 
with Src homology-2 (SH2) or phosphotyrosine-binding 
(PTB) domains. In this manner, multiple receptor tyros-
ine residues became phosphorylated, and the signal is 
transduced, thereby triggering different signaling cas-
cades. The two principal intracellular protein pathways 
triggered by RTK activation are the mitogen-activated 
protein (MAP) kinase RAS/RAF/MEK/ERK and the 
phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR path-
ways [5].

Because the main role of RTKs is to regulate cell growth 
and survival, it is not surprising that their abnormal 
activity has been correlated with tumor development and 

Open Access

Cancer Cell International

*Correspondence:  s.aveic@irpcds.org 
Neuroblastoma Laboratory, Pediatric Research Institute-Città della 
Speranza, Padua, Italy

http://orcid.org/0000-0002-3886-4360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-016-0341-2&domain=pdf


Page 2 of 8Aveic and Tonini ﻿Cancer Cell Int  (2016) 16:62 

progression [6]. The constitutive, ligand-independent, 
catalytic activation of RTKs in pathological conditions 
(Fig.  1a) may arise from chromosomal rearrangements 
that comprise RTK genes and/or from point mutations 
or amplification of RTK genes [7, 8]. The involvement of 
dysregulated RTK-dependent signaling in cellular trans-
formation justifies the rational for the development of 
RTK antagonists and their inclusion in targeted cancer 
therapy. However, the most recent RTK-targeted therapy 
failed to improve the cure rate because the malignant 
cells activate defense mechanisms and acquire resistance 
[9]. One mechanism that might sustain the drug resist-
ance of tumor cells is autophagy [10, 11].

Autophagy is an important catabolic process that reg-
ulates the degradation and recycling of organelles and 
proteins within the cell. It participates in the regulation 
of general cellular homeostasis [12]. Once autophagy 
is activated, a phagophore is formed; then, membrane 
nucleation occurs, creating a double-membraned 
autophagosome (Fig.  2). The autophagosome carries 
the cell’s cytoplasmic cargo and organelles, and then 
fuses to the lysosome; ultimately, the vesicular content 
is degraded and reprocessed [13]. Currently, many pro-
teins have been identified as regulators of autophagy, and 
their interactions have been confirmed to be crucial for 
the processing of autophagic vacuoles. Apical regulation 
of autophagy is accomplished by the formation of the 

Unc-51-like kinase 1 (ULK1)/autophagy-related (Atg) 
13 complex [14, 15], which then interacts with Beclin-1/
Vps34 complex and subsequently recruits additional Atg 
proteins (Atg 3, Atg 4, Atg 5, Atg 7, and Atg 12) during 
the generation of an autophagosome [16]. Then, the pro-
cessing of microtubule-associated protein 1 light chain 
3 (LC3), a well-accepted hallmark of autophagosomes, 
starts with cleavage in the cytosol (LC3-I) and lipidation 
(LC3-II) [17, 18], guiding the autophagosome toward an 
autophagolysosome. Another multifunctional adaptor 
protein, p62/SQSTM1, is likely responsible for the speci-
ficity of the autophagosome-targeting process and links 
the ubiquitinated proteins for degradation by lysosome 
[19, 20]. Numerous scientific reports have highlighted the 
association between unbalanced regulation of autophagy 
and cancer [21, 22]. Moreover, autophagy stimulation has 
been associated with tumor resistance to RTK inhibitors 
(Fig. 1b).

The present review aims to discuss autophagy acti-
vation as a possible mechanism involved in impeding 
the cytotoxicity of RTK inhibitors. It will summarize 
troublesome resistance as frequent manifestation that 
arises when RTK inhibitors are used to treat different 
malignancies. Furthermore, it will postulate a rational 
for the use of a combination therapeutic strategy with 
autophagy inhibitors and RTK inhibitors to improve 
their success.

Fig. 1  RTK activation in malignant cells and possibility for the combined therapy. a The constitutive, ligand-independent, catalytic activation of RTK 
under pathophysiological conditions leads to uncontrolled cell proliferation as well as increased cell survival and metastasis. b Blocking RTK func-
tion with inhibitors (orange blocks) activates a bypass mechanism that involves the induction of autophagy, which may contribute to the acquisi-
tion of drug resistance. c The enhanced efficacy of combination approaches (RTK inhibitors and autophagy inhibitors, such as chloroquine (CQ) 
or 3-methyladenine (3-MA); yellow blocks) with respect to a single RTK-targeted strategy suggests this method as more promising strategy for the 
elimination of tumor cells
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Molecular mechanisms of RTK inhibitors induced 
autophagy
Recent years have brought in evidence numerous reports 
that survey effectiveness of RTK inhibitors in the treat-
ment of solid tumors. Initial enthusiasm for the RTK 
inhibitory treatment as principal targeted therapy waned 
when patients started to develop resistance to these 
inhibitors [23]. At molecular level, several mechanisms 
have been described along with acquired resistance, 
among which are secondary mutations, and activation of 
compensatory pro-survival signaling pathways [24]. One 
of the protective mechanisms that lately emerges along 

the use of RTK inhibitors is autophagy. Several signal-
ing pathways triggered after activation of RTKs are also 
known regulators of autophagic process [25]. Therefore, 
it is not surprising that RTKs inhibition can have direct 
consequence over autophagy regulation.

The PI3K/AKT/mTOR is one of the most important 
signaling pathways that regulate autophagy [26], and at 
the same time represents one of downstream pathways 
activated by RTKs. Hence, inhibition of RTKs strikes 
the axis of PI3K/AKT/mTOR signaling directly, causing 
down-regulation of PI3K/AKT/mTOR proteins. Elimi-
nation of mTOR as a negative regulator of autophagy 

Fig. 2  Potential molecular mechanism of autophagy induction in the presence of RTK inhibitors. One of the pathways through which autophagy 
could be induced after RTK inhibition is PI3K/AKT/mTOR, which, in addition to other roles, blocks the initiation of autophagy. The initial step of 
autophagy is regulated by the ULK kinase complex, which is comprised of ULK, ATG13, and FIP200. This step is followed by the alignment of addi-
tional proteins that form the Vps34 complex (Vps34, Beclin-1, and Atg14L), which is needed for phagophore creation. Afterwards, the phagophore 
progresses toward the autophagosome by recruiting other proteins (Atg12/Atg5/Atg16 and LC3) within the double-layered membrane. At this step, 
as the autophagosomal membrane is increasing in size, the cytosolic contents are engulfed, thereby filling up the autophagosome with degradable 
intracellular cargo. Completely matured autophagosomes then fuse to lysosomes, generating autolysosomes, which enables the degradation of the 
included cargo. In this way, diverse cellular molecules are recycled and made available for reuse by the cell. Additional bypass mechanisms that may 
lead to the induction of autophagy after the addition of RTK inhibitors are not excluded (interrupted arrow). Orange and yellow blocks represent RTK 
and inhibitors of autophagy, respectively
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allows in following its activation (Fig.  2). Being protein 
kinase itself, mTOR is considered as a principal inhibi-
tor of autophagy in mammal cells [27]. It acts not only as 
negative regulatory factor of autophagy, but also as a con-
troller of cellular metabolism, which makes mTOR a key 
node in the regulatory network of cell homeostasis. In 
tumor cells, mTOR expression is frequently deregulated 
[28]. For that reason, several studies are concentrated on 
understanding the precise role of mTOR in cancer, and 
uncovering whether mTOR might be an interesting drug-
gable target and under which circumstances [29].

MicroRNA and autophagy
Ultimately, the studies that indicate the microRNAs 
(miRNAs) as the important intermediary of autophagy 
regulation in the eukaryotic cells are flourishing [30]. 
These ~22 nt long, non-coding, endogenous RNAs regu-
late negatively the expression of genes related to numer-
ous cell processes including autophagy. By binding to 
the 3′ untranslated region (UTR) of the target messen-
ger RNAs, miRNAs cause their degradation and inhibi-
tion of translation [31]. After defining miR-30a as the 
first miRNA able to down-regulate Beclin-1 [32], and 
hence impact autophagic activity, the number of miR-
NAs connected with the regulation of core autophagy 
controllers is constantly growing [33]. These evidences 
indicated for a direct connection between miRNAs and 
autophagy and opened a new frame of studies confirming 
the extreme complexity of autophagy regulation. Know-
ing that autophagy can impact sensitivity of cancer cells 
to RTK inhibitors, it can be expected that miRNAs are 
somehow involved in this regulation as well. Indeed, the 
correlation between miRNAs’ expression and resistance 
to some RTK inhibitors has already been reported in lung 
cancer by Garofalo and collaborators [34]. However, the 
interplay between autophagy, miRNAs and resistance to 
RTK inhibitors is still insufficiently explored. Evidently, 
we need more data to conclude whether or not the mod-
ulation of the specific miRNAs, by miRNA mimetics or 
inhibitors, could omit autophagy stimulation provoked 
by RTK inhibitors and prove more successful therapy.

Deregulated RTKs in solid tumors and their inhibitors
EGFR epidermal growth factor receptor, also known as 
ErbB1 [35], was the first RTK to be discovered, and it has 
played an important role in connecting RTKs to cancer. 
EGFR was recognized as a possible anticancer target in 
the mid-1980s [36], but it was introduced in clinical 
oncology much later. Ever since, particular benefits from 
targeting EGFR have been observed for patients with 
advanced non-small cell lung cancer (NSCLC) [37, 38]. 
The small molecule inhibitors erlotinib (Tarceva, Genen-
tech) and gefitinib (Iressa, AstraZeneca) are the two most 

commonly EGFR inhibitors [39]. Beside NSCLC, these 
inhibitors have been used to treat patients with pan-
creatic cancer [40], and they are currently used for lung 
adenocarcinoma therapy (ClinicalTrials.gov Identifier: 
NCT02155465). Many additional EGFR inhibitors have 
been tested in vitro, and several other malignancies with 
deregulated EGFR function have been identified. In many 
of the studied tumors, autophagy activation emerged as 
a recurrent problem during the administration of EGFR 
inhibitors [41]. This observation suggests that autophagy 
may be involved in the poor response to certain drugs 
or in the acquisition of drug resistance. Additionally, it 
implies that inhibiting autophagy may be a possible ther-
apeutic strategy for overcoming resistance to RTK inhibi-
tors [42].

Sugita and colleagues [43] reported that gefitinib 
caused a strong induction of autophagy in the NSCLC 
cell line PC-9. Importantly, when they blocked autophagy 
with clarithromycin, an antibiotic known to block 
autophagic flux [44], they observed marked induction of 
cell death. In a separate study, increased autophagy was 
reported in gefitinib-resistant PC-9 cells, whose survival 
was successfully impaired when gefitinib was combined 
with 3-methyladenine (3-MA) or chloroquine (CQ) [45], 
two potent autophagic inhibitors. Han and colleagues 
[41] reported similar findings indicating that autophagy 
was responsible for the impaired sensitivity of cancer 
cells to either gefitinib or erlotinib. Hence, when the 
pharmacological or genetic inhibition of autophagy was 
combined with RTK inhibitors, the cytotoxic effects of 
these drugs were notably improved. Based on the reports 
on NSCLC and autophagy, it is rational to suggest that 
inhibiting autophagy could be a promising therapeutic 
strategy for enhancing the efficacy of current EGFR-tar-
geted therapy.

The efficacy of gefitinib in blocking the growth of 
breast cancer cells has also been tested. In these cells, the 
formation of autophagosomes was observed as an early 
event after treatment [42]. The alteration in autophagic 
flux was confirmed by studying the expression of p62 
and LC3, and was dependent on drug concentration. A 
decrease in LC3-II protein levels was observed when 
autophagy was abrogated by 3-MA or bafilomycin A1. 
Due to the inhibition of autophagy, increased apopto-
sis was observed in these cells. AG1478 (Tyrphostin 
AG-1478), another EGFR inhibitor, was connected to the 
induction of autophagy after being administered to ovar-
ian cancer cells in vitro. In this case, the protective role 
of autophagy in response to EGFR inhibition was largely 
diminished by 3-MA, which reduced metastasis occur-
rence in vivo [46]. Erlotinib is also capable of stimulating 
autophagy in lung adenocarcinoma, but this action can 
be dampened by co-treatment with CQ. In fact, use of 



Page 5 of 8Aveic and Tonini ﻿Cancer Cell Int  (2016) 16:62 

erlotinib and CQ successfully suppressed tumor growth 
in a xenograft mouse model in a synergistic manner [47, 
48]. Moreover, erlotinib-acquired resistance was shown 
to be autophagy dependent in lung adenocarcinoma, 
likely through LC3A activation, which favored tumor cell 
survival and proliferation. In contrast, the inhibition of 
autophagy by siRNA or CQ reverted these pro-survival 
effects, making the cells sensitive to erlotinib [49].

Conversely, an additional body of evidence has con-
nected EGFR (ErbB1)-targeted treatments with the stim-
ulation of autophagy, thereby helping tumor cells’ death 
escape [50]. Similar findings were reported after target-
ing another member of the ErbB family, Her2 (ErbB2). In 
particular, ErbB2 overexpression has been found in breast 
cancer patients classified within the poor survival group. 
In these patients, trastuzumab (Herceptin) was used to 
target ErbB2 [51], but unfortunately, drug resistance was 
encountered during treatment. To solve the problem with 
resistance, trastuzumab was administered in combina-
tion with CQ, which successfully improved the efficacy 
of the RTK inhibitor. The same combination strategy was 
used in the generation of trastuzumab-sensitive breast 
cancer cells with primary resistance to this inhibitor. Cuf í 
et al. [52] showed a strong synergy between trastuzumab 
and CQ; this combination affected the survival of trastu-
zumab-refractory cells and thus reduced tumor growth. 
Altogether, these findings highlight the frequent activa-
tion of autophagy after the administration of RTK inhibi-
tors against the ErbB family members ErbB1 and ErbB2, 
and provide evidence that autophagy might be one of the 
principal mechanisms responsible for drug resistance.

VEGFR, PDGFR, and c-Kit Many RTK inhibitors have 
more than one target. Sunitinib malate (Pfizer; sunitinib 
in following), a small molecule inhibitor, targets vascular 
endothelial growth factor receptor (VEGFR), platelet-
derived growth factor receptor (PDGFR), and stem cell 
tyrosine kinase receptor (c-Kit). After being implicated 
in the development of diverse malignancies, these RTKs 
have been targeted with sunitinib in metastatic renal cell 
carcinoma, imatinib-resistant gastrointestinal tumors, 
and pancreatic neuroendocrine tumors [53]. Importantly, 
resistance was observed in renal and colon cancer cells 
during prolonged in vitro treatment with sunitinib [54]. 
In fact, a study on renal and colon cells demonstrated the 
involvement of acidic lysosome formation in the intra-
cellular distribution of sunitinib. More precisely, the 
sequestration of sunitinib by lysosomes was a substantial 
event in resistant cells, which became sensitive to this 
drug after co-treatment with bafilomycin A1 or ammo-
nium chloride. This observation implied that abrogating 
lysosomal function is a potential solution for negating 
the adaptive resistance to sunitinib. Curiously, the extent 
to which autophagy protects cells from sunitinib in this 

in  vitro experimental model system remains unknown. 
On the other hand, sunitinib showed good cytotoxic 
activity when tested in breast, cervical, colorectal, hepa-
tocellular, laryngeal, and prostate cancer cell lines. More 
importantly, in many of these cells, CQ was a good choice 
for combination treatment with sunitinib because it 
increased the effects obtained with the RTK inhibitor 
alone [55].

Sorafenib (Nexavar) is an inhibitor of the VEGFR, c-kit, 
PDGFR, and Raf/MEK/ERK signaling pathway [56]. It has 
been considered as a treatment for diverse malignancies, 
including advanced hepatocellular carcinoma (HCC) 
[57]. Nevertheless, complete tumor regression is not 
always observed in patients treated with sorafenib. One 
of the mechanisms for the partial resistance to sorafenib 
in HCC is autophagy. The induction of autophagy was 
confirmed in hepatoma cells based on LC3B processing, a 
clear decrease of p62 protein levels, and an intense accu-
mulation of autophagosomes [58]. Characteristic cyto-
static effects caused by sorafenib were largely improved 
when this drug was combined with pharmacological 
inhibitors of autophagy (CQ or bafilomycin A1), which 
successfully activated apoptosis in hepatoma cells. Simi-
lar findings have been reported by Yuan et al. [59].

MET also known as c-Met or hepatocyte growth fac-
tor receptor (HGFR), is an RTK with deregulated func-
tion in certain types of cancer. Aberrant activation of 
MET during oncogenesis may occur due to MET gene 
overexpression or activating point mutations [60]. 
PHA665752 (Pfizer) and EMD1214063 (Merck), two 
c-Met inhibitors, are currently under preclinical and clin-
ical investigation, respectively, for the treatment of gas-
tric cancer. In vitro, these inhibitors induced autophagy 
in gastric cells, resulting in increased LC3B and ATG7 
mRNA levels. When they were used in combination with 
autophagic inhibitors (3-MA or CQ), a negative impact 
on cancer cell viability was achieved. The experimental 
evidence obtained from the use of MET inhibitors has 
suggested that the cyto-protective effect gained by acti-
vating autophagy might be a serious obstacle for effec-
tive therapy. Therefore, inhibiting autophagy could be an 
approach to guarantee significant improvements in the 
therapeutic strategy of inhibiting RTKs [61].

ALK Anaplastic lymphoma kinase dysfunction has been 
reported in several solid tumors, including neuroblas-
toma (NB). Its continuous activation in NB was reported 
to stem from point mutations or amplification of the 
ALK gene [62]. Recently, we tested entrectinib (Ignyta), 
an anti-ALK, anti-ROS1, and anti-Trk compound, for its 
ability to impair NB cell growth and proliferation [63]. 
We found a correlation between the level of the drug’s 
reduced potency and autophagy activation, which was 
cell type specific. As expected, inhibiting autophagy with 
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CQ improved the compound’s activity and increased NB 
cell death. Although ALK inhibition and autophagy have 
not been extensively studied until now our findings, and 
those from Ji and colleagues [64] in lung cancer, suggest 
that ALK inhibition might provoke autophagy-dependent 
resistance. In the same study, crizotinib (Pfizer), an ALK, 
MET and ROS1 inhibitor, was used to generate resistant 
lung cancer cell lines. It was noted that the down-regula-
tion of ALK protein was associated with the induction of 
autophagy, thus showing cyto-protective features. When 
autophagy was inhibited by CQ, the sensitivity of drug-
resistant lung cells to crizotinib was restored, once again 
providing a rationale for targeting autophagy when there 
is evidence of resistance to RTK inhibitors.

Altogether, the data summarized herein suggest 
that RTK inhibitors frequently cause the induction of 
autophagy, which plays a cyto-protective role that may 
impede their efficacy in cancer treatment. Moreover, 
they support anti-autophagy/RTK inhibitor combination 
therapy as an advanced approach for improving the effi-
cacy of currently FDA (Food and Drug Administration) 
approved RTK inhibitors. This approach might provide 
significant benefits to patients with solid tumors in which 
at least one of the mentioned RTKs is deregulated. Thus, 
we conclude that it would be pertinent to conduct a more 
detailed examination of the use of this combination strat-
egy (Fig. 1c) that has been proposed by different research 
groups.

Conclusions
The idea that targeting RTKs might be adopted as a suit-
able strategy for the clinical management of cancer has 
persisted since the moment it became clear that dysreg-
ulated RTK function is a frequent event in tumor cells 
[65]. Currently, the efficacy and tolerability of most of the 
available RTK inhibitors are not sufficient, and therefore, 
their continuous improvement is urgently needed. The 
chief problem with the use of RTK inhibitors in clini-
cal oncology is their targeting of multiple RTKs, which 
can evoke several side effects [66]. On the other hand, a 
large issue that compromises the wider use in oncology 
is the development of drug resistance in treated patients 
[67]. Lately, there have been numerous reports on the 
cyto-protective role of autophagy related to the efficacy 
of RTK inhibitors [41, 42]. A relatively high incidence of 
autophagy during treatment with these inhibitors sug-
gests that autophagy is a probable cause of primary or 
acquired drug resistance. It also justifies the numerous 
ongoing preclinical and clinical studies that are consider-
ing autophagy inhibitors to improve anti-cancer therapy 
[68]. The autophagy inhibitors CQ and bafilomycin A1 
are frequently mentioned in combination therapy with 
RTK inhibitors [45–48, 52, 58]. In in  vitro and in  vivo 

studies, abolishing autophagosome formation had addi-
tive or synergistic effects regarding the anti-tumor activ-
ity of RTK inhibitors [60, 69].

Currently, available preclinical and clinical data indi-
cate that autophagy inhibitors, given in combination 
with RTK inhibitors, might be a promising approach for 
treating cancer patients with deregulated RTKs. This 
approach might ensure not only higher efficacy of these 
inhibitors but also fewer toxic side effects, particularly in 
those patients who become resistant during drug treat-
ment. By highlighting the increased efficacy of combina-
tion approaches with respect to a single RTK-targeted 
strategy, we would like to express our belief that this 
line of attack might be worth of intense investigation in 
all malignancies where resistance to RTK inhibitors is a 
problem. We believe that inhibiting autophagy in con-
junction with RTK inhibitor treatment could give a bet-
ter chance to improve the battle against solid tumors. 
It remains to determine whether combined therapeu-
tic strategy might be considered in the future clinical 
practice, even before the resistance to RTK inhibitors is 
developed.
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