
Lowe et al. Cancer Cell Int  (2017) 17:38 
DOI 10.1186/s12935-017-0404-z

PRIMARY RESEARCH

HLBT‑100: a highly potent anti‑cancer 
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Abstract 

Background:  The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts 
to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts 
to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. 
Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the 
plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activ-
ity of this plant.

Methods:  The plant biomass was extracted using supercritical fluid extraction technology with CO2 as the mobile 
phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative 
assays to determine the active fraction and subsequently the pure compound. Following in house screening, the 
identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using 
standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed 
using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay.

Results:  A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The 
molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 
MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC50 
concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer 
activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and pros-
tate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI50 values <0.100 µM. In terms of potential 
mechanisms of action, the molecule demonstrated effect on the cell cycle as evidenced by the accumulation of cells 
with <G1 DNA content, activation of caspase 3/7, DNA fragmentation and culminating in apoptotic cell death. HLBT-
100 also demonstrated antiangiogenic potential by inhibiting capillary sprout and tube formation in a dose depend-
ent manner in the ex vivo rat aortic ring.

Conclusion:  This paper describes for the first time the anticancer activity of HLBT-100 isolated from T. recurvate (L.) L. 
The broad and selective anticancer activity of HLBT-100 as evidenced by its potent activity against IMR-32, CNS cancer 
cell line while not active against neuro-2a, a normal CNS cell line. The activity demonstrated by HLBT-100 in these 
studies makes the molecule a potential candidate for further development targeting especially those cancers that 
remain in the unmet need category such as glioblastoma multiforme and acute myeloid leukemia in addition to other 
cancers.
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Background
According to recent statistics from the National Can-
cer Institute (NCI) and the World Health Organization 
(WHO), there will be about 14.1 million new cancer 
cases diagnosed globally in 2016 out of which about 1.7 
million cases will be in the United States of America 
(USA) [1–3]. Expenditure associated with cancer care 
in USA was about US$125 billion in 2010 and it is esti-
mated to reach US$156 billion by 2020 [3]. Cancer as 
such remains a major worldwide health problem and one 
of the top causes of death [4]. The search for new, effec-
tive and less toxic anticancer drugs as such remains a 
major global priority. The US government for example 
has declared cancer a major health problem and is now 
increasing funding for research and development of new 
cancer treatments through the newly established Cancer 
Moonshot project which aims to enhance early detection 
and prevention of cancer including expanding research in 
the area of immuno-oncology [5].

For several decades, the world depended on nature as a 
source of new biologically active molecules as evidenced 
by the discovery of drugs such as penicillin, quinine, 
Taxol, vinca alkaloids, metformin and several others [6]. 
Natural products especially from plants have made sig-
nificant contributions to the discovery and development 
of new drugs particularly against cancer [7]. Given the 
previous success recorded in drug discovery from nature, 
we decided to base our drug discovery effort on plants 
given the rich diversity of chemical structures that exist 
in plants as secondary metabolites [8, 9].

Tillandsia recurvata L. (Bromeliaceae) also known 
as the Jamaican Ball Moss or the Old Man’s beard is an 
aerial plant often found growing on tree branches or on 
telephone and electricity poles or cables [10]. Plants from 
the Bromeliaceae family have a unique capability to sur-
vive harsh drought conditions but never seem to die as 
the leaves come back to life within hours of rehydration 
and as such, these plants are also known as the “resur-
rection plants” [11]. Previous studies by our group found 
T. recurvata to be having various chemical constituents 
including terpenoids and flavonoids [12, 13]. Screening of 
the extracts of T. recurvata also revealed that the plant 
possesses several pharmacological properties includ-
ing, anticancer activity [14, 15]. Some of the specific 
compounds previously isolated from the plant includes 
cycloartanes, cinnamoyl diccinamates and phenolic com-
pounds [12, 13, 15]. Anti-angiogenic activity and kinase 
inhibition are some of the specific mechanisms of action 
demonstrated by the extracts or compounds isolated 
from T. recurvata [16–18]. Based on the activity dem-
onstrated by the crude extract of T. recurvata, this study 
was carried out in an attempt to further isolate and char-
acterize the anticancer molecules present in the plant.

In this study, HLBT-100 isolated from T. recurvata 
has been identified to be a flavonoid with hitherto unre-
ported anticancer activity. Flavonoids are widely dis-
tributed in the plant kingdom with over 4000 structures 
described making flavonoids the largest class of plant 
secondary metabolites [19, 20]. Flavonoids have a charac-
teristic color ranging from pale to deep orange and their 
basic backbone structure includes two fused rings linked 
to an aromatic ring [21–23]. Flavonoids are sub-divided 
into six classes including flavanols, flavonols, flavones, 
flavanones, isoflavones and anthocyanidins [24, 25]. In 
plants, the primary significance of flavonoids is to pro-
vided pigmentation required for UV-radiation protec-
tion as well as defense from pests and disease [26–28]. 
In the human sphere, flavonoids provide a wide range 
of benefits including use in diet and health [20] and are 
credited for possessing antimicrobial, antiviral, cancer 
chemoprevention, neurodegenerative properties and car-
diovascular health benefits among several other health 
properties [29–33]. Flavonoids as such hold promise as 
potential cures for mankind and require increased scien-
tific attention.

Results
Chemical characterization of HLBT‑100
Using spectroscopic analysis including mass spec-
trometry (MS) and nuclear magnetic resonance 
(NMR) studies, the chemical structure of the yellow-
ish powder obtained was elucidated. The molecule was 
putatively code named HLBT-001 (5,3′-dihydroxy-
6,7,8,4′-tetramethoxyflavanone) and was renamed 
HLBT-100 once the structure elucidation was completed 
(Fig.  1). A thorough search of the literature revealed 
that the compound had previously been isolated from 
T. recurvata [12] but no bioactivity studies were carried 
out or reported for the molecule. HLBT-100 belongs to 
the flavanone class of flavonoids which is characterized 
by a single bond between C2 and C3 of the heterocycle 
ring “C” compared to the closely related flavonol and fla-
vone classes of flavonoids (Fig.  1). HLBT-100 is highly 

Fig. 1  Chemical structure of HLBT-100
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polymethoxylated and most of the polymethoxylated fla-
vanones have previously been isolated mostly from citrus 
plants of the Rutaceae family [34, 35].

Antiproliferative activity
To determine the antiproliferative activity of HLBT-100 
against cancer cell lines, the brain cancer cell line (U87 
MG), breast cancer cell line (MDA-MB-231), human 
melanoma (A375), leukemia (MV4-11) and prostate 
cancer (PC-3) cell lines were subjected to the WST-1 
antiproliferative assay. HLBT-100 in a dose depend-
ent manner inhibited the proliferation of cancer cells at 
sub-micromolar concentrations with IC50 values ranging 
from 0.004 to 0.054 µM (Fig. 2). Upon being subjected to 
anticancer activity screen on the NCI60 panel, HLBT-
100 demonstrated potent activity against 23 of the cell 
60 lines on the NCI cancer cell line panel with GI50 val-
ues <0.100 µM (Fig. 3).

Cell viability assay
To assess the cell viability and selectivity effect of HLBT-
100, the Cell Titer-Glo luminescent cell viability assay kit 
was used. The neuroblastoma cancer cell line (IMR-32) 
and normal neuroblastoma cells (nuero-2a) were sub-
jected to this assay. The compound showed great selec-
tivity by killing the cancer cells (IMR-32) while having 
no effect against the normal human cell line (nuero-2a) 
(Fig. 4).

Cell cycle arrest and apoptosis
The effect of HLBT-100 on cell cycle arrest and apoptosis 
was determined using, the propidium iodide flow cytom-
etry kit and the Annexin V-FITC apoptosis detection Kit. 
Cell cycle significantly affected as accumulation of cells 
with  <G1 DNA content were at 24  h, 48  h and 72  h of 

incubation at the 5× IC50 in the MV4-11 cell line (Fig. 5). 
In regards to apoptosis effect, HLBT-100 caused sig-
nificant apoptotic effect (>70%) at 5× of it’s IC50 against 
MV4-11 cells after 24 h (Fig. 6). 

In‑cell DNA fragmentation induced by HLBT‑100
DAPI nuclear staining showed DNA was fragmented 
in cells treated with the compound compared to vehi-
cle treated cells (Fig.  7). Maximum cleavage was found 
with the 72  h treatment with HLBT-100 against all the 
cell lines tested. Non apoptotic cells showed non-cleaved 
intact bigger round chromosomal DNA whereas apop-
totic cells showed cleaved nuclei.

Caspase 3/7 activity
To determine if HLBT-100 induces apoptosis via a 
caspase dependent pathway, the activation effect of 
HLBT-100 on caspase 3/7 was evaluated. Apoptosis is 
orchestrated by a family of cysteine proteases known as 
the caspases. Of the fourteen mammalian caspases iden-
tified, caspase 3/7 are thought to coordinate the execu-
tion phase of apoptosis by cleaving multiple structural 
and repair proteins [36]. HLBT-100 upregulated the 
expression of caspase 3/7 in this study in a dose depend-
ent manner (Fig. 8).

Angiogenesis
The antiangiogenic properties of HLBT-100 were deter-
mined using the ex vivo rat aortic ring and in vitro tube 
formation assays. HLBT-100 demonstrated antiangio-
genic activity by inhibiting capillary sprout formation in 
rat aorta rings (Fig. 9).

Discussion
The Jamaican Ball Moss continues to demonstrate that it 
harbors significant bioactive molecules especially against 
cancer. In this study, we successfully isolated and char-
acterized HLBT-100 from T. recurvata as a new antican-
cer flavonoid (Fig. 1). The potency of HLBT-100 in vitro 
at sub-micromolar concentrations against both solid and 
hematological cancers makes HLBT-100 a potential anti-
cancer agent (Figs.  2, 3). HLBT-100 belongs to the fla-
vonoid class of compounds. Flavonoids occur widely in 
fruits and commonly eaten foods and as such are mostly 
considered to be safe and as such are used widely for food 
and disease prevention [30, 37]. Routine consumption of 
fruits and flavonoid rich foods has long been linked to a 
lower incidence of several diseases including cancer, neu-
rodegenerative diseases, cardiovascular disease, metabolic 
disease and immune function modulation [31, 38–44].

HLBT-100 however appears to be a unique molecule as 
it has not been isolated from any other plant than from 
T. recurvata which is not known to be used as a food 

Fig. 2  WST-1 assay results for HLBT-100 in 72 h against MV4-11, 
MDA-MB231. PC-3, A375 and U87 MG. Following treatment of 
cells, dose response curves were plotted and IC50 values calculated 
using graphpad prism software. The mean IC50s and standard 
deviations generated are as follows: MV4-11 = 0.024 ± 0.001 µM; 
MDA-MB231 = 0.030 ± 0.008 µM; PC-3 = 0.031 ± 0.011 µM; 
A375 = 0.004 ± 0.003 µM; U87 MG = 0.054 ± 0.006 µM
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plant anywhere [12]. The molecule was identified as a 
flavanone which has an aglycone that is structurally dif-
ferent from the commonly used flavonoids such as the 
flavones including compounds such as apeginin, luteolin, 
kaempferol and quercetin. The major difference between 
a flavanone and a flavone is the number of bonds between 
carbons 2 and 3 of the aglycone (Fig. 1). While flavanones 
have a single bond, flavones have a double bond between 
carbons 2 and 3. This structural difference seem to confer 
flavanones with a superior anticancer activity compared 
to flavanones. For example, Cabrera et  al. [45] screened 
over 50 flavonoids against 3 human cancer cell lines 
and the most active compounds against the cell lines 
screened were flavonoid precursors (chalcones) followed 
by flavanones ahead of the flavones. Even though widely 
distributed, the flavanones are more commonly found in 
plants of the citrus family [46, 47].

In the current studies, HLBT-100 demonstrated a dose 
dependent inhibition of cancer cell lines (Fig.  2). The 
most sensitive cell line in these studies was the human 
melanoma cell line (A375) even though activity against 
the other cancers was also considered to be potent given 
the sub-micromolar IC50 values exhibited. The activity 
demonstrated against 23 of the 60 cell lines on the NCI60 
cancer cell line panel validated the in house anticancer 
activity demonstrated during the preliminary screen of 
this molecule (Fig.  3). The NCI60 cancer cell line panel 
which was established in the 1960s to enhance the dis-
covery and development of novel anticancer agents has 
been used for several decades as reference tool for can-
cer drug discovery and is credited for the discovery and 
development of a number of important anticancer agents 
in clinical use today [48–50]. The molecule demonstrated 
selectivity and potently inhibited all the cancer cell lines 

Fig. 3  Anticancer activity of HLBT-100 on the NCI60 cancer cell line panel. The compound was first screened at a single concentration of 100 µM 
and having satisfied the NCI predetermined threshold (data not shown), the molecule was subjected 5-dose response screen
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in the leukemia panel while it was inactive against 7 out 
of the 8 cell lines in the renal cancer panel. Most impor-
tantly, the compound showed the ability to selectively 
inhibit cancer cells while sparing normal cells as dem-
onstrated in its cytotoxicity towards the neuroblastoma 
cancer cell line IMR-32 while having no activity against 
the normal neuro-2a cells (Fig. 4). The neuro-2a cell line 
is currently viewed as a useful tool to screen novel com-
pounds for potential neurotoxic properties [51]. The lack 
of toxicity against neurons by HLBT-100 is an early indi-
cation that the molecule may possess a very good safety 
profile.

Apoptosis which is a physiological rather accidental 
cell death is crucial in the control of the proliferation of 
cancer cells [52]. While there are a number of mecha-
nisms and molecular events by which apoptosis is elic-
ited, HLBT-100 in this study showed that it activates 
caspase 3/7, DNA fragmentation and significant effect on 
cell cycle as (Figs. 5, 7, 8). Caspases are genes that regu-
late homeostasis through the regulation of cell death and 

caspase-3, -6 and -7 are considered executioner caspases 
in the apoptosis process while caspases-2, -8 -9 and -10 
are the effector kinases [53, 54]. DNA cleavage is another 
hallmark of apoptosis and cells treated with HLBT-100 
showed significant DNA cleavage following DAPI stain-
ing [55, 56]. One of the widely studied flavanones is 
naringenin which demonstrated GO/G1 G2/M phase 
arrest in cell cycle studies even though at significantly 
higher concentrations (>20 µM) compared to HLBT-100 
(<0.15  µM) [46, 57]. Most of the commonly used flavo-
noids have been reported to play a role in cancer chemo-
prevention through the apoptosis signaling pathway and 
as such it is not surprising that HLBT-100 exhibits potent 
apoptosis signaling and at concentrations much less 
than those exhibited by other commonly used flavonoids 
[58–60].

Angiogenesis is simply defined as the process by which 
new vessels are developed and this has significant impli-
cation in disease especially tumors which need new ves-
sels for the supply of nutrients [61, 62]. Capillary sprouts 

Fig. 4  Effect of HLBT-100 on cell viability. Cells were seeded at 2000–5000 cells/well in 96-well plates. After an overnight incubation, cells were 
treated with HLBT-100 a IMR-32 nueroblastoma cancer cell line and b neuroblastoma normal cells, and incubated for 72 h at 37 °C. The cell viability 
was determined using the Cell Titer-Glo luminescent cell viability assay kit after staining for 10 min, according to the manufacturer’s instructions. 
The IC50 values were generated using graphpad prism. Staurosporine (graphs on the right) was used as a positive control against both cell lines. 
Asterisk Lower concentrations of HLBT-100 versus control are slightly above 100% of control because of “edge effect” where slight evaporation of 
media in control wells on the edge of plate might result in lower OD values for those wells
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as demonstrated by the ex  vivo rat aortic ring assay are 
important in cancer progression as they are known to 
be representative of all phases of angiogenesis [63]. Sev-
eral flavonoids including flavopiridol, quercetin, apigenin 
and naringenin are credited for exhibiting antiangiogenic 
properties and this property is thought play a role in their 
antitumor and cancer chemoprevention potential [64–68]. 
Angiogenesis is also required for cell invasion and migra-
tion and as such a necessary conduit for cancer metastasis 
[66]. Angiogenesis inhibitors are among several antican-
cer agents that are currently in clinical use and because 
most of them are kinase inhibitors plagued with resistance 
issues, there is a need for the discovery and development of 
new antiangiogenic agents [69, 70]. While the mechanism 

of action of most antiangiogenic inhibitors involve the 
inhibition of protein kinases (e.g. VEGFR), the mechanism 
of inhibition of angiogenesis by HLBT-100 among other 
mechanism of action studies remain to be determined.

The development of flavonoids into standard drugs 
remains a challenge despite the plethora of preclinical 
data that has been reported on their pharmacological 
properties [20]. Their therapeutic use have been hindered 
by poor drug-likeness properties to low bioavailability. 
This attributes accounts for why there are only a handful 
of flavonoid based molecules currently in clinical trials 
to-date and includes flavopiridol (alvocidib) (Tolero Phar-
maceuticals, Inc.) and Icaritin (Shenogen Pharma, China) 
[71–73]. To overcome the preclinical development of 

Fig. 5  Cell cycle effect of HLBT-100. For cell cycle effect determination, MV4-11 leukemic cell line was used. Cells were treated with either DMSO: 
top row (vehicle) or HLBT-100: middle row (0.024 µM) and bottom row (0.120 µM). Cell were incubated at 37 °C and at 24 h (a), 48 h (b) and 72 h (c), 
cells were harvested, washed and stained according to the manufacturer’s recommendations with the Abcam propidium iodide flow cytometry kit. 
Acquired samples were analyzed using FlowJo (Tree Star, Ashland, OR, USA)
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HLBT-100, a number of approaches including the use of 
polymer and nanotechnology drug delivery approaches 
might be required to overcome especially poor bioavail-
ability challenges.

Conclusion
This paper describes for the first time the anticancer 
activity of HLBT-100 isolated from T. recurvata. The 
identification of possible anticancer properties includ-
ing effect on apoptosis and angiogenesis requires further 
studies to identify the specific molecular and cellular 
pathways responsible for the observed activity. Further 
studies are in progress to identify other possible mecha-
nisms of action as well as in vivo efficacy and safety. The 
broad and selective anticancer activity of HLBT-100 was 
evidenced by its potent activity against IMR-32, CNS 
cancer cell line while inactive against neuro-2a, a normal 
CNS cell line. The activity demonstrated by HLBT-100 
in these studies makes the molecule a potential candi-
date for further development targeting especially those 
cancers that remain in the unmet need category such as 
glioblastoma multiforme and acute myeloid leukemia in 
addition to other cancers neuroblastoma, lymphoma and 
leukemia.

Methods
Compound extraction and isolation
The fresh plant material was collected from power 
lines in Jamaica after which it was air dried under shed 
away from direct sunlight, then milled and extracted 
using supercritical fluid extraction (SFE) technology. 
The extraction parameters on the SFE were set as fol-
lows: pressure (200 bars); temperature (heat exchanger 
−45  °C, extracting vessel −40  °C and collecting ves-
sel −40  °C); solvent (CO2 and 10% ethanol); flow rate 
(9 ml/min) and run time (60 min). Isolation of the bio-
active fractions was done in two phases. First, solvent/
solvent partition was carried out to separate the lipid 
soluble from the mid-polar fraction using a combination 
of methanol, ethyl acetate and DiH2O. The two fractions 
were subjected to bioactivity screening and the mid 
polar fraction demonstrated significant activity against 
cancer cell lines. During phase two, advanced separa-
tion technology using flash chromatography resulted in 
the separation of several fractions which were pooled 
based on thin layer chromatography similarities (TLC) 
(data not shown). The pooled fractions were subjected 
to bioactivity screening. The most bioactive fraction was 
found to have a major compound by TLC which upon 

Fig. 6  Effect of HLBT-100 on apoptosis. Apoptotic effect of HLBT-100 was assessed on the MV4-11 leukemic cell line using the Annexin V-FITC apop-
tosis detection Kit I. After treatment with HLBT-100 (0.024 and 0.120 µM) cells were incubated at 37 °C for 24 h. Cells were harvested and stained 
with Annexin V-FITC and Propidium Iodide reagents. Stained samples were analyzed using FlowJo (Tree Star, Ashland, OR, USA) for apoptotic effect
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further purification yielded a pale yellowish powder 
and was identified to be a flavanone based on NMR and 
HRMS analysis (Fig. 10).

Anti‑proliferative assay
Cell lines and culture medium
Five human cancer cell lines (U87 MG, MDA-MB-231, 
MV4-11, PC-3 and A375 were obtained from American 
Type Culture Collection (ATCC) (Manassas, VA, USA). 
The five tumor cell lines were maintained in minimum 
essential media supplemented with 10% fetal calf serum 
(Thermo Scientific, USA), 1% l-glutamine, 2% penicil-
lin–streptomycin, and 0.2% gentamicin all from Corning 
Cellgro Mediatech, Inc. (Manassas, USA). The two CNS 
related cell lines, cancer cell line (-IMR-32) and a nor-
mal cell (neuro-2a) were maintained at Reaction Biology 
Corp.

Anticancer cell proliferation and cytotoxicity assay
The WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-
5-tetrazolio]-1,3-benzene disulfonate) (Roche) colori-
metric assay was used [74]. Briefly, cells were trypsinized 
and plated into 96 well plates in 50 µl of media and incu-
bated overnight. Approximately 18 h after plating, 50 µl 
of media containing the required drug concentration 
was added per well. The compounds and extracts were 
solubilized in DMSO. The cells were allowed to prolifer-
ate for 72 h 37 °C in humidified atmosphere of 5% CO2. 
The experiment is terminated using WST-1 (Roche) 
10  µl per well and absorbance is read at 450/690  nm. 

Fig. 7  In-cell DNA fragmentation effect of HLBT-100 against the following cell lines: A375, A459 and MDA MB231 was evaluated. 1–2 × 105 cells 
were seeded on glass coverslip in 12 well cell culture plate (costar, USA) and treated with drug. An equal vol of 10% formalin was added in each well 
for 10–15 min at RT. The plate was centrifuged at 3000g for 20 min to spin down all the cells. Liquid was discarded and cells were treated with 0.1% 
Triton X100 for 5 min and removed from triton. Cells were treated with DAPI (0.5 μg/ml) in 0.1% BSA for 5 min and washed 3× with normal saline. 
Finally, the cells were mounted with mowiol (sigma) and transferred onto microscopic glass slides, dried in dark and visualized under fluorescence 
microscope (Nikon and Zeiss, USA). Effect of HLBT-100 on fragmented is indicated by arrows

Fig. 8  The Apo-ONE® Homogeneous Caspase-3/7 Assay (Promega) 
was used to detect caspase-3/7 activity of HLBT-100 based on the 
cleavage of a pro-fluorescent DEVD peptide-rhodamine 110 substrate 
[(Z-DEVD)2-R110] according to manufacturer’s instruction and as 
reported by Wagner et al. [78]. PC-3 prostate cancer cell line was cul-
tured in F12 K medium supplemented with 10% FBS and 100 µg/ml 
penicillin, and 100 µg/ml streptomycin. PC-3 cells were treated with 
HLBT-100 or reference compound staurosporine for 6 h with serum 
free medium. The activation was considered significant only when 
the highest compound dose induced caspase-3/7 activity ≥200% 
compared to DMSO
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Antiproliferation activity was assessed as a percentage 
of proliferation of untreated cells, and IC50 values deter-
mined using Graphpad Prism software (Version 6.01). 
All concentrations are treated in duplicate and the mean 
results determined are automatically used in the IC50 
determination. The anticancer activity against the NCI60 
cancer cell lines panel was performed using NCI’s stand-
ard protocol [75].

CellTiter‑Glo® luminescent cell viability assay
Cells were seeded at 2000–5000 cells/well in 96-well 
plates. After an overnight incubation, cells were treated 
with drug and incubated for 72 h at 37  °C. The cell via-
bility was determined using the Cell Titer-Glo lumines-
cent cell viability assay kit (Promega, Madison, WI, USA) 
after staining for 10 min, according to the manufacturer’s 
instructions. The half-maximal inhibitory concentration 
(IC50) values were calculated using Graph Pad Prism soft-
ware (Version 6.01).

Cell cycle arrest and apoptosis determination studies
The MV4-11 leukemic cell line was used determine the 
cell cycle arrest and apoptotic effects of HLBT-100. Cell 
were treated with either DMSO (vehicle) or HLBT-100. At 

24, 48 and 72 h, cells were harvested, washed and stained 
according to the manufacturer’s recommendations with 
the Abcam propidium iodide flow cytometry kit (Abcam, 
Cambridge, MA, USA) for cell cycle determination and 
the Annexin V-FITC apoptosis detection Kit I for apopto-
sis assessment (BD Biosciences, San Jose, CA, USA). Sam-
ples stained for Annexin V-FITC analysis and Propidium 
Iodide were acquired using BD FACS Canto II (BD Bio-
sciences, San Jose, CA, USA). Acquired samples were ana-
lyzed using FlowJo (Tree Star, Ashland, OR, USA).

In‑cell DNA fragmentation assay
The method used for nuclear DNA fragmentation has 
been described previously [76, 77] with slight modifica-
tion. Briefly, 1–2  ×  105 cells were seeded on the glass 
coverslip in 12 well cell culture plate (costar, USA). 
The cells were treated with the drugs and at the end of 
treatment equal vol of 10% formalin was added in each 
well for 10–15  min at RT. The plate was centrifuged at 
3000g for 20  min to spin down all the cells. The liquid 
was discarded and cells were treated with 0.1% Triton 
X100 for 5  min and after that, the triton was removed. 
In the next step, Cells were treated with DAPI (0.5  μg/
ml) in 0.1% BSA for 5 min and washed three times with 

Fig. 9  Antiangiogenic activity of HLBT-100. The rat ring aortic assay as was used to determine effect on capillary sprout formation. HLBT-100 inhib-
ited sprout formation at all 3 concentrations tested (1 µM lowest concentration) compared to the DMSO and media controls
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normal saline. Finally, the cells were mounted with mow-
iol (sigma) and transferred onto microscopic glass slides, 
dried in dark and visualized under fluorescence micro-
scope (Nikon and Zeiss, USA).

Caspase 3/7 activation
The Apo-ONE® Homogeneous Caspase-3/7 Assay (Pro-
mega) was used to detect caspase-3/7 activity based on 
the cleavage of a pro-fluorescent DEVD peptide-rhoda-
mine 110 substrate [(Z-DEVD)2-R110] according to man-
ufacturer’s instruction and as reported by Wagner et  al. 
[78]. PC-3 prostate cancer cell line was cultured in F12K 
medium supplemented with 10% FBS and 100  µg/ml 
penicillin, and 100  µg/ml streptomycin. PC-3 cells were 
treated with HLBT-100 or reference compound stauro-
sporine for 6  h with serum free medium. The activation 
was considered significant only when the highest com-
pound dose induced caspase-3/7 activity  ≥200% com-
pared to DMSO.

Angiogenesis
The assay was carried out as previous reported with 
modification to determine the antiangiogenic activity 

of HLBT-100 [63, 79]. Briefly, a 170 g (5–6 weeks old) 
Sprague-Dawley rat (Harlan, Frederick, Maryland) was 
euthanized by CO2 asphyxiation. All rats used were 
maintained in the vivarium at the Institute of Human 
Virology at the University of Maryland, School of 
Medicine in accordance with the Institutional Animal 
Care and Use Committee (IACUC) guidelines. The 
aorta was dissected using a dissecting microscope and 
the periaortic fibroadipose tissue was removed and 
1–2  mm long aortic rings were sectioned and rinsed 
extensively in EBM media (endothelial cell basal 
media). The rings were embedded in 200 µl of matrigel 
in 24-well culture plates so that the lumen was parallel 
to the base of the plate. 800 µl of EBM without ECGS 
was added to each well. The rings were incubated for 
24 h in an incubator at 37  °C and 5% CO2 in humidi-
fied air and the media was replaced with fresh 800 µl 
of EBM with ECGS having varying concentrations 
of HLBT-100. The rings were further incubated for 
4–5 days and evaluated for sprout formation. Capillary 
sprout formation compared to control were captured 
with a Nikon FDX-35 camera mounted onto a Nikon 
Eclipse TE300 microscope.

Fig. 10  A high resolution mass spectra (HRMS) of HLBT-100. Molecular weight = 376.37 [Mz + H]
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Statistical analysis
All experiments where required were run with replicates 
and the means used in the analysis and IC50 values gener-
ated and graphing of data done by Graph Pad Prism soft-
ware (Version 6.01).
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