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Volatile organic metabolites identify 
patients with gastric carcinoma, gastric ulcer, or 
gastritis and control patients
Hongshuang Tong1,2†, Yue Wang1,2†, Yue Li1, Shujuan Liu1, Chunjie Chi1, Desheng Liu1, Lei Guo1, Enyou Li1* 
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Abstract 

Background:  Gastric cancer ranks 4th among the most common cancers worldwide, and the mortality caused 
by gastric cancer is 2nd only to lung cancer. Gastric cancer shows a lack of specific symptoms in its early stages. In 
addition, its clinical symptoms often do not match the corresponding stage. Upper gastrointestinal endoscopy with 
biopsy is the gold standard for the diagnosis of gastric cancer because of its high accuracy. However, this operation is 
invasive, patient compliance is poor, and high demands for medical staff and equipment are typical of this procedure. 
Recent studies have demonstrated a connection between specific breath volatile organic compounds (VOCs) and 
various forms of cancers.

Methods:  We collected expired air from patients with gastric cancer, chronic atrophic gastritis or gastric ulcers as 
well as from healthy individuals. Solid-phase microextraction, gas chromatography–mass spectrometry and principal 
component analysis statistics were applied to identify potential biomarkers of gastric cancer among VOCs.

Results:  Fourteen differential metabolites were annotated using the NIST 11 database, with a similarity threshold of 
70%. Currently, the metabolic origin of VOCs remains unclear; however, several pathways might explain the decreas-
ing or increasing trends that were observed.

Conclusions:  The results of this study demonstrate the existence of specific VOC profiles associated with patients 
with carcinoma. In addition, these metabolites may contribute to the diagnosis and screening of patients with 
carcinoma.
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Background
Gastric cancer ranks 4th among the most common can-
cers worldwide after lung cancer, breast cancer and colo-
rectal cancer. The mortality caused by gastric cancer 
ranks 2nd only to lung cancer. Every year, over 738,000 
people are reported to die from gastric cancer, which 
accounts for 9.7% of all cancer deaths. Most cases of 

gastric cancer occur in developing countries, which 
results in an extremely heavy burden in terms of medical 
costs for these nations and individuals [1, 2]. Gastric can-
cer shows a lack of specific symptoms in its early stages. 
In addition, its clinical symptoms often do not match the 
corresponding stage. Therefore, gastric cancer is com-
monly characterized by a later diagnosis, poor progno-
sis, and likely relapse [3, 4]. A gastrointestinal barium 
meal examination is often an unpleasant experience for 
patients, and the examination itself frequently shows 
poor specificity. Gastric cancer involves different tis-
sues at different stages, and serum cancer markers (CEA, 
CA 19-9, CA 242, CA 72-4) exhibit a lack of specificity. 
Upper gastrointestinal endoscopy with biopsy is the gold 
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standard for the diagnosis of gastric cancer because it 
displays high accuracy. However, this operation is inva-
sive, patient compliance is poor, and high demands for 
medical staff and equipment are typical of this procedure 
[5]. Furthermore, it is possible to overlook small lesions 
because the diseased areas may be patchy. In some 
instances, such as in the earlier stages of gastric mucosal 
atrophy, great inter-observer variations may be present 
in the identification of pre-malignant lesions. Expired 
air analysis, as a method for the detection of the disease 
course, has attracted widespread attention. Helicobac-
ter pylori [14] testing is applied clinically, but a positive 
result can only indicate infection with H. pylori. Many 
recent studies have demonstrated a connection between 
specific breath volatile organic compounds (VOCs) and 
various forms of cancer, including lung cancer [6], liver 
cancer [7], breast cancer [8], and colorectal cancer [9, 10]. 
The reason for this connection might be that the altered 
blood biochemistry of cancer patients is reflected in the 
components of expired air through blood-air exchange 
in the lungs [11]. Because the expired air method dem-
onstrates advantages such as its non-invasive nature, low 
cost, and good patient compliance, it has become the 
optimal choice for gastric cancer diagnosis [12]. Studies 
that address gastric cancer and related specific VOCs in 
expired air are scarce. Therefore, we collected expired 
air from patients with gastric cancer, chronic atrophic 
gastritis, or gastric ulcers as well as healthy individuals. 
Solid-phase microextraction (SPME), gas chromatogra-
phy–mass spectrometry (GC–MS), and principal com-
ponent analysis (PCA) statistics were applied to identify 
potential biomarkers of gastric cancer among VOCs.

Methods
Human subjects
This study included men aged between 25 and 81  years 
and women aged between 34 and 89  years. In addi-
tion to the group of patients with gastric diseases, this 
study also included healthy volunteers. As detailed in 
Table 1, the 24 patients with gastric carcinoma who were 
selected included 14 males and 10 females. The mean 
age of the gastric carcinoma patients was 63.75  years, 
with a standard deviation (SD) of 11.46 years; 8 of these 
patients were smokers. The 24 selected patients with 
gastric ulcer included 7 males and 17 females. The mean 
age of the gastric ulcer patients was 59.33  years, with a 
SD of 12.27  years; 4 of these patients were smokers. In 
the group of 48 patients with gastritis, 24 were male and 
24 were female. Their mean age was 54.71 years, with a 
SD of 12.14 years; 8 of these patients were smokers. The 
normal control group comprised 32 individuals with a 
mean age of 39.78 years and a SD of 13.35 years; only one 
smoker was included in this group.

Breath collection
Breath gas collection with parallel collection of ambient 
air was performed within 24 h of overnight fasting for all 
the patients and control subjects.

Following gas collection, 20-ml samples of exhaled 
gas were drawn into gas-tight syringes (50  ml) (Agilent 
Inc., USA). These samples were immediately transferred 
to evacuated 20-ml glass vials (Supelco Inc., USA). All 
these vials had been thoroughly cleaned by flushing with 
nitrogen gas (99.999% purity, Liming Gas Inc., China) to 
remove any residual contaminants, after which the nitro-
gen gas was evacuated to allow breath sample collection. 
All the exhaled gas samples were analyzed within 3  h 
after sampling.

Solid‑phase microextraction (SPME)
A manual SPME holder with carboxen/polydimethylsi-
loxane (CAR/PDMS) fibers with a thickness of 75 µm was 
purchased from Supelco (Bellefonte, USA). The SPME 
fibers were inserted into the vials and exposed to the gas-
eous samples for 20 min at 40 °C. Subsequently, desorp-
tion of volatiles was performed in a hot GC injector at 
200 °C for 2 min.

GC/MS analysis
Analysis was performed using a GC/MS (Shimadzu 
GC–MS QP 2010, Shimadzu, Japan) equipped with 
a DB-5MS (length 30  m * ID 0.250 * film thickness 
0.25  µm; Agilent Technologies, USA) plot column. 
Injections were conducted in splitless mode. The tem-
perature of the injector was 200  °C. The flow rate of 
the helium (99.999%) carrier gas was kept constant at 
2 ml min−1. The column temperature was held at 40 °C 
for 2 min to concentrate the hydrocarbons at the head 
of the column and was then increased by 7  °C min−1 
to 200  °C for 1  min, followed by ramping at 20  °C 
min−1 to 230 °C for 3 min. The MS analyses were per-
formed in full-scan mode, using a scanning range of 
35–200 amu. The ion source was maintained at 230 °C, 
and an ionization energy of 70  eV was used for each 
measurement.

Table 1  Demographic characteristics of the study subjects

Gastric 
carcinoma

Gastric 
ulcer

Gastritis Normal 
controls

Subjects (n) 24 24 48 32

Age 
(mean ± SD)

63.75 (11.46) 59.33 
(12.27)

54.71 
(12.14)

39.78 (13.35)

Male 14 17 24 6

Female 10 7 24 26

Smokers (n) 8 4 8 1
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Extraction and pretreatment of GC/MS raw data
Raw GC/MS data were converted into CDF for-
mat (NetCDF) files using Shimadzu GCMS Postrun 
Analysis software and were subsequently processed 
using the XCMS toolbox. The XCMS parameters con-
sisted of the default settings with the following excep-
tions: xcmsSet (fwhm =  8, snthresh =  6, max =  200); 
retcor (method  =  “linear”, family  =  “gaussian”, plot-
type =  “mdevden”); a bandwidth of 8 was used for the 
first grouping command, and 4 was used for the second 
grouping command. The dataset of the aligned mass ions 
was exported from XCMS and could be further pro-
cessed using Microsoft Excel to normalize the data prior 
to multivariate analyses.

Statistical analysis
Total area normalization was performed prior to statisti-
cal analysis. The normalized data were then exported to 
SIMCA-p 11.5 for principal component analysis (PCA) 
and partial least-squares discriminant analysis (PLSDA). 
To guard against overfitting, the default seven-round 

cross-validation in SIMCA-p software was applied, and 
permutation tests with 100 iterations were performed to 
further validate the supervised model. In addition, the 
two-sided Welch Two-Sample t-test was performed to 
determine the significance of each metabolite. Based on 
variable importance in the projection (VIP values) from 
the PLSDA model and P-values from t-tests with thresh-
olds of 1 and 0.01, potential metabolic biomarkers were 
selected.

Results
Patients with gastric carcinoma versus controls
GC/MS was utilized to analyze the metabolites in the 
breath gas samples from the 24 patients with gastric car-
cinoma and 32 healthy controls. Based on the ion peaks 
in the resulting chromatogram, we obtained 215 vari-
ables. The separation trend for the experimental group 
and the control group was detected from the PCA and 
PLSDA score plots; the tight clustering of samples in the 
PLSDA score plot demonstrated that our approach was 
effective (Fig. 1).

Fig. 1  a PCA score plot: gastric carcinoma patients vs controls. b OPLSDA score plot: gastric carcinoma patients vs controls: (4 components, 
R2X = 0.507, R2Y = 0.676, and Q2 = 0.439). c PLSDA validation plot intercepts: gastric carcinoma patients vs controls R2 = (0.0, 0.164); Q2 = (0.0, 
− 0.161)
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In the corresponding PCA score plot, the exhaled air 
samples from the patients with gastric carcinoma and the 
normal controls could be separated into two different cat-
egories (Fig. 1a). To provide a more detailed explanation, 
PLSDA was performed. Using three orthogonal compo-
nents, a prediction model was obtained (R2X =  0.507, 
R2Y = 0.676, and Q2 = 0.439; Fig. 1b). After 100 itera-
tions of permutation testing, the intercept for R2 was 
found to be 0.164, and the intercept for Q2 was − 0.161 
(Fig. 1c). In the PLSDA model, 4 characteristic metabo-
lites played decisive roles in the sample classification, as 
indicated by VIP values of 0.1 and t-tests where P < 0.05 
(Table 2).

Patients with gastric carcinoma versus patients with gastric 
ulcer
GC/MS was utilized to analyze the metabolites in the 
breath gas samples from the 24 patients with gastric car-
cinoma and 24 patients with gastric ulcer. Based on the 
ion peaks in the resulting chromatogram, we obtained 
216 variables. The separation trend for the experimental 
group and the control group was detected from the PCA 
and PLSDA score plots; the tight clustering of samples in 
the PLSDA score plot demonstrated that our approach 
was effective (Fig. 2).

In the corresponding PCA score plot, the exhaled air 
samples from the patients with gastric carcinoma and 
the patients with gastric ulcer could be separated into 
two different categories (Fig.  2a). To provide a more 
detailed explanation, PLSDA was performed. Using 

three orthogonal components, a prediction model was 
obtained (R2X =  0.535, R2Y =  0.616, and Q2 =  0.423; 
Fig. 2b). After 100 iterations of permutation testing, the 
intercept for R2 was observed to be 0.167, and the inter-
cept for Q2 was − 0.163 (Fig. 2c). In the PLSDA model, 
3 characteristic metabolites played decisive roles in the 
sample classification, as indicated by VIP values of 0.1 
and t-tests where P < 0.05 (Table 2).

Patients with gastric carcinoma versus patients 
with gastritis
GC/MS was utilized to analyze the metabolites in the 
breath gas samples from the 24 patients with gastric car-
cinoma and 48 patients with gastritis. Based on the ion 
peaks in the resulting chromatogram, we obtained 342 
variables. The separation trend for the experimental 
group and the control group was detected from the PCA 
and PLSDA score plots; the tight clustering of samples in 
the PLSDA score plot demonstrated that our approach 
was effective (Fig. 3).

In the corresponding PCA score plot, the exhaled air 
samples from the patients with gastric carcinoma and 
the patients with gastritis could be separated into two 
different categories (Fig. 3a). To provide a more detailed 
explanation, PLSDA was performed. Using three orthog-
onal components, a prediction model was obtained 
(R2X =  0.381, R2Y =  0.695, and Q2 =  0.542; Fig.  3b). 
After 100 iterations of permutation testing, the inter-
cept for R2 was shown to be 0.141, and the intercept for 
Q2 was −  0.221 (Fig.  3c). In the PLSDA model, three 

Table 2  Related metabolites that exist at abnormal levels in the exhaled air samples among carcinoma, gastric ulcer gas-
tritis patients and normal controls

RT retention time, FC fold change, VIP variable importance in the projection

Potential biomarker RT Carcinoma vs normal Carcinoma vs gastric ulcer Carcinoma vs gastritis

P-value FC VIP P-value FC VIP P-value FC VIP

2,3-Butanediol, [R-(R*,R*)]- 3.09 2.49E−03 0.8 2.1885

1,3-Dioxolan-2-one 7.58 2.56E−03 − 1.04 2.0577

Hexadecane 18.36 1.04E−04 3.61 1.818

Undecane, 3,8-dimethyl- 18.36 1.30E−02 4.2 1.7379

N,N-Dimethylacetamide 5.55 8.34E−04 − 3.45 1.9534 3.52E−11 − 3.63 2.1254

Phosphonic acid, (p-hydroxyphenyl)- 8.07 3.01E−04 − 1.46 1.5537 4.54E−05 − 1.12 1.6612

1,3-Dioxolane-2-methanol 11.66 4.38E−04 3.56 1.5061 2.01E−03 0.98 1.7984

3,5-Decadien-7-yne, 6-t-butyl-2,2,9,9-tetramethyl- 18.94 9.02E−08 − 11.38 2.1523

1,6-Dioxacyclododecane-7,12-dione 19.71 3.05E−07 − 5.75 1.7882

Caprolactam 15.83 2.18E−06 − 4.92 1.7731

5,7-Octadien-2-one, 3-acetyl- 14.11 7.92E−06 − 9.83 1.6588

Nonanal 11.01 2.80E−06 − 1.54 1.6415

5-Hepten-2-one, 6-methyl- 8.08 5.02E−05 − 0.96 1.6318

Benzothiazole 13.62 9.42E−03 0.64 1.5273
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characteristic metabolites played decisive roles in the 
sample classification, as indicated by VIP values of 0.1 
and t-tests where P < 0.05 (Table 2).

Potential biomarkers
Among the significant metabolites identified based on 
the VIP values in the PLSDA model and FDR values, 14 
differential metabolites were annotated using the NIST 
11 database, with a similarity threshold of 70%.

The results showed that the levels of three metabo-
lites were significantly greater in the group of carcinoma 
patients than in the group of normal controls (P < 0.05): 
2,3-butanediol, [R-(R*,R*)]-; hexadecane; and undecane, 
3,8-dimethyl-. Moreover, significantly reduced levels of 
1,3-dioxolan-2-one were detected in the group of carci-
noma patients compared with the normal control group 
(P < 0.05, Table 2).

The levels of two metabolites were significantly increased 
in the group of carcinoma patients compared with the 
group of gastric ulcer patients (P  <  0.05): N,N-dimethyl-
acetamide and phosphonic acid, (p-hydroxyphenyl)-. In 

addition, 1,3-dioxolane-2-methanol exhibited significantly 
reduced levels in the group of carcinoma patients com-
pared with the group of gastric ulcer patients (P  <  0.05, 
Table 2).

Two metabolites were found at increased levels and 8 
were found at reduced levels in the group of carcinoma 
patients compared with the group of gastritis patients. The 
following metabolites were increased (P < 0.05): 1,3-diox-
olane-2-methanol and benzothiazole. The following 
eight metabolites were found at reduced levels (P < 0.05): 
N,N-dimethylacetamide; phosphonic acid, (p-hydroxy-
phenyl)-; 3,5-decadien-7-yne, 6-t-butyl-2,2,9,9-tetrame-
thyl-; 1,6-dioxacyclododecane-7, 12-dione; caprolactam; 
5,7-octadien-2-one, 3-acetyl-; nonanal; and 5-hepten-
2-one, 6-methyl- (Table 2).

Discussion
Helicobacter pylori infection is the strongest known risk 
factor for the development of gastric cancer. Pylori-
induced chronic inflammation may be closely related to 
the altered metabolic pathways of gastric cancer cells 

Fig. 2  a PCA score plot: gastric ulcer vs gastric carcinoma patients. b OPLSDA score plot: gastric ulcer vs gastric carcinoma patients (3 compo-
nents, R2X = 0.535, R2Y = 0.616, and Q2 = 0.423). c PLSDA validation plot intercepts: gastric ulcer vs gastric carcinoma patients R2 = (0.0, 0.167); 
Q2 = (0.0, − 0.163)
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[13]. Multiple research articles have reported that inflam-
matory reactions are closely related to oxidative stress. 
The release of cytokines and the activation of immune-
cell NADPH oxidase could cause an increase in reac-
tive oxygen species (ROS) [14, 15]. Malondialdehyde 
(MDA) is a lipid peroxidation marker. A study by Bakan 
discovered that MDA levels were increased in the bod-
ies of patients with gastric cancer [16]. Many researchers 
have suggested that the alkanes and methylated alkanes 
in the expired air of cancer patients are related to oxida-
tive stress. One study found hydrocarbons in the breath 
of lung cancer patients and/or in the headspace of lung 
cancer cells. These hydrocarbons belonged to the fol-
lowing 3 families: (i) straight alkanes (pentane, hep-
tane, octane, and decane); (ii) branched-chain alkanes 
(2-methylpentane, 2,3,3-trimethylpentane, 2,3,5-tri-
methylhexane trimethylhexane, 2,4-dimethyl-1-heptane, 
and 4-methyloctane); and (iii) branched-chain alkenes 
(2,4-dimethyl-1-heptene and 2-methyl-1,3-butadiene) 
[17, 18]. Another study found a significant increase in 
saturated hydrocarbons in the headspace of cell cultures 

compared with the medium of control cells. It was also 
shown that 2,3,3-trimethylpentane, 2,3,5-trimethylhex-
ane, 2,4-dimethylheptane, and 4-methyloctane were 
released from CALU-1 cells [19]. Oxidative stress, reac-
tive oxygen species (ROS), and free radicals are excreted 
from mitochondria in the cell, which generates volatile 
alkanes that are emitted in the breath. Many carcinogenic 
factors could result in increased levels of ROS in the 
body. ROS interact with unsaturated fatty acids in cellu-
lar and subcellular membranes, which causes lipid per-
oxidation and produces alkanes and methylated alkanes. 
The potential markers obtained in this study, including 
hexadecane and undecane, 3,8-dimethyl-, might be pro-
duced through this pathway. Moreover, 2,3-butanediol is 
one of the structural isomers of butanediol. In the human 
body, 2,3-butanediol is produced through the anaero-
bic metabolism of glucose as one of its final anaerobic 
metabolites [20]. In the body of gastric cancer patients, 
the proliferation and metabolism of tumor tissue are 
abnormally strong, with glucose and glutamate being 
used to produce energy for cancer cells and to synthesize 

Fig. 3  a PCA score plot: gastritis patients vs gastric carcinoma patients. b OPLSDA score plot: gastritis patients vs gastric carcinoma patients (4 com-
ponents, R2X = 0.381, R2Y = 0.695, Q2 = 0.542). c PLSDA validation plot intercepts: gastritis patients vs gastric carcinoma patients R2 = (0.0,0.141); 
Q2 = (0.0, − 0.221)
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carbohydrates, fatty acids, amino acids, and nucleotides 
that are needed for protein synthesis and cellular prolif-
eration [21]. However, because the nutritional support 
ability of the human body is limited, normal tissues are 
often under chronic anaerobic conditions. In tumor tis-
sue, glycolytic metabolism increases, which is known as 
the “Warburg” effect [22]. The Warburg effect can fur-
ther increase glucose consumption in tumor tissue and 
increase anaerobic metabolism. This increase would 
eventually result in an abnormally high production of 
2,3-butanediol as the final product of anaerobic metabo-
lism. Similar to 2,3-butanediol, the source of alcohols in 
the body is the metabolism of alkanes. Cytochrome p450 
enzymes in cells can catalyze the alkanes generated from 
lipid peroxidation to form alcohols [17]. In this study, the 
levels of 1,3-dioxolane-2-methanol, a potential marker, 
were found to be significantly increased, which might be 
related to the significant anaerobic metabolism of glu-
cose, as discussed above.

In addition to the substances that showed increased 
levels in patients with gastric cancer, we also discovered 
a reduction of ketone (1,3-dioxolan-2-one 1,6-dioxacy-
clododecane-7,12-dione, 5-hepten-2-one,6-methyl-) and 
aldehyde (nonanal) levels. The decreases in these VOCs 
might be related to consumption due to the rapid pro-
liferation of tumor tissues [23]. Protein metabolism in 
the human body can also result in ketone bodies [18]. 
However, in tumor tissues, protein synthesis is stronger 
than protein catabolism, which results in a decrease of 
1,3-dioxolan-2-one 1,6-dioxacyclododecane-7,12-dione, 
5-hepten-2-one,6-methyl- in expired VOCs. Using arrays 
of cross-reactive nanomaterial-based sensors combined 
with statistical pattern recognition methods, Barash 
et al. [19] identified and discriminated the VOC patterns 
of several types of lung cancer (LC) cells. These authors 
discovered that air from the top cell culture media in 
small-cell lung cancers showed decreased levels of 5-hep-
ten-2-one, 6-methyl-, and nonanal, which was consist-
ent with the findings of our study. Although the types of 
tumor cells examined in these two studies were different, 
the large amount of substances consumed was similar. 
This result explains why the concentrations of 5-hepten-
2-one, 6-methyl-, and nonanal were decreased in differ-
ent tumor types, including small-cell lung cancer and 
gastric cancer.

In a previous study, Xu et  al. investigated five volatile 
organic compounds (2-propenenitrile, 2-butoxy-ethanol, 
furfural, 6-methyl-5-hepten-2-one, and isoprene) using 
nanomaterial-based sensors and found that those com-
pounds were significantly elevated in patients with gas-
tric cancer and/or gastric ulcer compared with patients 
with benign gastric conditions who may have similar 
clinical symptoms. They demonstrated that arrays of 

nanomaterial-based sensors can distinguish benign and 
malignant ulcers from other less severe gastric lesions, 
using breath samples of patients. They further demon-
strated that the results were not affected by confounding 
factors such as alcohol/smoking and Helicobacter pylori 
(H. pylori) infection [24].

These methods are complementary for potential 
marker compounds identified by the SPME method and 
GC–MS. SPME offers some advantages as a sample prep-
aration method of human breath, such as its high sen-
sitivity, short extraction time, and ease of use. Because 
SPME extraction is based on the distribution between 
gaseous and liquid/solid phases, SPME–GC/MS method-
ology is limited by commercially available fibers to typi-
cal compound concentrations above 0.1 ppt for breath 
constituents [25].

In our study, by SPME method and GC–MS, 14 dif-
ferential metabolites were annotated using the NIST 
11 database, with a similarity threshold of 70%, among 
the significant metabolites identified according to the 
VIP values in the PLSDA model and the FDR values in 
patients with carcinoma compared with normal con-
trols, patients with gastric ulcer and patients with 
gastritis. Our results showed that the levels of three 
metabolites were significantly higher in the group of 
carcinoma patients than in the normal control group 
(P < 0.05): 2,3-butanediol, [R-(R*, R*)]-, hexadecane, and 
undecane, 3,8-dimethyl-. In addition, significantly lower 
levels of 1,3-dioxolan-2-one were observed in the group 
of carcinoma patients compared with the normal con-
trol group (P < 0.05, Table 2). Compared with others, the 
more common compounds in the exhaled breath of car-
cinoma patients are alcohols.

Furthermore, after data processing, we obtained one 
potential biomarker, N,N-dimethylacetamide (DMCA), 
that might be a contaminant. Previous studies have sug-
gested that this compound is present in the production 
process of Tedlar and is therefore a natural volatile pro-
duced from Tedlar sample collection bags [26, 27].

This study had certain limitations. (1) This was a pilot 
study with a small sample size. (2) No analysis was per-
formed to distinguish between tumor stages, and many 
factors might affect the VOCs present in expired air such 
as age, sex, smoking status, and alcohol intake. Previous 
studies [28, 29] have shown that the components and 
concentrations of VOCs in various cancer stages are dif-
ferent. (3) No follow-up was performed among the gastric 
cancer patients to monitor the dynamic changes in VOCs 
in relation to time and the applied treatment methods. 
(4) The origin of volatile cancer markers in the breath 
may not yet correspond precisely with human physiol-
ogy or pathology. In a future study, we will increase the 
sample size, strictly distinguish among different tumor 
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stages, perform long-term follow-up studies to identify 
more accurate volatile markers, and conduct more inten-
sive studies of the pathogenesis of volatile cancer markers 
in the breath.

Conclusions
The results of this study demonstrate that specific VOC 
profiles are associated with carcinoma patients. In addi-
tion, these metabolites may contribute to the diagnosis 
and screening of patients with carcinoma.
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