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Abstract 

Background:  Visfatin has been reported to be associated with breast cancer progression, but the interaction 
between the visfatin and clinicopathologic factors in breast cancer progression status requires further investigation. 
To address this problem, it is better to simultaneously consider multiple factors in sensitivity and specificity assays.

Methods:  In this study, a dataset for 105 breast cancer patients (84 disease-free and 21 progressing) were chosen. 
Individual and cumulative receiver operating characteristics (ROC) were used to analyze the impact of each factor 
along with interaction effects.

Results:  In individual ROC analysis, only 3 of 13 factors showed better performance for area under curve (AUC), i.e., 
AUC > 7 for hormone therapy (HT), tissue visfatin, and lymph node (LN) metastasis. Under our proposed scoring 
system, the cumulative ROC analysis provides higher AUC performance (0.746–0.886) than individual ROC analysis in 
predicting breast cancer progression. Considering the interaction between these factors, a minimum of six factors, 
including HT, tissue visfatin, LN metastasis, tumor stage, age, and tumor size, were identified as being highly interac‑
tive and associated with breast cancer progression, providing potential and optimal discriminators for predicting 
breast cancer progression.

Conclusion:  Taken together, the cumulative ROC analysis provides better prediction for breast cancer progression 
than individual ROC analysis.
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Background
A high occurrence of ongoing breast cancer progres-
sion and metastasis events influences quality of life and 
survival in breast cancer patients, providing a rationale 
for an in-depth analysis of the interaction among clin-
icopathologic factors [1], such as age, family history, 

genetic specificity, hormonal status and lifestyle [2–7]. 
Early diagnosis of breast cancer followed by local and/
or systematic treatments produces high survival rates 
[8]. However, recurrence or metastasis of breast cancer is 
sometimes unavoidable and reduces survival rate [6].

Clinicopathologic factors such as age, tumor size, stage, 
nodal status, hormone receptor (HR) status (estrogen 
receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2)) are widely 
considered in risk-adapted therapy decisions and as 
prognostic indicators for breast cancer progression [6, 7]. 
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However, these factors are generally taken individually 
without considering possible mutual interactions.

Visfatin (nicotinamide phosphoribosyltransferase 
or NAMPT) [9] plays an important role in regulating 
metabolism, inflammation, and carcinogenesis [10, 11]. 
Visfatin was also reported to overexpress in many types 
of cancer, such as colorectal [12], prostatic [13], gastric 
[14], esophageal [15], and breast cancer [16–20]. There-
fore, visfatin is considered to be an oncoprotein. Our 
previous study [21] reported that visfatin was highly 
expressed in breast cancer tissues and is associated with 
tumor size, ER negativity (−), PR (−), and poor disease-
free/overall survival as well as low recurrence rates for 
hormone therapy. The correlation between visfatin and 
several clinicopathologic factors were analyzed individu-
ally [21], but possible interaction between visfatin and 
breast cancer progression-associated clinicopathologic 
factors has not been investigated. Moreover, the specific-
ity and sensitivity of visfatin as an independent prognosis 
predictor for breast cancer has not been addressed.

Receiver operating characteristic (ROC) analysis is 
widely used to evaluate diagnostic test performance for 
predicting dichotomous results by comparing sensitivity 
versus specificity [22, 23]. ROC analysis is also used to 
evaluate the accuracy of various biomarkers for diagno-
sis, prognosis and survival predictions for cancer patients 
[24–31]. Recently, ROC analysis has been improved by 
simultaneously considering multiple factors in terms of 
cumulative ROC analysis [32–34].

Previously statistical analysis approaches for breast 
cancer prognosis typically depend on regression models, 
including logistic regression and the Cox proportional 
regression method. ROC analysis could provide another 
strategy for breast cancer prognosis based on sensitivity 
and specificity. In addition, possible interaction between 
visfatin and clinicopathologic factors in breast cancer 
progression has not been investigated. Thus, this study 
aims to evaluate the interaction effects of clinicopatho-
logic factors in breast cancer progression and identifies 
high risk factors through cumulative ROC analysis.

Methods
Dataset information
The dataset was derived from our previous work [21] 
with Institutional Review Board (IRB) approval (KMUH-
IRB-980567) and informed consent. A total of 105 female 
breast cancer patients treated with surgery but with-
out radiotherapy or chemotherapy were enrolled at the 
Department of Surgery, Kaohsiung Medical University 
Hospital during 2003–2008. Data including visfatin lev-
els and clinicopathological factors is downloadable at 
https://wp.kmu.edu.tw/changhw/files/2017/05/ROC_tis-
sue-visfatin_dataset.xlsx.

Grouping for breast cancer progression
Breast cancer patients were classified into progressing 
and disease-free groups. The progressing group included 
patients with local/regional recurrence or distant metas-
tasis of breast cancer along with those did not survive the 
follow-up period. The disease-free group included patients 
who remained disease-free for 60 months following initial 
diagnosis and who survived the follow-up period.

Clinicopathologic factors
As standard prognostic indicators for breast cancer pro-
gression [6, 7], we included 13 clinicopathologic factors: 
Visfatin positive cells (%), tumor stage, grade and size, 
age, body mass index (BMI), lymph node (LN) metas-
tasis, radiotherapy (RT), chemotherapy (CT), hormone 
therapy (HT), and breast cancer molecular makers (ER, 
PR, and HER2).

Individual ROC analysis
Clinicopathologic factors were dichotomized by ROC 
curve analysis. The area under the ROC curve (AUC) is 
used to calculate the accuracy of dichotomous results for 
predicting the risk of breast cancer progression. A higher 
AUC value represents a better prognosis prediction for 
breast cancer progression.

Cumulative ROC analysis
To score cumulative ROC analysis, the top-ranked fac-
tors are ranked according to the AUC of individual ROC 
analysis. This system transforms individual ROC analysis 
data into dichotomous data for cumulative ROC analysis. 
In brief, the cutoff point for each clinicopathologic factor 
was determined from its individual ROC curve. Values of 
each factor either above or below its the cutoff point were 
respectively assigned scores of 1 and 0. All data were 
transformed into this scoring system for further cumula-
tive ROC analysis.

Different factors were chosen to calculate their cumu-
lative AUC values. This cumulative analysis began with 
selecting the first two factors with the top AUC values 
for an individual ROC. Other factors were then tested as 
the third one and the cumulative AUC value was calcu-
lated. Only the factor that provided the highest cumula-
tive AUC value was kept. This process was repeated for 
other factor combinations. Accordingly, different num-
bers of clinicopathologic factors that generated the larg-
est cumulative AUC value were selected to investigate the 
joint effects of clinicopathologic factors associated with 
breast cancer progression.

Statistical analyses
Table 1 summarizes the distribution of clinicopathologic 
factors between the disease-free and the progressing 
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groups. The difference between both groups was esti-
mated using the Fisher’s exact test or χ2 test. The 
dichotomous analysis for single and combinational clin-
icopathologic factors were determined by individual and 
cumulative ROC as mentioned above (2.3 and 2.4). Com-
bining different factors, the likelihood ratio (LR) [23] was 
chosen to evaluate disease-free status in patients. LR+, 
i.e., sensitivity/(1  −  specificity) [23], is the ratio of the 
probability of a positive test in the progressing patients 
to that of disease-free patients. In contrast, LR−, i.e., 
1 − sensitivity)/specificity [23], is the ratio of the proba-
bility of a negative test in the progressing patients to that 
of disease-free patients. All statistical calculations were 
analyzed by STATA version 11.0.

Results
Clinicopathologic characteristics and progression of breast 
cancer
Disease progression developed in 21 (20.0%) of the 105 
breast cancer patients tracked within 5-year follow-up. 
Table 1 summarizes the clinicopathologic characteristics 
of breast cancer patients in disease-free and progressing 
statuses. Compared to the disease-free patients, the pro-
gressing patients had a significantly higher proportion of 
tissue visfatin > 50% (81.0%), stage III/IV (52.4%), grade 
3 (33.3%), age  ≥  52  years (76.2%), tumor size  ≥  2  cm 
(81.0%), LN metastasis (71.4%), triple negative subtype 
(38.1%), and hormone therapy (71.4%).

AUC for individual clinicopathologic factors for breast 
cancer progression
Table  2 presents the dichotomous results for the vari-
ous single clinicopathologic factors listed in Table  1. 
Hormone therapy (AUC  =  0.7143), tissue visfatin 
(AUC  =  0.7083), and LN metastasis (AUC  =  0.7083) 
show acceptable performance in the AUC results (≥ 0.7) 
under single factor analysis, indicating these clinico-
pathologic factors are acceptable prognosis factors for 
breast cancer progression. The AUC values for other fac-
tors were less than 0.7.

Cumulative ROC analysis of breast cancer progression
Our proposed cumulative ROC analysis scoring system 
was used to determine the combined effects of tissue 
visfatin and these clinicopathologic factors. As shown 
in Table  3, the cumulative AUC value for the combina-
tions of cumulative top-ranked clinicopathologic factors 
was calculated using the AUC value for different factor 
combinations, where the factors were added individually 
in descending order of individual AUC value (Table  2). 
The scoring system obtained the highest AUC value 
(0.886) for the 6 cumulative top-ranked factors combina-
tion, including HT, tissue visfatin, LN metastasis, stage, 

Table 1  Clinicopathologic factors of breast cancer patients 
in  disease-free and  progressed statuses. Dataset was 
retrieved from our previous study [21]

BMI body mass index, LN lymph node, ER estrogen receptor, PR progesterone 
receptor, HER2 human epidermal growth factor receptor 2, RT radiotherapy, CT 
chemotherapy, HT hormone therapy
a  Progressed patients including patients with breast cancer recurrence or 
patients expired during 5-year follow-up

Factors Disease-free 
(n = 84)

Progresseda 
(n = 21)

P

n % n %

Tissue visfatin < 0.001

 ≤ 50% 51 60.7 4 19.0

 > 50% 33 39.3 17 81.0

Stage < 0.001

 I, II 73 86.9 10 47.6

 III, IV 11 13.1 11 52.4

Grade 0.669

 1, 2 60 71.4 14 66.7

 3 24 28.6 7 33.3

Age (years) 0.002

 < 50  51 60.7 5 23.8

 ≥ 50 33 39.3 16 76.2

BMI (kg/m2) 0.195

 < 24 53 63.1 10 47.6

 ≥ 24 31 36.9 11 52.4

Tumor size (cm) 0.007

 < 2 44 52.4 4 19.0

 ≥ 2 40 47.6 17 81.0

LN metastasis < 0.001

 Negative 59 70.2 6 28.6

 Positive 25 29.8 15 71.4

ER 0.051

 Positive 59 70.2 10 47.6

 Negative 25 29.8 11 52.4

PR 0.139

 Positive 51 60.7 9 42.9

 Negative 33 39.3 12 57.1

HER2 status 0.417

 Positive 32 38.1 6 28.6

 Negative 52 61.9 15 71.4

Triple negative 0.031

 No 70 83.3 13 61.9

 Yes 14 16.7 8 38.1

RT 0.487

 Yes 51 60.7 11 52.4

 No 33 39.3 10 47.6

CT 0.557

 Yes 66 78.6 18 85.7

 No 18 21.4 3 14.3

HT < 0.001

 Yes 60 71.4 6 28.6

 No 24 28.6 15 71.4
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age, and tumor size. AUC values increased from 0.764 
to 0.886 for the cumulative top-ranked clinicopathologic 
factors, but decreased slightly after combining 7 or more 
cumulative top-ranked factors. Therefore, 6 dichoto-
mized clinicopathologic factors yielded the best progno-
sis prediction for breast cancer progression.

Cumulative ROC analysis performance for predicting 
breast cancer progression
According to the cumulative top-ranked clinicopatho-
logic factors scoring results, 6 selected dichotomized 
clinicopathologic factors provided scores ranging from 0 
to 6 (Table  4). Both scores 1 and 2 have 100% sensitiv-
ity (i.e., all progressing patients are correctly classified). 

However, score 2 has a higher specificity compared to 
score 1 (45.24% vs 14.29%), indicating that score 2 can 
predict disease-free patients more precisely. Score 4 has 
the best result, with a correctly classification of 83.81% 
for disease progression with the best combination of sen-
sitivity (76.19%) and specificity (85.71%) as well as good 
LR performance (LR+ 5.33 and LR− 0.28).

Distribution of scores and selected factors associated 
with breast cancer progression
Because score 1 has low sensitivity (Table  4) and may 
provide little contribution to predicting breast cancer 
progression, we started the distribution analysis from 
score 2 (Table 5). Scores 5 and 6 have similar specificity 

Table 2  Top-ranked results of  individual ROC in  predicting breast cancer progression. Dataset was retrieved from our 
previous study [21]

AUC Area under receiver operating characteristic. Others were shown in Table 1

Factors Individual AUC High risk Low risk Sensitivity (%) Specificity (%)

HT 0.7143 No Yes 71.43 71.43

Tissue visfatin 0.7083 > 50% ≤ 50% 80.95 60.71

LN metastasis 0.7083 Positive Negative 71.43 70.24

Stage 0.6964 III, IV I, II 52.38 86.90

Age 0.6845 ≥ 50 years < 50 years 76.19 60.71

Tumor size (cm) 0.6667 ≥ 2 cm < 2 cm 80.95 52.38

ER 0.6131 Negative Positive 52.38 70.24

PR 0.5893 Negative Positive 57.14 60.71

BMI 0.5774 ≥ 24 < 24 52.38 63.10

HER2 0.5476 Negative Positive 71.43 38.10

RT 0.5417 No Yes 47.62 60.71

Grade 0.5238 3 1, 2 33.33 71.43

CT 0.4643 No Yes 14.29 78.57

Table 3  Top-ranked results of cumulative ROC in predicting breast cancer progressiona. Dataset was retrieved from our 
previous study [21]

Abbreviations: See Table 1
a  Progressed patients including patients with breast cancer recurrence or patients expired during 5-year follow-up

Cumulative top-ranked factors Factors Cumulative AUC 95% CI

2 HT and tissue visfatin 0.764 0.64–0.89

3 Above factors plus LN metastasis 0.827 0.73–0.93

4 Above factors plus stage 0.854 0.77–0.93

5 Above factors plus age 0.886 0.82–0.95

6 Above factors plus tumor size 0.886 0.82–0.95

7 Above factors plus ER 0.880 0.81–0.95

8 Above factors plus PR 0.863 0.78–0.94

9 Above factors plus BMI 0.861 0.77–0.95

10 Above factors plus HER2 0.863 0.78–0.95

11 Above factors plus RT 0.858 0.77–0.94

12 Above factors plus Grade 0.847 0.76–0.93

13 Above factors plus CT 0.841 0.76–0.93
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levels (94.05 and 97.26%) but score 6 has relatively poor 
sensitivity (19.05%). Thus, score 6 provides little contri-
bution to predicting breast cancer progression and we 
combined score 6 with score 5 for distribution analysis. 
Accordingly, the final prognosis scores ranged from ≤ 2 
to ≥ 5.

As shown in Table  5, 56 (53.3%) of the 105 patients 
scored ≤  2, but only 2 (3.6%) were progressing patients 
with LN metastasis, 1 (1.8%) had tissue visfatin  >  50%, 
and 1 (1.8%) was age  >  50  years. A total of 21 (20.0%) 
patients scored 3, 2 (9.5%) of which were progress-
ing patients with non-HT (no receiving HT), tissue vis-
fatin  >  50%, LN metastasis, age  >  50  years, and tumor 
size ≥  2  cm. In patients who scored 4, about half were 
progressing patients with tumor size  ≥  2  cm (42.9%; 
6/14), followed by non-HT, tissue visfatin  >  50%, and 
age  >  50  years (35.7%; 5/14). A total of 9 (64.3%) of 14 
progressing patients with a score of ≥  5 had tissue vis-
fatin > 50% and tumor size ≥ 2 cm, followed by non-HT, 
LN metastasis and age > 50 years (57.1%; 8/14).

Discussion
We previously reported that the correlation between tis-
sue visfatin and several individual clinicopathologic fac-
tors [21], but the specificity and sensitivity, along with 
mutual interactions, were not investigated for breast 
cancer progression. In the current study, individual ROC 
analysis was used to evaluate the specificity and sen-
sitivity performance of these clinicopathologic factors 
associated with breast cancer progression. However, as 
shown in Table 2, aside from HT, tissue visfatin and LN 
metastasis, the other clinicopathologic factors displayed 
weak ROC performance (individual AUC < 0.7), and con-
tributed less impact to breast cancer progression. These 
results suggest that many single factors may have a dif-
ferential impact on breast cancer progression. Moreover, 
the possible interactions between tissue visfatin and clin-
icopathologic factors were not examined by individual 
ROC analysis.

A similar effect (Additional file 1) was found in univari-
ate logistic regression results, but multivariate analysis 

Table 4  Performance of  scores from  cumulative ROC analysis in  predicting breast cancer progression. Dataset was 
retrieved from our previous study [21]

LR+ Likelihood ratio for a positive test result, LR− Likelihood ratio for a negative test result
a  The number of dichotomized factors was the cumulative effects of the various clinicopathologic factors from Table 3, including HT, tissue visfatin, LN metastasis, 
stage, age, and tumor size

Scores of dichotomized factorsa Sensitivity (%) Specificity (%) Sensitivity + specificity (%) Correctly classified (%) LR+ LR−

1 100.00 14.29 114.29 31.43 1.17 0.00

2 100.00 45.24 145.24 56.19 1.83 0.00

3 95.24 65.48 160.72 71.43 2.76 0.07

4 76.19 85.71 161.90 83.81 5.33 0.28

5 42.86 94.05 136.91 83.81 7.20 0.61

6 19.05 97.62 116.67 81.90 8.00 0.83

Table 5  Distribution for  scores and  selected factors associated with  breast cancer progression. Dataset was retrieved 
from our previous study [21]

a  Cumulative score (Table 4) representing the number of risk properties of the selected clinicopathologic factors (HT, tissue visfatin, LN metastasis, stage, age, and 
tumor size) in patients
b  n is the number of all breast cancer patients with disease-free or progressed conditions
c  n is the number of breast cancer progressed patients

Scorea Total Non-HT Tissue vis-
fatin > 50%

LN metastasis Stage III, IV Age > 50 years Tumor 
size ≥ 2 cm

(n = 39) (n = 50) (n = 40) (n = 22) (n = 49) (n = 57)

nb nc % nc % nc % nc % nc % nc %

≤ 2 56 – 1 1.8 2 3.6 – 1 1.8 –

3 21 2 9.5 2 9.5 2 9.52 – 2 9.52 2 9.52

4 14 5 35.7 5 35.7 3 21.4 4 28.6 5 35.7 6 42.9

≥ 5 14 8 57.1 9 64.3 8 57.1 7 50.0 8 57.1 9 64.3
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produced inconsistent results, except for LN metastasis. 
According to the individual ROC results (Table  2), the 
individual AUC of LN metastasis is 0.7083, with a cumu-
lative AUC combining HT, tissue visfatin, LN metasta-
sis, stage, and age, and the tumor size is 0.886. Although 
multivariate logistic regression analysis presents a novel 
approach to breast cancer diagnosis, the ROC analysis 
approach based on sensitivity and specificity also pro-
vides acceptable results.

Cumulative ROC analysis has recently been applied in 
many research fields [32–37]. Six of 25 cephalometric 
measurements were selected by cumulative ROC analy-
sis to optimize the determination of surgical or nonsur-
gical treatment for skeletal Class III malocclusions [32]. 
Cumulative ROC analysis has also been applied in cancer 
association studies, identifying cumulative risks for five 
SNPs for association with papillary thyroid carcinoma 
[33]. Thus, cumulative ROC can effectively identify joint 
effects of multiple disease- or gene-associated factors.

Similarly, our study developed a scoring system for 
multiple factors-based cumulative ROC analysis and 
identified a minimum of 6 clinicopathologic factors for 
predicting breast cancer progression: HT, tissue vis-
fatin, LN metastasis, tumor stage, age, and tumor size 
(Table  3). Only 4 of these 6 factors provided acceptable 
sensitivity, specificity, and classification accuracy for pre-
dicting breast cancer progression through cumulative 
ROC analysis with a high AUC score of 0.886 (Table 4). 
These results suggest that the cumulative ROC analysis 
strategy can be effectively used to identify the joint effect 
of multiple factors for breast cancer progression.

Recently, interactions between genes and physical 
activities has been emphasized [38–40], with a particular 
focus on genetic polymorphisms. In the current study, we 
focus on the genetic expression of tissue visfatin in terms 
of protein level in tissue histochemistry. Cumulative ROC 
analysis shows tissue visfatin levels can combine with 
common clinicopathologic factors to provide an analysis 
of the interaction between breast tumor biomarkers and 
clinicopathologic factors.

Among these interactions, HT is the best single predic-
tor for breast cancer progression (Table 2). Clinical stud-
ies have suggested that breast cancer patients may benefit 
from adjuvant HT [41–43]. Tissue visfatin has also been 
reported to be an important biomarker for breast can-
cer progression [21]. In the current study, HT and tissue 
visfatin were shown to have a strong joint association 
with breast cancer progression. In addition, tumor size 
and lymph node metastasis are common prognosis fac-
tors for both breast cancer progression [44, 45] and Not-
tingham prognostic index [45]. Advanced stage (III/
IV) breast cancer is typically characterized by greater 
tumor size, lymph node invasion, pathological change in 

the surrounding tissue, or metastases in distant organs. 
Advanced stage tumor burden is usually associated with 
a poor disease prognosis in breast cancer [46–48]. Fur-
thermore, age has been suggested to be an important risk 
factor for breast cancer, as inferred from the association 
with age-related tissue microenvironment alteration [49]. 
Moreover, therapeutic impact differs with age [50, 51]. 
Hence, breast cancer progression is significantly associ-
ated with tumor characteristics and aging [48], but how 
this age-dependency increases in disease progression 
remains unclear. Moreover, the proportion of progressing 
patients with 6 selected high-risk clinicopathologic fac-
tors (No-HT, tissue visfatin > 50%, LN metastasis, tumor 
stage III/IV, age  >  50  years, and tumor size  ≥  2  cm) 
increased with cumulative score, indicating that these 
selected high-risk clinicopathologic factors were highly 
associated with breast cancer progression. Accordingly, 
these factors exhibit a high degree of mutual interactivity 
in cumulative ROC analysis.

Although our study did not consider the follow-up 
interval for breast cancer progression, our proposed 
strategy for cumulative ROC analysis shows the joint 
effect of clinicopathologic factors for predicting breast 
cancer progression in terms of sensitivity and specificity 
for disease prediction. Furthermore, the proposed scor-
ing system was based on the highest AUC performance 
from cumulative ROC analysis and did not account for 
the association of low AUC clinicopathologic factors 
effects on breast cancer progression.

The present study is subject to several limitations. No 
follow-up intervals are included and the cumulated ROC 
approach is mainly affected by the AUC ranking results, 
which might restrict exhaustive search for all possi-
ble combinations of complex interactions. For exam-
ple, although ER, PR and Her2 status were reported to 
be highly associated with breast cancer progression, the 
cumulated AUC ranking results for the combined inter-
actions still excluded these 3 factors. In addition, we did 
not include molecular subtype (TNBC, luminal A, lumi-
nal B and Her 2 enriched). Moreover, the visfatin level 
was examined from the tumor specimens of breast can-
cer patients, indicating the visfatin level required inva-
sive procedures. Further examination of visfatin level 
through the secretary samples such as blood should be 
considered.

Conclusions
The current study examined the impact of 13 clinico-
pathologic factors for predicting breast cancer progres-
sion. Under our proposed scoring system, the cumulative 
ROC analysis provides better AUC performance than 
individual ROC analysis in predicting breast cancer 
progression. Analysis of factor interaction identified 
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a minimum of 6 factors which display a high degree of 
mutual interaction and association with breast cancer 
progression: HT, tissue visfatin, LN metastasis, tumor 
stage, age, and tumor size.
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