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Abstract 

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently 
accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-
inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor 
(VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-tar-
geted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine 
kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and 
other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibi-
tors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk 
between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth 
factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the 
TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical 
trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and 
potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
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Background
Renal cell carcinoma (RCC) is the most common kid-
ney solid neoplasm, and 12 drugs are approved in US 
for metastatic RCC (mRCC). RCC is distinguished into 
three major histopathological classifications: clear cell 
RCC (ccRCC; 70–75%), papillary RCC (pRCC; 10–16%), 
and chromophobe RCC (chRCC; 5%) [1]. Approximately 
60–80% of ccRCC cases exhibit the most frequent genetic 
feature, the loss of von Hippel–Lindau (VHL) [2, 3], 
which increases the expression of hypoxia-inducible fac-
tors (HIFs), their targets, and cell survival [4, 5]. HIF-2 is 

implicated in angiogenesis, and some ccRCCs are HIF-2 
independent [6], which triggered biomarker-driven clini-
cal trials. Biomarkers to predict outcome using targeted 
therapy in metastatic ccRCC exhibited some promise but 
further validation is needed [7–11]. Patients confronted 
with rare kidney cancers are often treated in the same 
manner as ccRCC patients [12]. The prognosis of mRCC 
is poor and the primary treatment is molecular-targeted 
therapy. Targeted therapy developed quickly and tyros-
ine kinase inhibitors (TKIs), mammalian target of rapa-
mycin (mTOR) inhibitors and the programmed cell death 
protein 1 (PD-1)/programmed death ligand 1 (PD-L1) 
checkpoint inhibitors (such as nivolumab) are the stand-
ard target therapies for mRCC [13–15].

Receptor tyrosine kinases (RTKs), include epider-
mal growth factor receptor (EGFR), vascular endothelial 
growth factor receptor (VEGFR), fibroblast growth factor 
receptor (FGFR), platelet-derived growth factor receptor 
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(PDGFR), and insulin-like growth factor 1 receptor (IGF-
1R). Activation of tyrosine kinases (TKs) initiates multiple 
downstream signalling pathways, including phosphati-
dylinositol 3-kinase (PI3K)/AKT, Ras/Raf/MEK/ERK1/2, 
phospholipase C (PLC), signal transducer and activator 
of transcription (STAT)3 and STAT5 pathways [16, 17]. 
These multiple downstream signalling pathways are the 
basis of the crosstalk between TKs (Fig. 1).

Twelve TKs (e.g., ABL2, CSF1R, and MET) are signifi-
cantly upregulated in ccRCC, and 7 TKs (e.g., ERBB4, 
PDGFRA, ERBB2, and FGFR3) are downregulated [18]. 
Selective TKIs exhibited promise in the treatment of 
cancers driven by activated TKs. For example, TKIs for 
direct to Bcr-Abl, c-Kit and EGFR exhibited promise in 
the treatment of chronic myelogenous leukaemia, stro-
mal tumours, and non-smallcell lung cancer (NSCLC) 
respectively. Numerous monoclonal antibodies directed 
against receptors or ligands and TKIs, such as cabozan-
tinib [19], XMD8-87 (ACK inhibitor) [20] and axitinib 
[21, 22], were developed or approved (Table 1).

VEGF/VEGFR downstream pathway and VEGFR‑TKI
VEGF family members in mammals consist of VEGF-A, 
-B, -C, -D, -E and placenta growth factor (PLGF). There 
are three main isoforms of VEGFR, VEGFR-1, VEGFR-2 

and VEGFR-3, and VEGFR-2 plays a key role in angiogen-
esis [23]. VEGFR-3 is primarily expressed on lymphatic 
vessels, but the other VEGFR and the Tie receptor family 
are primarily expressed specifically in the endothelium. 
VEGF-A stimulates VEGFR2, which is autophosphoryl-
ated and activates various downstream signaling path-
ways [24]. Anti-angiogenesis, especially VEGF/VEGFR 
targeted theraphy, emerged as the standard of care for 
mRCC. Numerous VEGFR-TKIs were designed and 
developed (Table 2). VEGFR2-TKIs, such as sorafenib or 
sunitinib, are valuable treatment approaches for patients 
with mRCC [25]. VEGF and VEGFR polymorphisms 
affected outcomes in sunitinib-treated mRCC patients, 
especially VEGFR1 polymorphisms [26].

Mechanisms of TKI resistance
TKIs treatments are associated with dynamic changes 
in relevant biomarkers, including other protein TKs 
[27]. For example, VEGFR-TKI treatment significantly 
reduced vessel density (CD31) and phospho-S6K, PD-L1, 
and FOXP3 expression and significantly increased 
Ki-67, cytoplasmic FGF-2 and MET receptor expres-
sion in vessels [27]. However, long-lasting efficacy is sel-
dom achieved, and evasive resistance eventually occurs 
under anti-angiogenic TKI therapy [28]. A recent study 

Fig. 1  Receptor tyrosine kinases, including EGFR, VEGFR, FGFR, PDGFR, and IGF-1R, are shown. Activation of tyrosine kinases initiates multiple 
downstream signalling pathways, including PI3K/AKT, MAPK, and JAK/STAT pathways and so on, which become the basis of the crosstalk between 
TKs
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suggested that long non-coding RNAs (lncRNAs) play a 
significant role in TKI resistance in RCC. lncRNA-SRLR 
may be resistant to sorafenib and serve as a predictive 
biomarker for sorafenib tolerance via directly binding to 
NF-κB and the promotion of IL-6 transcription, which 
leads to STAT3 activation [29].

Exosomes also play a key role in resistance to drug 
theraphy. Stromal cells orchestrate an intricate crosstalk 
with tumour cells via utilization of exosomes to expand 
therapy resistance and reinitiate tumour growth [30]. 
lncARSR may promote and disseminate sunitinib resist-
ance via competitively binding to miR-34/miR-449 to 

facilitate AXL and c-MET expression, incorporating into 
exosomes and transmitting to sensitive in RCC cells [31]. 
MiR-21 and miR-126 are targets of lncRNAs, and these 
molecules may be probable prognostic markers and ther-
apeutic targets in RCC [32].

Various multi-targeted TKIs were developed because 
resistance to TKI treatment is inevitable. Sorafenib is a 
multi-targeted TKI that significantly improved clini-
cal outcomes of mRCC patients [33]. However, no sig-
nificant differences between sorafenib and sunitinib 
were observed in the treatment of advanced renal can-
cer in Chinese patients [34]. Axitinib, bevacizumab, and 

Table 1  Ligands and inhibitors of protein tyrosine kinases

Protein tyrosine kinase Ligand Monoclonal antibody of ligand Representative TKI

VEGFR VEGF (A, -B, -C, -D, -E) Bevacizumab, aflibercept, ramucirumab 
(anti-VEGFR2)

Sorafenib, sunitinib, axitinib, pazopanib

EGFR EGF, TGFα, HB-EGF, amphiregulin, epireg-
ulin, epigen, β-cellulin, NRG 2 β

Nimotuzumab, panitumumab, cetuxi-
mab, necitumumab (anti-EGFR)

Erlotinib, afatinib, osimertinib, sapitinib

PDGFR PDGF Olaratumab (anti-PDGFRα) Imatinib, pazopanib

c-MET (HGFR) HGF Cabozantinib [19], crizotinib

HER2 Trastuzumab,ramucirumab, pertuzumab Lapatinib, sapitinib

IGF-1R IGF-1 Linsitinib, GSK1904529A

FGFR FGF Nintedanib, NVP-BGJ398

FLT3 FLT3 ligand Quizartinib, dovitinib

c-Kit Stem cell factor Dovitinib, pazopanib

Tie-2 Angiopoietin Pexmetinib

c-RET GDNF, neurturin, artemin, persephin Regorafenib

TAM receptor Gas6, protein S Sitravatinib

CSF-1R CSF-1 Linifanib

Ephrin receptor Ephrins Sitravatinib

Trk receptor BDNF, NGF Sitravatinib, larotrectinib

ACK XMD8-87 [20]

Src Bosutinib

ALK Crizotinib

Table 2  Familiar VEGFR tyrosine kinase inhibitors and their targets

TKI VEGFR-1 VEGFR-2 VEGFR-3 Other targets

Sorafenib + Raf-1, B-Raf, B-Raf (V599E)

Sunitinib + c-Kit, FLT3, PDGFRβ

Lenvatinib + + + PDGFRα, PDGFRβ, FGFR1

Cabozantinib [19] + c-MET, AXL, RET, KIT, FLT3, TRKB, Tie-2

Axitinib [21, 22] + + + PDGFRα, PDGFRβ, Kit, BCR-ABL1

Vandetanib + + EGFR

Dovitinib + + + c-Kit, FLT3, FGFR1

Pazopanib + + + PDGFR, FGFR, c-Kit

Foretinib + + + MET, Tie2

Apatinib + RET
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pazopanib are also anti-angiogenic drugs that approved 
for use in mRCC. Interleukin (IL)-8 expression is ele-
vated, during sunitinib resistance, which suggests that 
IL-8 is also an key contributor and a potential therapeu-
tic target to reverse sunitinib resistance in ccRCC [35]. 
Patients with high concentrations of IL-8, osteopontin 
and HGF exhibited shorter progression-free survival 
(PFS) compared to patients with low IL-8 concentra-
tions using pazopanib as a treatment drug [36]. Cabo-
zantinib is an important new standard-of-care treatment 
option for patients with advanced RCC who previously 
received anti-angiogenic therapy [37, 38]. VEGF is the 
downstream target of the HIF signal, and drugs that 
inhibit HIF-2 are in various stages of clinical testing [5]. 
The targeting of angiogenesis and hypoxia pathways may 
provide a resolution for the anti-angiogenesis resistance 
[28]. The HIF2α antagonist PT2385 is a novel therapeu-
tics for RCC, and it exhibited cogent preclinical efficacy 
and improved tolerability [39]. Table 3 shows the factors, 
genes, proteins and other molecules (e.g., P-gp, MRP, and 
GSTs) involved in TKI resistance.

Side effects of TKIs
The development of TKIs is revolutionary progress, but 
TKIs exhibit side effects, including cardiovascular side 
effects, especially hypertension and congestive heart fail-
ure, and continual clinical monitoring should be empha-
sized in the use of new TKI agents [40, 41]. Cardiac 
damage from TKIs (sorafenib and sunitinib) treatment 
is a largely underrated phenomenon, but it is manage-
able with careful cardiovascular monitoring and cardiac 
treatment at the first signs of myocardial damage [42]. 
Another TKIs, cabozantinib, also exhibited a manageable 
adverse events profile in patients with advanced RCC 
[37]. Sunitinib increases buccodental toxicity compared 
to chemotherapy [43].

TKIs and immunotherapy
Immunotherapy enjoyed tremendous development 
recently in the form of immune checkpoint inhibition 
and vaccines [44]. VEGF-A/VEGFR-2 is also related to 
with tumour escape. VEGF-A directly triggers Treg pro-
liferation, and VEGF-A/VEGFR-2 blockade inhibits this 
effect. Therefore, anti-VEGF-A therapies may also exert 

immunological effects [45]. A combination of immu-
notherapy treatment is also in process [46]. The com-
bination of an IL-6 inhibitors (tocilizumab) and TKIs 
(sorafenib) may be a novel therapeutic approach for RCC 
[47]. Anti-VEGF (bevacizumab) in combination with an 
anti-PD-L1 (atezolizumab) improved antigen-specific 
T cell migration in mRCC [48]. More drug combina-
tion experiments will be performed with the design and 
development of less toxic novel immune checkpoint 
inhibitors and TKIs.

VEGFR‑TKIs and other signalling pathways
Molecular crosstalk between VEGFR and other TKs or 
downstream pathways, such as EGFR, c-Met, FGFR, 
PDGFR, IGF-1R, c-Kit and PI3K/AKT/mTOR, may have 
great therapeutic and resistance implications [23, 49]. 
The crosstalk between these factors contributes to TKI 
resistance, but multi-targets or combination drugs may 
exhibit good synergy. Therefore, various multi-target 
inhibitors were examined or in process and some of these 
are listed below.

The mTOR pathway and its inhibitors
The mTOR/Raptor complex (mTORC1) is a key mol-
ecule in the PI3K/AKT/mTOR signalling pathway, and 
its activation increases protein synthesis and cell sur-
vival via direct phosphorylation of its effectors. Inhibi-
tors of mTOR, such as everolimus and temsirolimus, are 
approved for the treatment of mRCC. Administration of 
everolimus alone or with lenvatinib is one of the most 
effective options for mRCC [50]. However, the inhibition 
of mTORC1 produces a loss of negative feedback loops, 
which upregulates the downstream effectors of the PI3K/
AKT/mTOR pathway and activates of HIFs (an activator 
of angiogenesis) [51].

A combination of agents targeting the multiple path-
ways of angiogenesis, including HIF, VEGFR, PI3K and 
mTORC1/2, will likely be a beneficial choice. Lenvatinib 
plus everolimus and lenvatinib alone improved PFS in 
patients with mRCC who progressed after administration 
of one previous VEGF-targeted therapy [52]. The com-
bination of bevacizumab and temsirolimus in patients 
previously treated with VEGFR-TKI is possible, but with 
dose reductions and treatment discontinuations [53]. 

Table 3  Factors, genes or proteins involved in TKI resistance

Resistance type Factors Genes Proteins

Intrinsic resistance High glucose uptake Tumour suppressor gene loss, polymor-
phism or mutation, such as VHL, TP53, 
PTEN, EGFR T790M and so on

TP53, BIM, HIF, P-gp, MDR1, GSTs, MRP and 
so on

Acquired resistance Exosomes; lncRNA-SRLR and lncRNA-
ARSR; miRNA 451, 221, 30a and so on 
[90]; EMT

Crosstalk, bypass and downstream signal 
activation or amplification (such as 
PI3K/AKT pathway)

IL-8, VEGFR-3, KRAS, BRAF, PDGFR, EGFR, 
FGFR, c-MET, AXL and so on
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The antidiabetic drug metformin blocks cell growth via 
TORC1 inhibition, and the combination of metformin 
and VEGF-TKI may be effective [54]. Combined treat-
ment with everolimus and a Toll-like receptor 9 agonist 
immune modulatory oligonucleotide effectively inter-
fered with tumour growth and angiogenesis in VHL wild-
type and mutant models of RCC [55].

VEGFR and other tyrosine kinase pathway or TKIs
EGF/EGFR pathway and TKIs
EGF family ligands include EGF, heparin-binding EGF-
like growth factor (HB-EGF), transforming growth fac-
tor alpha (TGFα), amphiregulin, epiregulin, epigen, 
β-cellulin, and neuregulin 2β (NRG2β) [56]. The human 
EGFR family consists of EGFR (ERBB1), HER2 (ERBB2), 
HER3 (ERBB3), and HER4 (ERBB4) [57]. Activation of 
HER2 and EGFR activates intracellular pathways, such as 
RAS/RAF/MEK/ERK, PI3K/AKT/TOR, Src kinases, and 
STAT transcription factors. The EGFR gene is upregu-
lated in ccRCC [58], and the HIF may activate the TGF-α/
EGFR pathway to promote the growth of VHL(−/−) 
RCC cells [59].

Three generations of EGFR-TKIs were developed. The 
first generation of EGFR-TKIs such as erlotinib or gefi-
tinib, exhibit resistance after several months of treatment 
in patients with EGFR-activating mutations, especially 
in NSCLC patients [60]. The EGFR T790M mutation 
confers resistance to gefitinib via blockade of drug bind-
ing [61]. Therefore, the second generation of EGFR-
TKIs such as afatinib and dacomitinib, were developed. 
However, the expression of FGFR1 and its ligand FGF2 
is enhanced in afatinib-resistant cancer cells, which pro-
vide an escape mechanism for cell survival [62]. Second-
generation drugs inhibit EGFR T790M, but these agents 
also inhibit wild-type EGFR. Therefore the dose-limiting 
toxicities from wild-type EGFR inhibition prevent the 
administration of doses that are sufficient to fully sup-
press T790M. The third generation of EGFR-TKIs, such 
as osimertinib, were developed to overcome these limita-
tions [63].

Compensatory TK signalling is observed in EGFR-
TKI therapy, and KRAS, anaplastic lymphoma kinase 
(ALK), c-MET and BRAF mutations are also associated 
with poor responses to anti-EGFR therapy in some can-
cers. Adaptation to TKI treatment also reactivates ERK 
signalling in TK-driven malignancies [64]. A novel dual 
inhibitor of EGFR and c-MET, TC-N19, was investi-
gated as a potential new-generation TKI inhibitor to 
treat resistance to current TKI-targeting therapies [65]. 
Resistance to EGFR-targeted agents may also be related 
to increased VEGF levels. Vandetanib, is an inhibitor of 
EGFR, VEGFR and RET TK that exhibited therapeutic 

efficacy, and it received FDA approval for the treatment 
of advanced medullary thyroid carcinoma [66].

AEE788 is another potent inhibitor of EGFR and 
VEGFR TKs at the isolated enzyme level and in cellu-
lar systems [67], AEE788 profoundly reduce RCC cells 
growth in vitro [68]. However, the VEGF/VEGFR signal 
is the primary target because the universal VHL loss in 
ccRCC, and the mTORC1, MET and IL–8, but not the 
EGFR or PI3K pathways are secondary targets based on 
the available clinical and preclinical studies in mRCC [4].

PDGF/PDGFR and TKIs
The PDGF family consists of PDGF-A to -D polypeptide 
homodimers and the PDGF-AB heterodimer, and these 
ligands can bind to PDGFR-α and -β tyrosine kinase 
receptors [23]. The HIF signalling pathway regulates the 
target genes VEGF, EGF, TGF-β, and PDGF. High expres-
sion of PDGFR-β and α-smooth muscle actin (α-SMA) 
and low vessel density were significantly associated with 
short survival in RCC [69]. Other PTK pathways, such 
as PDGF/PDGFR and FGF/FGFR pathways, provide 
underlying escape mechanisms from anti-VEGF/VEGFR 
therapy that may promote resumption of tumor growth 
[23]. Multiple inhibitors, such as sunitinib, pazopanib, 
axitinib, tivozanib, linifanib, telatinib and motesanib, that 
inhibit VEGFR and PDGFR TKs have been used [70].

HGF/c‑MET and TKIs
Met and its ligand, hepatocyte growth factor (HGF), play 
significant roles in multiple oncogenic cellular processes, 
including regulation of cell proliferation, invasion, angio-
genesis and alternative pathways to the VEGF [49]. MET 
mutations are frequently found in Papillary RCC (pRCC) 
[71]. PD-L1 and PD-L2 in ccRCC is associated with 
adverse features of c-MET and VEGF expression, respec-
tively [72].

The role for Met in resistance to other RTK-targeted 
therapies is associated with crosstalk between Met and 
other receptors, such as EGFR, HER2 and VEGFR [49]. 
Combination targeting of the VEGF and c-MET path-
ways in a ccRCC model exhibited a better anti-tumour 
effect than single agent administration [73]. Cabozantinib 
is a TKI inhibitor of VEGFR, c-MET and other TKs that 
exhibited significant clinical benefit in PFS and objective 
response rate over the standard-of-care sunitinib as first-
line therapy in patients with intermediate- or poor-risk 
mRCC [74].

IGF system pathway
The insulin-like growth factor (IGF) system is comprised 
of multiple growth factor receptors, including IGF-
1R, insulin receptor (IR)-A and -B [75]. IR is primarily 
expressed in adipose tissue, the muscle and liver in adult 
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tissues, and IGF-1R is expressed in most human tissues 
[76]. As a TK receptor for IGF-1 and IGF-2, IGF-1R plays 
a key role in proliferation, malignant transformation, 
anti-apoptosis and metastasis. IGF-1R expression in RCC 
is associated with poor long-term patient survival [77]. 
The risk of death for patients with IGF-1R overexpression 
increases 70% compared to ccRCC patients with tumours 
without IGF-1R expression [78].

IGF-1 co-culture with cells facilitates angiogenesis via 
the PI3K/Akt signalling pathway [79]. IGF-1R also exhib-
its crosstalk with the VEGF/VEGFR, EGF/EGFR path-
way [80, 81]. IGF-1R also confers resistance to EGFR or 
VEGFR family targeted therapies [75]. A bi-functional 
antibody-receptor domain fusion protein that targeted 
IGF-IR and VEGF for degradation, bi-AbCap, exhibited 
superior inhibition of tumour growth in RCC, colon can-
cer, and pancreatic cancer compared to a combination of 
anti-IGF-IR and anti-VEGF therapies [82].

Other TKIs
Table  1 shows other RTKs, such as FGFR (FGFR1-4), 
tyrosine receptor kinase (Trk), ephrin receptor, ALK 
and Src. FGF/FGFR regulates normal and tumour cells 
growth, differentiation and angiogenesis, and the com-
plex interaction and crosstalk between tumour angio-
genic factors, such as FGF2 and PDGFR, promoted 
tumour growth and metastasis [83].

TrkA and TrkB are neurotrophin receptors. TrkB acti-
vation or overexpression could promotes proliferation, 
survival, angiogenesis, anoikis-resistance and metastasis 
in tumours. Brain-derived neurotrophic factor binds to 
TrkB and p75NTR and induces cell survival and migra-
tion via p75NTR, which is independent of TrkB activa-
tion [84], which indicates a resistance mechanism of 
TKIs for TrkB. TrkB silencing improved the anticancer 
efficiency of sorafenib in anoikis-resistant ACHN (a renal 
cancer cell line derived from metastatic site) RCC cells 
via inactivation of PI3K/Akt and MEK/ERK pathways 
[85].

Many other non-receptor TKs exist and numerous 
TKIs are under investigation.

Conclusions
System treatment using multi-target drugs, immune 
checkpoint inhibitors or drugs combinations may be a 
promising approach to RCC therapy in the future because 
of the emergence of drug resistance to VEGFR-TKI, 
which may facilitate tumour invasiveness and metas-
tasis. Three new second-line treatments received FDA 
approval in the last year for use after anti-angiogenic 
therapy: nivolumab, cabozantinib, and the combination 
of the TKI lenvatinib and everolimus (the mTOR inhibi-
tor) [86]. Nivolumab is an immune checkpoint inhibitor, 

and cabozantinib is a multi-target TKI. The potential 
synergistic activity of antiangiogenic agents and TKIs or 
immunotherapy in NSCLC was summarized previously 
[87].

Combinations of VEGFR-TKIs, immune checkpoint 
inhibitors, and HIF inhibitors may provide good options 
to overcome drug resistance. Increasing evidence sup-
ports a primary role for the HIF-2α subunit in ccRCC 
over HIF-1α. Due to the frequently VHL loss in ccRCC, 
which causes increased expression of HIFs, targeting 
HIFs may be a promising strategy for ccRCC because of 
frequent VHL loss, which increases HIF expression. HIFs 
are upstream of the crosstalk between growth factors and 
regulate the expression of VEGR, EGF, PDGF and other 
growth factors, which supports targeting HIFs to over-
come TKI resistance. Recent preclinical and clinical data 
on ccRCC indicate that PT2385 and PT2399 effectively 
inhibit cancer cell growth, proliferation, and tumour 
angiogenesis characteristic [88, 89]. The combination 
of HIF and immune checkpoint inhibitors is also antici-
pated, and various clinical trials for PD-1 inhibitors are 
planned.
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