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Abstract 

Background:  Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Suc‑
cessful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their 
contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs’ in situ spatial 
distribution, heterogeneity, and relationship with tumor grade, remain unclear.

Methods:  Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade 
I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluores‑
cence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spa‑
tial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive 
staining. All statistical analyses were completed using Statistical Analysis Software Package.

Results:  The patterns of expression for SC-related markers were determined in the context of two dimensional distri‑
bution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential 
expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relation‑
ships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analy‑
sis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade 
II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and 
SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas.

Conclusion:  The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-
expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly 
support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of 
multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical 
clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection 
for inoperable tumors, and improve follow up of therapy.
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Background
Meningiomas occur in multiple extra-axial locations 
within arachnoid membranes and are highly frequent 
compared with other types of central nervous system 
tumors (CNSTs) [1–3]. Genetic analyses of bulk menin-
gioma tissues identified mutations in several pathways 
including the phosphoinositide 3-kinase (PI3K) and 
the G protein-coupled receptor smoothened (SMO) 
signaling pathways [4–6]. Histopathologically, these 
tumors are classified by the World Health Organization 
(WHO) into 15 variants within grades I to III. Unfortu-
nately, up to 20% of grade I tumors reoccur, and apart 
from Mib-1, molecular markers that enable prediction 
of recurrence have not been established [3, 7, 8].

Meningiomas have been shown to harbor cancer 
stem cells (CSCs), highly resilient cancer cells that 
employ deregulated stem cell (SC) expression profiles 
and are capable of causing reoccurrence [9–14]. Target-
ing CSCs is predicted to enhance therapy outcomes [3]. 
A range of genes and their proteins have been associ-
ated with the identity of CNST CSCs. CD133/Prom-
inin-1, a five-transmembrane glycoprotein, is normally 
expressed in embryonic neural SC radial glial/ependy-
mal cells and in ependymal cells in the adult brain 
[15]. The protein is thought to interact with selected 
gangliosides to modulate cell-to-cell contact in a cell 
cycle-related manner [16, 17]. In CNSTs, high CD133 
expression has been associated with poor survival [18–
21]. In meningioma cell lines, higher CD133 expression 
correlates positively with cell proliferation and drug 
resistance [9, 13, 22, 23].

The expression of Nestin, a type VI intermediate fila-
ment, has been shown to be important CSC marker for 
CNST growth, migration, and invasion [24–26], pos-
sibly by influencing the cell cycle [27]. Higher expres-
sion of Nestin has been detected in grades II and III 
meningiomas compared to grade I [28]. The deregu-
lated expression of the transcription factor SOX2 has 
also been observed in several CNST CSCs [29–32]. The 
knockdown of SOX2 was shown to slow the growth and 
proliferation of GBM CSCs [33]. In GBM cells positive 
for CD133, silencing SOX2 impaired tumor initiation 
and drug resistance [34]. Frizzled 9 (FZD9) belongs to 
the frizzled protein family, trans-membrane signaling 
molecules that act as receptors for the WNT protein, 
and plays a key role in cell development by maintaining 
planer cell polarity [35]. Mutations in FZD/WNT genes 
are linked to several malignancies [36]. In astrocytoma 
and glioblastoma, FZD9 is predominantly expressed by 
neoplastic cells, and its expression is positively correlated 
with WHO grading and Ki-67 positivity [37]. Inhibit-
ing the FZD family in glioblastoma cell lines leads to 
increased differentiation [38].

Stage-specific embryonic antigen-4 (SSEA4), also 
known as FUT4 and CD15, is a glycosphingolipid (GSL) 
containing a terminal sialic acid residue (N-acetylneu-
raminic acid) and is involved in the globo-series gan-
glioside synthesis. SSEA4 is highly expressed during the 
preimplantation stage in germ cells in the testis and ova-
ries, and is down-regulated upon differentiation [39–41]. 
Targeting SSEA4 in vitro suppressed the growth of GBM 
cell lines [42], and cells positive for SSEA4 have a higher 
capability for metastasis and invasion [43–47]. Olig2 is a 
basic helix–loop–helix (bHLH) transcription factor that 
is expressed in oligodendrocytes and in oligodendritic 
progenitor cells [48–50]. The protein was shown to medi-
ate the proliferation, migration, and invasion of both nor-
mal astrocytes and malignant GBM cells [50–53].

Proteins associated with the differentiation of SCs 
include Vimentin, glial fibrillary acidic protein (GFAP), 
and beta III tubulin (βIII-tubulin/βIIIT). Vimentin is a 
class III intermediate protein that is expressed in mes-
enchymal cells. The protein’s main function is to sup-
port the cytoskeleton [54], and it is highly associated 
with meningiomas [55]. GFAP is a class III intermediate 
filament protein, with five different isoforms (GFAPα, 
GFAPβ, GFAP gamma γ, GFAP δ, and GFAP k), and was 
shown to be expressed in the astrocyte lineage during 
the development of the CNS [56, 57]. βIII-Tubulin is a 
neuron-specific microtubule required for neuronal axon 
guidance, maintenance, and development [58]. Mutations 
in the βIII-tubulin gene result in multiple disorders of 
the CNS [59], and high protein expression is frequently 
detected in several CNSTs [60]. Although not limited to 
the identity of CSCs, these markers are frequently asso-
ciated with it, and their expressions vary according to 
tumor type and progression [61]. Importantly, recent 
evidence has indicated that the hetero-identity of CSCs 
can be detected even within a single tumor developed in 
a patient [62, 63].

Previously, we published gene expression profiles for 
most of the meningioma patients’ tissues collected for 
our cohort [64, 65], as well as for their corresponding 
cell lines [22]. For this work, we aimed to determine the 
hetero-dynamic characteristics of MCSCs in  situ and 
identify differential patterns associated with grades II/III 
tumors.

Methods
Sample collection
Meningioma specimens collected between February 
2013 and December 2015 were obtained within 30 min of 
tumor removal and frozen immediately at − 80 °C. Neu-
ropathologists diagnosed surgical specimens according to 
WHO classification. The clinical profiles for the included 
patients and their tumors’ histopathological features are 
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shown in Additional file 1: Table S1. Additional file 2: Fig-
ure S1 shows H&E representative sections of histological 
variants of meningiomas included in this work, as well 
as atypical features. The expression profiles for prevalent 
cancer driver genes [66], extracted from aforementioned 
publications, are shown in Additional file 3: Table S2.

Cyrovial sectioning
Each frozen tissue was cryosectioned to generate 10 
consecutive sections at a thickness of 4  µm. Slides of 
sections were stored at − 20  °C until processed for 
immunofluorescence.

Immunofluorescence staining
Sections were left at room temperature for 5  min to 
defrost, and tissues were enclosed with wax to retain 
solutions. Then, they were washed five times for 5  min 
in phosphate buffered saline (PBS). Sections were fixed 
with 4% formalin for 10  min, then washed three times 
for 5  in with PBS. Sections were permeabilized, blocked 
for non-specific antigens with freshly made blocking 
reagent (5% normal goat serum, 0.25% Triton X-100 in 
PBS), and incubated for 1  h at room temperature. Sin-
gle or double primary antibodies solutions (Antibod-
ies, 2% NGS, 0.25% Triton X-100 in PBS) were added to 
each section, and sections were incubated in a humidity 
chamber over night at 4  °C. The following day, sections 
were washed three times for 10  min with 0.25% Tri-
ton X-100 in PBS (PBST) before incubating them with 
a secondary antibodies solution (488 goat anti-mouse 
(1:300, ab150105, abcam) and 555 goat anti-rabbit (1:700, 
ab150074, abcam) for 1 h in the dark at room tempera-
ture. Sections were then washed five times for 5 min with 
PBST. PBST was removed, and a drop of Vectashield with 
DAPI was added to each section to stain nuclei. For each 
tissue, sections were stained in the following order: sec-
ondary only (negative control); mouse anti-Nestin (1:50, 
ab6142, abcam) with rabbit anti-Ki67 (1:200, ab16667, 
abcam); mouse anti-CD133 (1:100, 130-092-395, Milte-
nyi) with rabbit anti-SOX2 (1:200, 09-0024, Stemgent); 
mouse anti-Vimentin (1:100, ab8978, abcam) with rab-
bit anti-Frizzled 9 (1:100, ab150515, abcam); rabbit 
anti-GFAP (1:500, ab7260, abcam); rabbit anti-beta III 
Tubulin (1:500, ab18207, abcam), mouse anti-SSEA4 
(1:100, ab16287, abcam) with rabbit anti-SOX2 (1:200, 
130-095-636, Miltenyi); and mouse anti-SSEA4 (1:100, 
ab16287, abcam) with rabbit anti-Olig2 (1:500, Ab42453, 
abcam). Processed slides were stored at 4 °C.

Image acquisition, enhancement, and counting
All images were taken within the first 2 weeks after stain-
ing. For each section, five coordinate-fixed dispersed 
regions were selected to image. Pictures were taken at 20× 

magnifications using a Leica DMI6000 microscope and 
Leica DFC425 camera. Photos for individual channels were 
combined in Photoshop 7.0.1. Enhancements of the images 
were constrained by signal levels of negative controls of 
secondary antibodies only. Due to the complexity of stain-
ing features, co-positive, mono-positive, and negative cells 
were manually counted for each region within each section 
using Photoshop 7.0.1. Manual counting was performed 
twice by two independent scientists, and indications for 
positivity for each marker and final counts were confirmed 
with a neuropathologist. Images for Ki67 stained sec-
tions were also counted by an independent third person 
using automated counting in Image J software for analysis. 
Images were masked to count nuclei positive for Ki67, and 
counts were produced using ICTN plugin.

Statistical analysis of the data
The results were analyzed using SPSS version 21.0 to gen-
erate descriptive and inferential statistics. The differences 
between the manual and automated counts for Ki67 were 
analyzed using t-tests. The differences for the counts of 
expressions between grades and the differences in the 
number of identified unique sub-regions between indi-
vidual tumors were explored using analysis of variance 
(ANOVA) robust tests of equality of means, and P-values 
for Welch and Brown–Forsythe were indicated. Correla-
tions for markers’ expressions across consecutive tumor 
sections were analyzed using Spearman’s Rho correlation. 
Chiχ2 was used to test for the significance between grades 
for individual sub-regions.

Results
In situ features of SC associated markers in meningiomas
The patterns of expressions for all utilized markers were 
observed in meningioma tissues (Fig. 1). Positively stained 
cells for nuclear Ki67 were consistently dispersed as single 
cells within individual tumor sections. Cells positive for 
nuclear SOX2 and cytoplasmic FZD9 were consistently 
seen in niche-stained foci, while cells positive for cyto-
plasmic Vimentin were detected in large positive regions 
and had homo-expression patterns. Cells positive for Nes-
tin, CD133, GFAP, BIIIT, SSEA4, and Olig2 had a tumor-
dependent pattern of expression, which did not have a 
dichotomous association with grade. Membranous CD133 
was detected in 12 tumors, and Olig2 could be seen at the 
nuclear envelope, as well as the nucleus, in all tumors.

Evaluation of the average expressions for single proteins 
in grade I and grade II/III meningiomas identified GFAP 
and FZD9 as significant differential markers
Data for Ki67 counts showed no significant difference 
between the manual and automated method (T test, 
P = 0.5), Additional file  4: Figure S2, supporting the use 
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of manual counting for other markers that were complex 
to assess using automate methods. The analysis of aver-
age counts for each single marker’s positive staining for 
grade I and grade II/III tumors indicated Ki67+, Vimen-
tin+, BIIITubulin+ as differential markers (Brown–
Forsythe ANOVA, P < 0.05), respectively, as shown in 
Table  1 and Fig.  2. For highly significant grade-related 
differential markers, single positive staining of FZD9+ 
or GFAP+ was statistically significantly higher in grade 
II/III meningiomas (Brown–Forsythe ANOVA, P < 0.01). 
For double-staining analysis (Table 1 and Fig. 3), the most 
significant average count increase in grade II/III meningi-
omas was seen for Vimentin+FZD9+ (Brown–Forsythe 
ANOVA, P < 0.01). The averages for cell count staining 
SSEA4+Olig2+, Nestin−Ki67+, or CD133−Sox+ were 
also higher in grade II/III meningiomas (Brown–Forsythe 
ANOVA, P < 0.05), while the average for the number of 
CD133+Sox+ cells decreased in grade II/III compared 

to grade I meningiomas (Brown–Forsythe ANOVA, 
P < 0.05).

Consecutive sections have similar expressions for a single 
marker
To determine the nature of the positive spatial distribu-
tion of a single marker throughout the depth of a tumor, 
the expression profile for both SSEA4 and SOX2 was 
determined in adjacent and distal consecutively sec-
tioned immunofluorescence-processed tissues. Adjacent 
sections six and seven were stained to detect SSEA4, 
while distal sections two and six were stained to detect 
SOX2 (Fig. 4). The percentages of cells positive for SSEA4 
in section six correlated with positive cells for SSEA4 in 
the adjacent section seven (Spearman’s Rho correlation 
coefficient = 0.687, P < 0.001). Similarly, the percent-
ages of cells positive for SOX2 in section two corre-
lated with positive cells for SOX2 in the distal section 
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Fig. 1  Cellular features and patterns of expression for all the markers used to stain meningioma tissues. a Immunofluorescence representative 
images showing Ki67 (Red), Nestin (green), SOX2 (red), CD133 (green), Vimentin (green), FZD9 (red), GFAP (red), BIIIT (red), SSEA4 (green), and Olig2 
(red), each with DAPI (blue). b A table summarizing patterns of expression in terms of the distribution within tissue and observed cellular features. G 
grade. All images were taken at ×20
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six (Spearman’s Rho correlation coefficient = 0.749, 
P < 0.001).

There are significant correlations between the expressions 
of different SC associated markers across consecutive 
tissues
Since the expression profiles of each of SOX2 and SSEA4 
were equivalently spatially distributed throughout con-
secutive sections of a tumor mass, correlations between 
the expressions of different single markers across all con-
secutive sections were investigated (Fig.  5). Expression 
data indicated a highly significant correlation between 
the expressions of Vimentin and SSEA4 and the expres-
sions of CD133 and GFAP. Significant correlations were 
observed for the expressions of SSEA4 with CD133 or 
Nestin, and SOX2 with BIIIT. FZD9 also had significant 
correlations with Vimentin, SOX2 or with Olig2. The 
presence of Nestin-positive proliferating cells correlated 
with the presence of Vimentin+FZD9+ cells.

Qualitative analysis of sub‑areas across consecutive 
sections show increased hetero‑regional expression 
in grades II/III meningiomas
To investigate the relationship between multiple mark-
ers across consecutive sections, images for a coordi-
nate-fixed region within stained sections were scored 
using a grid with 96 sub-regions, each covering an area 
of 0.0037 mm2. The grid was used as a repository sheet 
of qualitative information for positive staining in each 
sub-area for all consecutive sections of each tumor, as 
exemplified in Fig.  6a, Additional file  5: Figure S3, and 
Additional file 6: Figure S4. Collectively, the data showed 
a complex distribution of the scoring of the combined SC 
associated markers, across individual tissues (208 unique 
combinations, Additional file 7: Table S3), with increased 
hetero-regional expression being associated with grade 
II/III meningiomas (ANOVA, P < 0.01, Fig. 6b). Interest-
ingly, the level of hetero-regional expression separated 
tumors into three significantly different groups (ANOVA, 
P < 0.01), with all tumors in group 1 (R1) being grade I 
and all meningiomas in group 3 (R3) being grade II/III, 
while tumors in group 2 (R2) had mixed grades for I and 
II. Regions that were significantly frequently occurring in 
grade II/III but never in grade I meningiomas included 
those that were positive for CD133+SOX2±Vimentin+
FZD9+GFAP+BTIII+SSEA4+Olig2+, and Nestin+Ki6

Table 1  The means of  expressions, standard errors, 
and ANOVA P values for grade I versus grade II/III tumors 
for single and double-stained markers

Marker(s) Grade Mean STD error P value

Nestin+ GI 29.45 5.70 0.231

GII/III 39.22 5.73

Ki67+ GI 0.77 0.17 0.019*

GII/III 2.72 0.78

CD133+ GI 36.60 6.22 0.770

GII/III 39.11 5.86

Sox2+ GI 12.45 2.76 0.929

GII/III 12.82 3.22

Vimentin+ GI 83.13 4.31 0.016*

GII/III 94.56 1.57

Frizzled9+ GI 11.82 2.35 0.000**

GII/III 31.23 4.10

GFAP+ GI 49.11 5.80 0.000**

GII/III 78.03 3.28

BIIITubulin+ GI 30.65 5.16 0.033*

GII/III 47.01 5.49

SSEA4+ GI 75.70 4.57 0.053

GII/III 87.11 3.57

Olig2+ GI 55.33 5.02 0.072

GII/III 67.55 4.43

Nestin+Ki67+ GI 0.51 0.16 0.080

GII/III 1.23 0.37

Nestin+Ki67− GI 28.94 5.59 0.258

GII/III 37.98 5.63

Nestin−Ki67+ GI 0.26 0.08 0.037*

GII/III 1.49 0.56

CD133+Sox2+ GI 11.73 2.71 0.039*

GII/III 5.48 1.20

CD133+Sox2− GI 24.87 4.41 0.224

GII/III 33.63 5.61

CD133−Sox2+ GI 0.72 0.31 0.023*

GII/III 7.35 2.77

Vimentin+FZD9+ GI 11.80 2.36 0.000**

GII/III 31.08 4.12

Vimentin+FZD9− GI 71.34 3.87 0.159

GII/III 63.48 3.95

Vimentin−FZD9+ GI 0.03 0.02 0.125

GII/III 0.15 0.08

SSEA4+SOX2+ GI 12.57 2.50 0.565

GII/III 10.59 2.36

SSEA4+SOX2− GI 63.13 4.12 0.021*

GII/III 76.52 3.91

SSEA4−SOX2+ GI 0.07 0.05 0.539

GII/III 0.03 0.03

SSEA4+Olig2+ GI 49.81 5.42 0.035*

GII/III 64.64 4.29

SSEA4+Olig2- GI 29.15 3.51 0.324

GII/III 23.97 3.85

SSEA4−Olig2+ GI 5.52 2.95 0.405

GII/III 2.91 0.95

Table 1  (continued)
P values for ANOVA Welch and Brown–Forsythe are indicated

* P significant at the 0.05 level (2-tailed)

** P is significant at the 0.01 level (2-tailed)
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7+CD133+Vimentin+FZD9+GFAP+BTIII+SSEA4+O
lig2+ (Fig. 6c, d).

Discussion
Collectively, meningiomas present a unique model for 
exploring tumor progression in CNSTs, as they encom-
pass tumors with a variety of aggressiveness and grades. 
Our study sheds a light into the protein expression and 
co-localization of critical SC and developmental markers 
that are implicated in modulating malignancy. In particu-
lar, we present a comprehensive differential analysis of 
the three dimensional spatial distribution of SC markers 
in situ, their co-expression, and their correlation in rela-
tion to grade.

The features observed for individual proteins in the 
meningioma samples were consistent with their manu-
facturing data and previous publications in other tissue 

types [42, 57, 67–73]. Ki67-positive cells were clearly 
dispersed, indicating that dividing cells were not particu-
larly grouped together. Both SOX2 and FZD9 were less 
frequent and occurred in niches, which is in concordant 
with niche-organized CSCs. All other studied markers 
had variable characteristics that had either niche, hetero-, 
or homo-expression, in a tumor-dependent manner. Of 
particular interest is the localization of Olig2. The exclu-
sion of this protein from the nucleus has been reported 
to be associated with astrocyte differentiation, while 
nuclear Olig2 was shown to target chromatin remodelers, 
prior differentiation in oligodendrocyte progenitors [49, 
53, 74]. In this cohort, Olig2 was predominantly observed 
in the nucleus, at the nuclear envelope, and only occa-
sionally in the cytoplasm, thus implying that meningi-
oma cells may behave like oligodendrocyte progenitors. 
However, further detailed work is required to clarify this 
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observation and future studies will need to be completed 
on a larger scale.

Notably, the expression of all individual proteins was 
not dichotomous for grade. Cells positive for all SC 
markers were detected in grade I meningiomas, sug-
gesting that either the establishment of CSC clones 
occurs early in tumor development, or that by the time 
tumors become clinically evident, CSCs are already 
established. However, consistent with published data, 
a higher number of positive cells stained for Ki67 
and Vimentin were detected in grade II/III compared 
with grade I meningiomas [13, 69]. To the best of our 
knowledge, this study is the first to present in  situ 
analysis of the expression of SSEA4, OLIG2 and FZD9 

in meningiomas. Cells positive for SSEA4 and OLIG2 
were more frequent in grade II/III meningiomas and 
the number of FZD9-positive cells was significantly 
higher in grade II/III meningiomas, although the over-
all levels remained relatively low, implying that growth 
of FZD9-positive cells in meningiomas is restricted.

Surprisingly, and in contrast to other studies, more 
cells positive for GFAP or BIIIT were detected in grade 
II/III meningiomas [75]. A form of GFAP that differs 
in the C-terminal domain was detected in the sub-
ventricular zone (SVZ) of the brain, suggesting that 
GFAP may not be an exclusive astrocytic differentia-
tion marker [56, 57]. Indeed, it is important to consider 
that for proteins with multiple forms, the detection of a 
protein’s expression using immunostaining will depend 
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on the utilized antibody [76]. According to the manu-
facturing information sheet, the GFAP antibody used in 
this work was raised against the full length of a purified 
native protein corresponding to human GFAP.

Compared to previous studies [10, 13, 28, 67, 68, 77, 
78], co-staining for SOX2, CD133 and Nestin across a 
single section also provided a few unexpected obser-
vations. In particular, the average number of cells posi-
tive for both SOX2 and CD133 was lower in grade II/III 
meningiomas, while cells positive for SOX2 and negative 
CD133 increased in frequency. The increase in the later 
was particularly noted in the recurrent tumor Jed49_MN. 
The fraction of Ki67+ cells that were Nestin negative 
were more frequent in grade II/III meningiomas, even 
though Nestin expression tended to slightly increase 
with grade [28]. Together, these observations may be 
explained by the CSC clonal evolution theory, where for 
example, cells positive for SOX2 and CD133 could occur 

at early development and diverge later to partner with 
other SC-related genes [79]. In addition, they highlight 
in vitro and in situ differences in the expression of CSCs 
markers that may reflect epigenetic changes, influenced 
by the microenvironment.

The analysis of a single marker throughout the consec-
utive sections along a depth of 32 μm indicated a strong 
correlation of expression for both adjacent and distal sec-
tions of meningioma tissues. Basic analysis locating CSC 
niches across consecutive sections has been attempted 
previously in breast cancer tissues [80, 81]; however, no 
correlation of expression was studied. Spearman’s Rho 
factor indicated a highly significant correlation between 
the expressions of Vimentin and SSEA4, and the expres-
sions of CD133 and GFAP. The co-expression of SSEA4 
and Vimentin has been observed in multipotent mes-
enchymal SCs and in postnatal periodontal ligament 
(PDL)-derived SCs (PDLSC) [11, 82]. CD133 and GFAP 
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co-expression has been detected in glioneuronal tumors 
[83], glioblastoma cells [84], and activated B1 astrocytes 
[85, 86]. Such correlation implicates activated B1 astro-
cytes’ expression-like program in at least a fraction of 
meningioma cells. Significant correlations were also 
observed for the expressions of SSEA4 with CD133 or 
Nestin, FZD9 with Vimentin or SOX2 or Olig2, and SOX2 
with BIIIT. Enrichment for SSEA4 and CD133-positive 
cells from cord blood marked very small embryonic-like 
stem cells (VSELs) that have high telomerase activity and 
express pluripotent SC markers OCT4, SSEA4, NANOG, 
and SOX2 [87]. Similarly, the co-expression of SSEA4 
and Nestin has been observed in human umbilical cord 
matrix-derived mesenchymal SCs [88]. The presence of 
Nestin-positive proliferating cells also correlates with the 
presence of Vimentin+FZD9+ cells. Co-expression of 
FZD9 and Nestin has been observed in neural stem pro-
genitor, derived from patients with Williams syndrome, a 

developmental disorder caused by mutations in chromo-
some 7 [89]. The correlation of FZD9 with SOX2 is per-
haps not surprising, giving that they are both part of the 
WNT signaling pathway, a pathway that is activated in 
some meningiomas [37]. Perhaps more surprising is the 
correlation between SOX2 and BIIIT. This combination 
has been implicated in taxane resistance for patients with 
stage III ovarian epithelial cancer [90] and observed in 
GBM cell lines [91]. Interestingly, the expression of Ki67 
alone does not correlate with any particular marker, sug-
gesting that proliferating cells belong to a heterogeneous 
population of clones. Alternatively, cells may be exiting 
SC-like status to divide.

An increase in the tumor heterogeneity of CNSTs has 
long been associated with aggressiveness, resistance, 
and reoccurrence [79, 92–96]. Recent studies have 
addressed heterogeneity using novel and challenging 
approaches [62, 97]; however, very few are documented 
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for meningiomas. In situ analysis can harness the spa-
tial information of tumor heterogeneity [98, 99], in par-
ticular, the analysis of consecutive sections that provide 
three dimension spatial information. While the associa-
tion of CSCs heterogeneity in CNSTs with high tumor 
aggressiveness is currently being debated [100, 101], 
the data presented here show a clear difference in the 
hetero-regional expression of the investigated markers 
for grade I and grade II/III meningiomas. Interestingly, 
however, hetero-regional expression could be detected 
even in grade I tumors. In addition, particular combina-
tions occur frequently in grade II/III and never in grade 

I meningiomas. Both observations could be explained 
by the CSC evolution hypothesis, where CSCs acquire 
new changes in the early development of disease and 
continue to acquire new changes with progressive dis-
ease [23, 95]. Whether the identified combinations 
detected only in grade II/III meningiomas can be used 
for predictive diagnostic purpose remains to be seen, as 
a larger cohort of high grade meningiomas is needed. 
Nevertheless, these results highlight that similarly to 
neural SC markers [85], and due to CSC heterogene-
ity, markers must be used in combinations to ensure 
proper CSC identification. Any aspirations to develop 
targeted therapies for CSCs are dependent on accurate 
identifications of all heterogeneous populations.
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Conclusion
Meningiomas present a unique human model for explor-
ing CSCs progression in CNSTs, as they encompass 
a variety of tumors that differ in growth rates and the 
capacity to reoccur or metastasize. Using a potentially 
widely applicable method for analyzing consecutive sec-
tions, our study presents a comprehensive differential 
analysis of the three dimensional spatial distribution of 
CSC markers, their co-expression, and their correlation 
in relation to grade. The distribution and the level of 
expression for individual CSCs markers in meningiomas 
are variable between patients, however, collective analy-
sis of markers indicates a complex spatial nature that is 
particularly associated with higher grades. Thus, results 
strongly support the notion of heterogeneous popula-
tions of CSCs, even in grade I meningiomas, and call for 
the use of multiple markers for the accurate identification 
of individual CSC subgroups. Such identification will lead 
to practical clinical diagnostic protocols that can quan-
titate CSCs, predict tumor recurrence, assist in guiding 
treatment selection for inoperable tumors, and improve 
follow up of therapy.
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