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HYPOTHESIS

Cancer cells arise from bacteria
Qing‑lin Dong*   and Xiang‑ying Xing

Abstract 

Background:  The origin of cancer cells is the most fundamental yet unresolved problem in cancer research. Cancer 
cells are thought to be transformed from the normal cells. However, recent studies reveal that the primary cancer cells 
(PCCs) for cancer initiation and secondary cancer cells (SCCs) for cancer progression are formed in but not trans‑
formed from the senescent normal and cancer cells, respectively. Nevertheless, the cellular mechanism of PCCs/SCCs 
formation is unclear. Here, based on the evidences (1) the nascent PCCs/SCCs are small and organelle-less resembling 
bacteria; (2) our finding that the cyanobacterium TDX16 acquires its algal host DNA and turns into a new alga TDX16-
DE by de novo organelle biogenesis, and (3) PCCs/SCCs formations share striking similarities with TDX16 development 
and transition, we propose the bacterial origin of cancer cells (BOCC).

Presentation of the hypothesis:  The intracellular bacteria take up the DNAs of the senescent/necrotic normal cells/
PCCs and then develop into PCCs/SCCs by hybridizing the acquired DNAs with their own ones and expressing the 
hybrid genomes.

Testing the hypothesis:  BOCC can be confirmed by testing BOCC-based predictions, such as normal cells with no 
intracellular bacteria can not “transform” into cancer cells in any conditions.

Implications of the hypothesis:  According to BOCC theory: (1) cancer cells are new single-celled eukaryotes, which 
is why the hallmarks of cancer are mostly the characteristics of protists; (2) genetic changes and instabilities are not 
the causes, but the consequences of cancer cell formation; and (3) the common role of carcinogens, infectious agents 
and relating factors is inducing or related to cellular senescence rather than mutations. Therefore, BOCC theory pro‑
vides new rationale and direction for cancer research, prevention and therapy.
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Background
It is believed that cancer cells (PCCs) are altered nor-
mal cells formed by cell transformation. Based on this 
belief, extensive studies have been conducted, while the 
pathogenetic mechanism of cancer is, still, unclear [1]. 
Hence, this fundamental belief may be questionable. In 
the following sections, we (1) analyze the cellular pro-
cesses of cancer cell formation described in the previous 
researches, (2) compare the similarities between can-
cer cell formation and cyanobacterium TDX16’s devel-
opment and transition [2, 3], and (3) propose BOCC 
hypothesis.

Cancer cells are “senescence‑escaping cells” 
with unknown origin
Cancer cell formation is a complex event that can hardly 
be made clear in  vivo. Since the landmark experiments 
showing that the normal cells in cultures gradually trans-
formed into cancer cells [4, 5], in vitro cell transformation 
become the model experiment method to mimic in vivo 
cancer cell formation. The following studies manifested 
that in vitro cell transformation can occur spontaneously 
[6–9] or in the presence of physical stimuli [10], chemical 
carcinogens [11, 12] and viruses [13–17] in a similar pat-
tern: the normal cells either completely failed to grow or 
divided for limited number of generations owing to the 
finite proliferative lifespan [18] and then became senes-
cent and entered “crisis” [19], consequently most of the 
cells died, while only rare cells occasionally “escaped” cel-
lular senescence or crisis and survived as the cancer cells, 
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with altered morphology, ultrastructure, chromosomes 
[6, 20–22] and growth behavior properties [23, 24].

Nonetheless, the origin and developmental process of 
cancer cells are unknown, because cell transformations 
took a long period of time and the obtained cell cultures 
were composed of a mixture of small undifferentiated 
cells, polyploidy (hyperchromatic) giant cells (PGCs), flat 
multinucleated giant cells and sloughing, differentiating 
cells [7, 14, 15, 25–27], which made it difficult to track 
the trajectory of cancer cell development. In this case, 
cancer cells were postulated to be transformed from the 
normal cells, usually called “transformed cells”.

PCCs/SCCs were formed in but not transformed 
from the senescent normal cells/PCCs
Recent studies revealed that the senescing normal cells 
turned into mitotically incapacitated PGCs, in which 
small nascent PCCs were being formed, and when PGCs 
burst, a large number of small PCCs were released [28–
34]. Hence, PCCs are formed in but not transformed 
from the senescent normal cells. Similarly, new small 
nascent SCCs were formed in the senescent polyploid 
giant cancer cells (PGCCs) [32, 35–46]. These results 
demonstrated that PCCs and SCCs formations share a 
common cellular mechanism.

Nevertheless, the cellular mechanism of how the small 
active PCCs/SCCs were formed in the senescent unvi-
able PGCs/PGCCs is unclear, and remains a paradox. The 
common explanation is that small nuclei budded from 
the large PGCs/PGCCs nuclei, and then became small 
PCCs/SCCs by re-budding off from PGCs/PGCCs, or 
via asymmetric cytokinesis of PGCs/PGCCs. However, 
indeed, nuclear budding and cytokinesis were unachiev-
able in the senescent PGCs/PGCCs, because no energy 
and membrane sources were available for sustaining such 
active actions.

Different from the common explanation, one study 
showed that small SCCs were formed in the nuclei of 
PGCCs [35]. Similar results were frequently reported in 
early researches: (1) SCCs-like nuclear inclusions were 
developed within PGCCs nuclei [47]; and (2) PCCs-like 
pycnotic cells and nuclear inclusions [48], intranuclear 
inclusion bodies [27, 49], intranuclear membrane-bound 
inclusions [23] and “micronuclei” [50] were formed in 
PGCs nuclei, which increased in number and distributed 
throughout PGCs after the large nuclei disappeared. As 
to how the intranuclear PCCs/SCCs were formed, it was 
speculated that SCCs were probably derived from the 
‘coiled bodies’ [35], which were, however, delimited by 
membranes and thus also SCCs but not the membrane-
less coiled bodies [51]. Thus, there must be other precur-
sors from which PCCs/SCCs were formed.

Since the small nascent PCCs/SCCs lack organelles and 
bear resemblances to the intracellular bacteria [52–61], it 
is likely that the small PCCs/SCCs were developed from 
the bacteria within PGCs/PGCCs. This notion may be 
intuitively unacceptable, but actually is possible in the-
ory that eukaryotes originate from prokaryotes and sup-
ported by our finding that the cyanobacterium TDX16 
(prokaryote) turned into a new alga TDX16-DE (eukary-
ote) [2, 3].

PCCs/SCCs formation are similar to TDX16 
development and transition
Haematococcus pluvialis is a unicellular green alga, 
which grows well and synthesizes astaxanthin in the con-
ditions of high irradiance and low temperature [62, 63]. 
Conversely, when cultivated under the adverse condi-
tions of low irradiance and high temperature, the growth 
of H. pluvialis was inhibited [64]. Light microscopic 
observation showed that the enlarged H. pluvialis cells 
were undergoing senescence with no astaxanthin accu-
mulation but chlorophyll reduction (Fig.  1A) and ulti-
mately necrosis: the bloated senescent cell ruptured and 
liberated a massive blue spheroid consisting of count-
less small cyanobacterial cells (TDX16) (Fig. 1B). Trans-
mission electron microscope observation revealed that 
very small premature TDX16 cells with electron dense 
dot-like heterogenous globular body (HGB) [3] mul-
tiplied by asymmetric division within the senescent/
necrotic H. pluvialis cell at the expense of the dissolved 
organelles and cytoplasm (Fig.  2A), and subsequently 
enlarged into small thylakoid-less TDX16 filling up the 
cellular space (Fig.  2B) [64]. The liberated TDX16 was 
light-sensitive and unstable, which changed slowly, main-
tained prokaryotic state, and displayed different statuses 
even in the same sporangium in the dim light (Fig. 2C), 
but turned readily and quickly into a small green alga 
(TDX16-DE) by de novo organelle biogenesis as light 
intensity elevated (Fig.  2D) [2, 3]. TDX16-DE is a new 
species of green alga, containing only a double-envelope-
bounded nucleus, a chloroplast, one or more mitochon-
dria and double-membrane-bounded vacuoles, but no 
other organelles (Fig. 2D) [3]. Sequencing results of 16S 
rRNA (GenBank KJ599678.2) and Genome (GenBank 
NDGV00000000) indicate that TDX16 is a cyanobacte-
rium resembling Chroococcidiopsis thermalis, which had 
acquired 9,017,401 bp DNAs with 10,301 genes from its 
host H. pluvialis. Thus, the reason for TDX16-to-TDX16-
DE transition is the hybridization of the obtained eukary-
otic DNA and TDX16’s prokaryotic ones, and expression 
of the hybrid genome [3].

TDX16’s transition demonstrates that a prokaryotic 
cyanobacterium can obtain its senescent algal host’s 
DNA and develop into a new eukaryotic alga. Since 
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Fig. 1  Release of TDX16 from the senescent H. pluvialis cell. A An enlarged senescent H. pluvialis cell. B A massive blue spheroid (top right) with 
compacted TDX16 cells was released from the ruptured senescent H. pluvialis cell

Fig. 2  TDX16 development and transition into TDX16-DE. A Very small TDX16 cells with electron-dense HGBs multiplied by asymmetric division in 
the senescent H. pluvialis cell, scale bar 5 μm. B Small DTX16 cells filled up the cellular space of a senescent H. pluvialis cell, scale bar 0.5 μm. C Five 
TDX16 cells within a sporangium, scale bar 1 μm. D A TDX16-DE cell contains a large “e-shaped” chloroplast (C) with an embedded pyrenoid (P), a 
nucleus (N), a mitochondrion (M) and two vacuoles (V), scale bar 0.5 μm
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bacteria and cyanobacteria are close relatives sharing 
similar structures and behaviors, it is possible that some 
bacteria, like TDX16, are capable of prokaryote-to-
eukaryote transition under the similar conditions. If so, 
the bacteria within normal/cancer cells of multicellular 
eukaryotes may develop into new single-celled eukary-
otes: PCCs/SCCs. Consistent with this notion, PCCs/
SCCs formation really share striking similarities with 
TDX16 development and TDX16-to-TDX16-DE transi-
tion (Figs. 1, 2):

1.	 Similar to TDX16 development, the nascent PCCs/
SCCs (1) are formed within PGCs/PGCCs, (2) repro-
duce by asymmetric division, which is usually inter-
preted as the unachievable division of PGCs/PGCCs 
or subnuclei, (3) aggregate into spheroids [28, 31, 33, 
39, 41–46], and (4) are released after PGCs/PGCCs 
burst [28, 41].

2.	 The newly released/formed PCCs/SCCs are very 
small and undifferentiated [15, 35, 46, 65, 66] con-

taining only “micronuclei” [27, 35], which are, how-
ever, not the real nuclei but the single-membrane-
bounded DNA storage bodies (DSBs), similar to 
HGBs in TDX16 (Fig. 2A, B) [3]. So, just as TDX16, 
PCCs/SCCs are initially absent of organelles.

3.	 Although how and when organelles are developed 
in the small PCCs/SCCs remain unknown, it is cer-
tain that with the enlargement of latter organelles are 
formed de novo in a way akin to organelle biogenesis 
in TDX16 that resulted in its transition into eukary-
otic TDX16-DE (Fig. 2D) [3].

Presentation of the hypothesis
Based on the above analyses and comparisons, we pro-
pose the bacterial origin of cancer cells (BOCC) that 
PCCs/SCCs arise from bacteria through 8 steps (Fig. 3):

1.	 Under the stress of physical, chemical or biologi-
cal factors, normal cells/PCCs undergo senescence, 

Fig. 3  Cartoon illustrating the formation of cancer cells. a The normal cell/PCC undergoes senescence and bloats into a PGC/PGCC with a large 
nucleus (N). leading to the activation of the dormant intracellular bacterium (B) and the invasion of the extracellular bacterium. b The bacterium 
intrudes into the large PGC/PGCC nucleus, takes up the nuclear DNA and retains the obtained DNA in DSB, and thus turns into the small nascent 
cancer cell (NC): PCC/SCC. c NC multiplies in the nucleus by asymmetric division, some of which penetrate the nuclear envelope (NE) into the 
cytoplasm. d All NCs enter cytoplasm after the rupture of NE, and continue to proliferate. During this process, some NCs protrude and escape from 
the necrotic PGCs/PGCCs; while most NCs aggregate into a spheroid. e A spheroid consist of NCs is liberated from the ruptured PGCs/PGCCs. f As 
NC increases in size, DSB disrupts and thus the acquired eukaryotic DNA and the bacterial one fragments and hybridizes into a hybrid genome; 
concurrently, a peripheral double membrane segment (DMS) is synthesized by fusion of the cytoplasmic membrane-derived vesicles. g NC 
further enlarges, DMS extends into a closed double membrane (DM), enclosing the total cytoplasm, and thus gives rise to a single multifunctional 
organelle (MO). Inside MO, a mitochondrion (M) is assembled by encapsulating the selected relevant components (e.g., DNA) with the double 
membrane synthesized by fusion of the inner DM membrane-derived vesicles; meanwhile, a small opening (O) is formed on DM allowing the 
selective release of MO matrix. h The released MO matrix builds up the eukaryotic cytoplasm (EC), and the newly assembled mitochondrion 
detaches from MO into EC; while new mitochondria continue to develop in MO, resulting the diminishment of MO. i After all mitochondria enter EC, 
MO dwindles into a nucleus (N), such that NC develops into a large mature PCC/SCC
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turn into PGCs/PGCCs with large nuclei and lose the 
ability to control the intracellular bacteria and keep 
out the extracellular ones, leading to activation of the 
former and invasion of the latter (Fig. 3a).

2.	 The intracellular bacteria usually reside in PGCs/
PGCCs cytoplasm. Occasionally, one or several bac-
teria intrude into the large PGCs/PGCCs nuclei, take 
up the active nuclear DNAs (including related pro-
teins) and retain the acquired DNAs in the replicable 
membrane-delimited DSBs. As such, the DSB-con-
taining bacteria in PGCs/PGCCs turn into the small 
nascent cancer cells (NCs): PCCs/SCCs (Fig.  3b), 
which are usually mistaken for “small nuclei” or 
“micronuclei” in PGCs/PGCCs and “multinucleated 
giant cells”/“multinucleated giant cancer cells”.

3.	 The small NCs reproduce via asymmetric division in 
PGCs/PGCCs nuclei, some of which penetrate the 
nuclear envelope (NE) into the cytoplasm (Fig. 3c).

4.	 All NCs enter cytoplasm after the rupture of NE, and 
continue to proliferate at the expense of degraded 
organelles and cytoplasm. During this process, some 
NC protrude and escape from the necrotic PGCs/
PGCCs (Fig.  3d); while most NCs aggregate into a 
spheroid, which is liberated after the burst of PGCs/
PGCCs (Fig. 3e).

5.	 As NC increases in size, DSB disrupts and thus the 
acquired eukaryotic DNAs and the bacterial DNAs 
fragment and hybridize into a hybrid genome in a 
way similar to the genome assembly of TDX16-DE 
[3] and “chromothripsis” [67]; concurrently, a periph-
eral double membrane segment (DMS) is synthesized 
by fusion of the cytoplasmic membrane-derived vesi-
cles (Fig. 3f ).

6.	 NC further enlarges, DMS extends into a closed dou-
ble membrane (DM) enclosing the total cytoplasm, 
and thus gives rise to a single multifunctional orga-
nelle (MO). Inside MO, mitochondria are assem-
bled by encapsulating the relevant components (e.g., 
DNAs) with the double membranes synthesized by 
fusing the inner DM membrane-derived vesicles; 
meanwhile, a small opening (O) is formed on DM 
allowing the selective release of MO matrix (Fig. 3g).

7.	 The released MO matrix builds up the eukaryotic 
cytoplasm (EC), and the newly assembled mitochon-
dria detach from MO into EC; while new mitochon-
dria are developed continuously in MO, resulting in 
the diminishment of MO (Fig. 3h).

8.	 After all mitochondria enter EC, MO dwindles into a 
nucleus (N), such that NCs develop into large mature 
PCCs/SCCs (Fig. 3i).

In the way described above, new SCCs can be devel-
oped successively from the same or different species of 

bacteria, which inevitably result in the increased hetero-
geneity, genetic instability and endless complexity of can-
cer cells in vivo and in vitro. Hence, PCCs, SCCs and the 
subsequent new SCCs look superficially like the putative 
“cancer stem cells” [68] in cancer progression.

Evidences supporting the BOCC hypothesis

1.	 There are 10× more bacterial cells than human cells 
in the human body [69].

2.	 Bacteria play a key role in carcinogenesis. Helicobac-
ter pylori is a definite carcinogen for gastric cancer 
[70]. Many other bacteria are related with various 
cancers, such as Salmonella typhi [71], Chlamydia 
pneumoniae [72], Mycoplasma hominis [73], Bacte-
roides fragilis [74], Streptococcus bovis [75], Escheri-
chia coli [76], Fusobacterium spp. [77]. and Neisseria 
gonorrhoeae [78].

3.	 Like bacteria and single-celled eukaryotes (protists, 
e.g., yeast), cancer cells can grow in agar medium 
and form colonies [79], proliferate in the absence of 
anchorage in  vitro [80] and ferment glucose in the 
absence of oxygen (anaerobic fermentation) with the 
production of lactic acid [81].

4.	 Cancer cell genomes were assembled from DNA 
fragments all at once in a single catastrophic event 
(chromothripsis) [67].

5.	 Cancer cell genomes contain bacterial DNA [82–84].
6.	 Genes of ancient and unicellular origin are highly and 

preferentially expressed during tumorigenesis [85, 
86].

Testing the hypothesis
The following BOCC-based predictions can be used for 
testing the hypothesis:

1.	 No bacteria, no cancer. So, after eliminating the 
intracellular bacteria, normal cells can not “trans-
form” into cancer cells in any conditions.

	 Testing Inducing the bacteria-containing and bacte-
ria-free normal cells with different carcinogens and 
infectious agents and tracking their changes.

2.	 The “small nuclei” in “multinucleated giant 
cells”/“multinucleated giant cancer cells” and PGCs/
PGCCs as well as the chromothripsis-related “micro-
nuclei” [87–89] are the bacteria-derived nascent 
PCCs/SCCs, containing bacterial and host’s DNAs.

	 Testing Isolating the “small nuclei” and “micronuclei”, 
sequencing their DNAs and identifying bacterial 
DNAs.
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3.	 The “small nuclei” and “micronuclei” mentioned 
above have no organelles but DSBs, which enlarge 
and develop into eukaryotic cancer cells by de novo 
organelle biogenesis after disruption of DSBs.

	 Testing Cultivating the isolated “small nuclei” and 
“micronuclei” and track microscopically the changes 
of cellular structure.

4.	 There is an outer membrane external to the cytoplas-
mic membrane of “small nuclei”, “micronuclei” and 
PCCs/SCCs (except those that arose from the cell 
wall-less bacteria e.g., Mycoplasma), while the cyto-
plasmic membrane is capable of oxidative phospho-
rylation and lipid synthesis.

	 Testing Detecting the outer membrane, and identify-
ing the electron carriers of oxidative phosphorylation 
and the relevant enzymes in the cytoplasmic mem-
brane.

5.	 PCCs/SCCs genomes contain massive hybrid genes 
with bacterial gene sequences.

	 Testing Identification of bacterial DNA sequences in 
PCCs/SCCs genomes.

Implications of the hypothesis
Clarifying the cause and results of cancer
Cancer cell genomes are formed by hybridizing the 
acquired eukaryotic DNAs and bacterial ones. Such 
hybridization inevitably result in (1) gene loses, substitu-
tion and synthesis, which are usually ascribed to “muta-
tions” (DNA changes), and (2) aneuploidy and karyotypic 
heterogeneity, which are considered to be the reasons for 
genome instability. Therefore, genetic changes and insta-
bilities are not the causes, but the consequences of cancer 
cell development.

Explaining the reason behind the hallmarks of cancer
In the light of BOCC the reason behind the hallmarks of 
cancer [90, 91] become clear. Cancer cells are new bac-
teria-derived single-celled eukaryotes formed by expres-
sion of the hybrid genomes, which inevitably exhibit the 
characteristics of protists, e.g., “self-sufficiency”, “replica-
tive immortality”, “invasion and metastasis” and somatic 
cells, i.e. “angiogenesis”, but evade somatic-cell-targeted 
controls of “growth suppress” and “apoptosis”. Indeed, 
“reprogramming energy metabolism” that cancer cells 
generate energy via ‘‘aerobic glycolysis”, i.e. “Warburg 
effect” [81], is also a characteristic of protists, because 
the yeast Saccharomyces cerevisiae produce energy via 
aerobic fermentation [92] called “Crabtree effect” [93]. 
As to “evading immune destruction”, the reasons may be 
that the cancer-causing bacteria have already developed 
strategies to evade immune system defenses as indi-
cated by their persistence within the host cells, so the 

bacteria-derived cancer cells acquire the capability to 
evade immune destruction.

Clarifying the common role of carcinogens, infectious 
agents and relating factors in carcinogenesis
Cancer can be caused by physical and chemical carcino-
gens [94], infectious agents [95] including viruses [96], 
bacteria [70] and parasites [97], and related to the factors 
of organismal aging [98], immunity [99] and inflamma-
tion [100]. It is reasonable that these varied carcinogens, 
infectious agents and relating factors play or link to a 
common role in carcinogenesis. Such a common role is 
unknown, but apparently not mutation, because most of 
the carcinogens and infectious agents are not mutagenic.

According to BOCC theory, senescence of normal cells 
is the prerequisite for the formation of bacteria-derived 
cancer cells. Hence, the common role of carcinogens, 
infectious agents and relating factors in carcinogenesis is 
inducing or linked to cellular senescence. In general, car-
cinogens and infectious agents induce cell senescence by 
(1) causing cell damage and or more or less DNA changes 
(physical and chemical carcinogens), (2) integrate DNA 
into host cell genome to interfere cell metabolic activi-
ties (viruses), (3) mechanical irritation (parasites), (4) 
secreting irritant metabolites (bacteria and parasites), 
(5) inducing chronic inflammation (physical and chemi-
cal carcinogens, bacteria, viruses, and parasites) and (6) 
interfering or inhibiting host’s immune system resulting 
in lowered immunity or immunosuppression (physical 
and chemical carcinogens, bacteria, viruses, and para-
sites); while organismal aging is associated with immu-
nity declines and thus cellular senescence.

Providing a new rationale and direction for cancer 
research, prevention and therapy
If confirmed, BOCC theory provides a new rationale for 
cancer research, and a new direction for cancer preven-
tion and therapy. Eliminating the cancer-causing bacte-
ria in the body with antibiotics or other agents, stopping 
bacteria’s acquisition and hybridization of host’s DNAs, 
and developing bacteria-targeted vaccines can prevent 
cancer and inhibit, to some extent, cancer progression. 
Identifying the differences between the bacteria-derived 
cancer cells and normal cells in structure, constitu-
tion and metabolism can provide targets for developing 
drugs and vaccines to eradicate cancer cells in cancer 
treatment.
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