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Abstract 

Background:  Emerging evidence has suggested that interleukin (IL)-33 and its primary functional receptor ST2 are 
involved in the pathogenesis of tumorigenesis.

Methods:  Using immunohistochemistry (IHC) and double immunofluorescence staining, we characterized the cel-
lular and clinicopathological features of the IL-33/ST2 axis in different compartments in human esophageal squamous 
cell carcinoma (ESCC) surgical specimens.

Results:  IHC data revealed an increased expression of IL-33-immunoreactivity (IR) and ST2-IR located in both ESCC 
cells and tumor stromal cells; which were associated with advanced clinicopathological features such as TNM stages 
and node involvement. However, the Kaplan–Meier analysis showed that densities of neither IL-33 positive nor ST2 
positive cells in both the ESCC mass and stroma were associated with the overall survival rate in patients with ESCC. 
Double immunofluorescence staining for cellular feature analysis demonstrated that these IL-33 positive and ST2 
positive cells in ESCCs were with a high proliferation rate, and IL-33-IR was frequently co-expressed with ST2-IR in both 
ESCC and stromal cells.

Conclusion:  Significant altered cellular features of the IL-33/ST2 axis in ESCCs were associated with advanced clinico-
pathological variables. The data suggest that the IL-33/ST2 axis might be involved in the progression of human ESCCs.
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Background
Esophageal cancer remains a highly lethal malignancy 
in which a frequency that varies greatly across different 
geographic locations [1]. Esophageal cancers are histo-
logically subdivided into two main histologic types: ade-
nocarcinoma and esophageal squamous cell carcinoma 
(ESCC). Adenocarcinoma is more common in West-
ern countries like United States, Western and Northern 
Europe, whereas ESCC is more frequent seen in regions 
so-called “Asian esophageal cancer belt” that encom-
passes areas such as Iran, Kazakhstan and northern and 
central China [1]. Incidence of ESCC in our location 

(Henan province, Central China) is high and remains 
difficult to cure [2], primarily because of its extremely 
aggressive nature and frequent regional lymph node 
metastasis even at initial diagnosis [2, 3]. Due to this fact, 
much research have recently focused on mechanisms 
involving in ESCC tumor invasion and progression [4–7].

The precise mechanisms for ESCC progression 
remain unclear, though several potential mechanisms 
have been hypothesized and evaluated [8]. There is 
abundant evidence that chronic inflammation is a 
driving force in the majority of human malignancies 
including ESCC [8, 9]. Inflammatory factors released 
from the tumor microenvironment may lead to tumor 
invasion, angiogenesis and metastasis [10], which are 
closely associated with the prognosis in patients with 
ESCC [10, 11]. Thus, investigating the regulatory role of 
inflammatory network in the tumor microenvironment 
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may provide not only new insights into mechanisms of 
ESCC progression, but also a potential therapeutic sig-
nificance in the context of human cancers.

Interleukin (IL)-33 is a novel inflammatory cytokine, 
it plays an important role in the regulation of host 
immune function [12–14] and immune cell expansion 
[15–18], and has been associated with the develop-
ment of human inflammatory diseases (IBD) [19, 20], 
as well as tumors [21–31]. Moreover, studies have also 
revealed that high expression of IL-33 is associated 
with disease progression and poor prognosis in diverse 
cancers [25, 27, 28, 32–34]. Thus, studies regarding the 
role of IL-33 in tumor development has attracted much 
attention and evidence is accumulating. Current data 
strongly suggest that IL-33 is involved in the pathogen-
esis of cancers [16, 18, 23, 31, 34–37].

Regarding mechanisms of IL-33 promoting tumo-
rigenesis, studies have suggested that that the IL-33 
may regulate the expansion and function of different T 
cell subsets [15, 16], ILC2s [18] and nature killer (NK) 
cells [17, 18], stimulate the process of angiogenesis [36, 
38–40], inhibit antitumor immunity [21, 24, 41] and 
promote tumor cell growth [25]. For instance, recent 
progression has uncovered important roles of IL-33 
in the stimulation of regulatory T cell (Treg) expan-
sion and function [21, 30, 42, 43], whereas Tregs are 
important for the establishment and maintenance of 
immunosuppressive and immune tolerance in patients 
with cancers [44, 45]. Moreover, clinical studies have 
shown that increased expression of IL-33 links to the 
tumor invasion, metastasis [21, 25, 26, 35, 42, 46–50] 
and prognosis in patients with cancers [25, 34, 46]. 
More recently, we have demonstrated significant 
increased expression of IL-33 and ST2 from the colo-
rectal precancerous (adenoma) lesion to cancerous 
lesion; IL-33-immunoreactivity (IR) and St2-IR are not 
only expressed in tumor cells, but also in surrounding 
stromal cells, indicating a mixt cellular source of IL-33 
and ST2 in the tumor microenvironment [35]. Recently, 
the role of IL-33 in inducing esophageal inflamma-
tion has also been studied. Experimental evidence 
suggested that IL-33 contributes to the induction of 
chronic inflammation in esophagus and is involved in 
the pathogenesis of esophageal inflammatory diseases 
[51–53]. However, knowledge is still lacking about the 
role of IL-33/ST2 axis in human ESCC.

Therefore, the aim of this study was to characterize cel-
lular features including presentation, proliferative rate, 
and autocrine loop of IL-33/ST2 axis presents in both 
ESCC and stromal cells, as well as its clinical significance.

Methods
Study population and tissue samples
A total of 41 patients with primary ESCC, who were 
diagnosed and treated in the Second Affiliated Hospital 
of Zhengzhou University between 2010 and 2013, were 
enrolled. Of these 41 patients, 26 were male and 15 were 
female. The age of mean at treatment for ESCCs was 
56.33  years (age ranging from 32 to 76  years). Tumor 
location (upper/middle/lower) was 5/27/9. The patho-
logical diagnosis and clinicopathological classification 
was reviewed by a senior pathologist JR from Depart-
ment of Pathology according to the seventh edition of 
the pathologic tumor-node-metastasis (TNM) classifica-
tion 2009 [54]. No patient received radiotherapy and/or 
chemotherapy preoperatively. No patients with Barrett’s 
esophagus, 65.38% (17/26) males with cigarette smoking 
and all females without cigarette smoking. Twenty non-
tumor esophageal tissues taken from far distant locations 
(~ 10 cm from tumor mass) in patients with ESCC served 
as controls (age of mean 54.35 years, range 27–72 years; 
male/female: 13/7. Specimen location, upper/middle/
lower: 7/3/9); six male controls with cigarette smoking 
and 14 without, microscopic examination showed all the 
controls are in normal morphology. Basic clinicopatho-
logical characteristics of patients with ESSC is summa-
rized in Table  1. This work was approved by the local 
Medical Research Committee of the Second Affiliated 
Hospital, Zhengzhou University.

Immunohistochemistry (IHC)
IHC for IL-33 and ST2 were performed with a Vectastain 
Elite ABC Kit (Vector Lab., Burlingame, CA, USA) 
according to the manufacturer’s instructions and our 
published methods [35, 55, 56]. The following primary 
antibodies were used: goat anti-IL-33 polyclonal antibody 
(working dilution 1:100; R&D systems, Minneapolis, MN, 
USA) and rabbit anti-ST2 polyclonal antibody (work-
ing dilution 1:100; Thermo Scientific., Rockford, USA). 
Antibodies were incubated at 4  °C overnight. 3-Amino-
9-ethylcarbazole (AEC; Vector Laboratories, Burlingame, 
CA, USA) was used as chromogen, and slides were 

Table 1  Basic pathological information of ESSC patients

N TNM Invasion depth Lymph node

I II III Muscular All layer + −

ESCC 41 1 9 31 8 33 6 35
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slightly counterstained with Mayer’s hematoxylin. Pre-
vious known colorectal adenoma/carcinoma sections 
shown to have IL-33 and ST2 IRs were used as positive 
controls to confirm the IL-33 and ST2 IRs in each series 
of IHCs. To exclude background staining by nonspecific 
antibody binding, negative controls were included using 
isotype-matched antibodies in each IHC test.

Double immunofluorescence (DIF) for the examination 
of proliferation rate
To examine the proliferation activity of IL-33 positive and 
ST2 positive cells, ESCC and control sections were stained 
with IL-33/Ki67 (1:70; BD Pharmingen., San Jose, CA, 
USA) and ST2/Ki67 antibodies according to the proto-
col described in our previous publication [55–57]. After 
ESCC sections incubated with primary antibodies at 4  °C 
overnight, IL-33-immunoreactivity (IR) was developed 
with Texas red-, ST2-IR with Cy3- and Ki67-IR with FITC-
conjugated secondary antibodies (all from Jackson Immu-
noRearch Lab., West Grove, PA, USA). Mounted in glycerol, 
and viewed with confocal microscopy (LSM-700, Carl Zeiss, 
Jena, Germany) respectively. Colorectal adenoma/can-
cer sections known positive for IL-33/Ki67 and ST2/Ki67 
IRs were used as positive controls. Sections with isotype-
matched antibodies were used as negative controls in each 
DIF test  and observed and photographed with a confocal 
microscopy (LSM-700, Carl Zeiss, Jena, Germany).

DIF for the examination of the co‑expression of IL‑33 
with its functional receptor ST2
To observe the co-expression of IL-33 with its functional 
receptor, ST2, in both ESCC and stromal cells, we there-
fore performed DIFs with IL-33/ST2 antibodies accord-
ing to the protocol as described above; IL-33-IR was 
developed with Texas red- and ST2-IR with FITC-con-
jugated secondary antibodies. Isotype-matched negative 
controls were routinely performed.

Morphometric evaluation of IHC and DIF
All the stained slides were evaluated under light microscopy 
and positive cells for IL-33 and ST2 in both ESCC mass and 
stroma were semi-quantitatively graded respectively. The 
numbers of cells positive for IL-33- or ST2-IRs in three well-
orientated high-power fields (400×) with abundant distri-
bution were graded as follows: (score 0), < 30% of total cell 
mass; (score 1), 30%–50% of total cell mass; (score 2), 50%–
70% of total cell mass; (score 3), > 70% of total cell mass. The 
densities of Ki67/IL-33 and Ki67/ST2 double positive cells 
in both the epithelium and stroma in DIFs were quantified 
under three well-orientated middle-power fields (200×) in 
10 ESCC and control sections respectively. The average val-
ues of positive cells per slide were used for statistical analysis.

Statistical analysis
Data were present as median values plus 95% confidence 
interval (CI) unless otherwise stated. P values were evalu-
ated by the Mann–Whitney test. The correlation between 
the IL-33/ST2 axis expression and clinical pathologi-
cal variables was analyzed. Kaplan–Meier analysis was 
used to determine survival rates and differences in sur-
vival curves, the Cox proportional hazards regression 
model with a stepwise procedure was used to analyze the 
simultaneous influence of prognostic factors in available 
ESCC patients. P value < 0.05 was considered statistically 
significant.

Results
Expression of IL‑33 and its functional receptor ST2 in ESCC 
cells and stromal cells
We first examined expression of IL-33 and its functional 
receptor ST2 in ESCC cells and stromal cells by immu-
nohistochemistry. As has been shown in our repost from 
human colorectal cancer [35], IL-33-IR was predomi-
nantly detected in nuclear of squamous epithelial cells 
and stromal cells in both ESCC and control tissues. In 
control tissues, IL-33-IR were mostly observed in the 
surface cells of normal epithelium (arrow pointed in 
Fig. 1A) and stromal cells (arrowhead pointed in Fig. 1A). 
The expression of IL-33-IR in ESCC cells was slightly 
increased (arrow pointed in Fig.  1B), but it was signifi-
cantly increased in the ESCC stroma (arrowhead pointed 
in Fig. 1B) as compared with the controls.

ST2-IR was detected in both cytoplasm and nuclear 
of cells. In control tissues, it was observed in the surface 
cells of normal squamous epithelium (arrow pointed in 
Fig. 1D) and stromal cells (arrowhead pointed in Fig. 1D). 
Increased expression of ST2-IR in both ESCC cells 
(arrow pointed in Fig. 1E) and stromal cells (arrowhead 
pointed in Fig. 1E) was observed.

When densities of IL-33-IR and ST2-IR positive cells 
were semi-quantified, data confirmed above IHC obser-
vations, and showed increased density scores of IL-33-IR 
positive cells in the ESCC stroma and increased density 
scores of ST2 positive cells in both the ESCC and tumor 
stroma compared to the control tissue (see Table 2).

The correlation between IL‑33/ST2 expression and various 
clinicopathological parameters and prognosis in patients 
with ESCC
Subsequently, the correlation between density scores 
of IL-33/ST2 positive cells and clinicopathological 
variables such as TNM pathological classification, inva-
sion depth and node involvement were investigated. 
Results showed that density scores of IL-33-IR positive 
and ST2-IR positive cells in both the ESCC mass and 
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stroma correlated with TNM stages (Table 3). Patients 
with earlier stages (stage I or II) had lower density 
scores of either IL-33-IR positive or ST2-IR positive 
cells than those with advanced stages (see Table  3, all 
P values were from Mann–Whitney tests). Density 
scores of IL-33-IR positive cells in the ESCC stroma 
and ST2-IR positive cells in both the ESCC mass and 
stroma correlated with positive node involvement (see 
Table 3). In addition, density scores of ST2-IR positive 
stromal cells in the ESCC showed a positive correlation 
with tumor invasion depth, ESCC patients with all layer 
invasion had a higher density score of ST2-IR positive 
stromal cells than those with only muscular invasion 
(see Table 3).

Finally, Kaplan–Meier survival curves revealed that 
density scores of neither IL-33-IR positive (Fig.  2a, b) 
nor ST2-IR positive cells (Fig. 2c, d) in both the ESCC 
mass and stroma correlated with the overall survival in 
patients with ESCC.

Proliferation activity of IL‑33 positive and ST2 positive cells 
in the ESCC
The analysis demonstrated that both IL-33-IR posi-
tive (Fig.  3A–F) or ST2-IR positive (Fig.  3G–L) ESCC 
tumor cells and stromal cells had a high proliferative 
rate. Quantitative data showed that densities of Ki67/
IL-33 and Ki67/ST2 positive cells were increased in 
both ESCC and stromal cells as compared with controls 
(Ki67/IL-33 in ESCC vs. control: 17.0 (13.98–20.22) 
vs. 11.50 (10.28–14.92), P < 0.05; Ki67/IL-33 in stroma 
vs. control: 23.00 (18.09–26.51) vs. 17.50 (13.42–
20.38), P < 0.05. Ki67/ST2 in ESCC vs. control: 14.50 
(10.48–17.72) vs. 9.02 (6.06–12.14), P < 0.05; Ki67/
ST2 in stroma vs. control: 18.0 (15.31–21.49) vs. 10.0 
(7.64–13.56), P < 0.01. P values were obtained from the 
Mann–Whitney test).

Fig. 1  Immunohistochemical (IHC) examination of IL-33 and its functional receptor ST2 in the ESSC microenvironment. In the lamina propria 
of control esophageal tissues, IL-33-immunoreactivity (IR) was observed in squamous epithelium particularly in the deep layer (black arrow in 
A) and stromal cells (black arrowhead in A). In the stroma of ESCCs, IL-33-IR was observed in both ESCC cells (black arrow in B) and stromal cells 
(black arrowhead in B). Similarly, intensive ST2-IR was frequently observed in the ESCC cells (black arrow in E) and stroma cells (arrowhead in E) as 
compared with control sections (D). Both IL-33-IR and ST2-IR were not shown in isotopy-matched negative controls (C, F). (A–F: IHC, counterstained 
with hematoxylin, original magnification ×400)

Table 2  Density scores of IL-33-IR and ST2-IR positive cells 
in the ESCC specimens

P values are derived from Mann-Whitney tests

Location Control ESCC P

IL-33 Epithelium 2.0 (1.07–2.47) 2.0 (1.56–2.34) > 0.05

Stroma 1.0 (0.59–2.02) 2.0 (1.8–2.40) < 0.05

St2 Epithelium 1.0 (0.15–2.13) 3.0 (2.00–2.60) < 0.05

Stroma 1.0 (0.18–2.07) 3.0 (2.27–2.68) < 0.01
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IL‑33 and its functional receptor ST2 are expressed in same 
cells in the ESCC
DIF results indicated that some of ESCC cells (Fig. 4A–
C) and stromal cells (Fig.  4D–F) were positive for both 
IL-33-IR and ST2-IR, implying that these cells could 
either be the cellular sources or target for IL-33 and ST2 
in the ESCC.

Discussion
In this study, we investigated cellular features of IL-33 
and its functional receptor, ST2, expressions and evalu-
ated its clinicopathological significance in patients with 
ESCC. We found that expressions of IL-33 and ST2 
were significantly increased in both ESCC cells and stro-
mal cells with a high proliferation rate. Density scores 
of either IL-33-IR or ST2-IR positive cells in the ESCC 
stroma correlated with advanced clinicopathological 
variables i.e. TNM stage, node involvement and inva-
sion depth, which may suggest that the IL-33/ST2 axis 
is involved in the progression of human ESCC. To best 
of our literature knowledge, the current study is the first 
study to characterize the cellular and clinicopathological 
features of the IL-33/ST2 axis in patients with ESCCs.

Although there has been considerable interest in the 
essential role of IL-33/ST2 axis in tumorigenesis [18, 30, 

Table 3  Correlation between  density scores of  IL-33-IR/
ST2-IR positive cells and  TNM stage, node involvement 
and invasion depth in patients with ESCC

P values were derived from Mann–Whitney tests

Parameters IL-33-IR positive cell 
density scores

ST2-IR positive cell density 
scores

ESCC Stroma ESCC Stroma

TNM stage

 I + II 2.0 (0.87–
2.53)

1.5 (0.90–
1.90)

2.0 (1.27–
2.53)

2.0 (1.52–2.48)

 III 3.0 (2.30–
2.77)

3.0 (2.14–
2.72)

3.0 (2.08–
2.78)

3.0 (2.41–2.82)

 P value < 0.05 < 0.01 < 0.05 < 0.05

Node involvement

 Positive 2.5 (1.93–
3.08)

3.0 (2.41–
3.26)

3.0 (2.13–
3.21)

2.0 (1.93–3.08)

 Negative 3.0 (2.02–
2.61)

2.0 (1.73–
2.32)

3.0 (1.89–
2.58)

2.0 (2.24–2.70)

 P value > 0.05 < 0.05 < 0.05 < 0.05

Invasion depth

 Muscular 3.0 (1.49–
3.26)

1.5 (1.00–
2.25)

2.5 (1.51–
2.99)

2.0 (1.55–2.45)

 All layer 2.0 (1.39–
2.29)

2.5 (1.88–
2.56)

3.0 (1.99–
2.69)

3.0 (2.37–2.82)

 P value > 0.05 > 0.05 > 0.05 < 0.05

Fig. 2  The Kaplan–Meier analysis of overall survival differences among ESCC patients with different densities of IL-33-IR and ST2-IR positive cells 
in the tumor stroma. Kaplan–Meier analysis revealed that densities of IL-33-IR positive (a, b) and ST2-IR positive cells (c, d) in both ESCC mass and 
stroma do not predicate the overall survival rate in patients with ESCC (all P values determined by log-rank tests)
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31], studies have provided contradictory results with both 
pro-tumor and anti-tumor effect reported [29–31, 58]. It 
appears likely that such different roles might be related to 
the types of tumor studied and the models used [29–31, 
58]. Thus, the role of IL-33/ST2 axis in human tumors 

has been the subject of controversy, because of its com-
plexity and context dependence. In this study, we were 
able to demonstrate that both IL-33-IR and its functional 
receptor ST2-IR were highly expressed in ESCC cells 
and stromal cells, where most of the cells were actively 

(See figure on previous page.)
Fig. 3  Double immunofluorescence (DIF) staining with confocal microscopy to evaluate proliferative activity of IL-33-IR and ST2-IR positive cells in 
the ESCC mass and stroma. DIFs images revealed that IL-33-IR (labelled by Texas red, red cells) in the ESCC mass (A) and stroma (D) was frequently 
co-localized (merged images in C, F) with a high rate of Ki67-IR (labelled by FITC, green cells in B, E). ST2-IR (labelled by Cy3, red cells) in the ESCC 
mass (J) and stroma (M) was co-localized (merged images in L, O) with a high rate of Ki67-IR (labelled by FITC, green cells in K, N). IRs for targeted 
proteins were not shown in both isotopy-matched negative controls for each DIF (see G–I, and P–R respectively). (A–R: DIFs, original magnification 
×200; counterstaining was not applied)

Fig. 4  Double immunofluorescence (DIF) staining with confocal microscopy to evaluate the co-expression of IL-33 with its receptor, ST2, in the 
ESCC section. DIF images showed that IL-33-IR (labelled by Texas red, red cells in A, D) was frequently co-localized (merged images in C, F) with 
ST2-IR (labelled by FITC, green cells in B, E) in ESCC cells (merged image in C) and stromal cells (merged image in F). IRs for targeted proteins were 
not shown in isotopy-matched negative controls (G–I). (A–I: DIFs, original magnification ×200; counterstaining was not applied)
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proliferating. Taken together with previous finding that 
IL-33 is an early alarm signal rapidly released from pro-
ducing cells upon cellular damage or cellular stress [59], 
our findings may suggest that such increased expression 
of the IL-33/ST2 axis in the ESCC might be reflect the 
an active IL-33/ST2 immune reaction during esophageal 
tumorigenesis.

It has been recently reported that the expression of 
IL-33 is associated with clinicopathological variables in 
certain types of cancers [25, 34, 46]. We therefore ana-
lyzed the clinicopathological significance of IL-33 and 
ST2 expressions in different compartment elements 
in the ESCC. Results did show that density scores of 
IL-33-IR positive or ST2-IR positive cells in the ESCC 
stroma were closely associated advanced clinicopatho-
logical variables i.e. TNM stages and invasion depth, 
these data suggest that the IL-33/ST2 axis is involved 
in the progression of human ESCC. However, Kaplan–
Meier survival curve analysis showed that density scores 
of neither IL-33-IR positive nor ST2-IR positive cells 
in different compartments were associated with over-
all survival in patients with ESCC. This may reflect the 
fact that a complex network with multiple elements such 
as growth factors, immune function, angiogenesis and 
stroma response, rather than a sole cytokine determines 
the prognosis of human tumors [9].

Regarding the mechanisms of IL-33/ST2 axis pro-
moting tumorigenesis, increasing evidence suggests 
that one of the possibilities is through the activation of 
tumor stroma [30, 60, 61]. Our double immunofluores-
cence images showed that both IL-33-IR and ST2-IR 
positive ESCC cells and stromal cells showed a high 
proliferative rate, which indicates an active IL-33/ST2 
response occurred in the ESCC microenvironment. 
Furthermore, we found that IL-33- and its receptor ST2 
IRs were observed in both ESCC cells and stromal cells, 
which confirmed that these cells could be either the cel-
lular sources or target for IL-33. Whether there is an 
autocrine or paracrine action way need to be explore 
in vitro, which might help to design novel translational-
targeted agents in the future.

Conclusion
Data present in this study add an advance in our under-
standing of the role of IL-33/ST2 axis in ESCC progres-
sion, by demonstrating high expression levels of IL-33 
and its primary functional receptor ST2 in ESCC and 
stromal cells, which are associated with advanced clin-
icopathological variables. This new work also supports 
exploration of designing novel translational-targeted 

agents. Together with other recent researches of the 
IL-33/ST2 axis in human cancers [35], our work sup-
ports the hypothesis that the IL-33/ST2 axis may play 
an important role in ESCC progression. Although 
more studies are required involving additional work 
to explore the exact mechanisms of the IL-33/ST2 axis 
in ESCC progression, the weight of evidence supports 
a contributing role for IL-33 and its receptor ST2 to 
the stromal activation of ESCC, which may result in 
the development of new therapeutic targets for ESCC 
treatment.
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