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Abstract 

Background:  Chromophobe renal cell carcinoma (ChRCC) is the second common subtype of non-clear cell renal cell 
carcinoma (nccRCC), which accounting for 4–5% of renal cell carcinoma (RCC). However, there is no effective bio-
marker to predict clinical outcomes of this malignant disease. Bioinformatic methods may provide a feasible potential 
to solve this problem.

Methods:  In this study, differentially expressed genes (DEGs) of ChRCC samples on The Cancer Genome Atlas data-
base were filtered out to construct co-expression modules by weighted gene co-expression network analysis and 
the key module were identified by calculating module-trait correlations. Functional analysis was performed on the 
key module and candidate hub genes were screened out by co-expression and MCODE analysis. Afterwards, real hub 
genes were filter out in an independent dataset GSE15641 and validated by survival analysis.

Results:  Overall 2215 DEGs were screened out to construct eight co-expression modules. Brown module was identi-
fied as the key module for the highest correlations with pathologic stage, neoplasm status and survival status. 29 
candidate hub genes were identified. GO and KEGG analysis demonstrated most candidate genes were enriched in 
mitotic cell cycle. Three real hub genes (SKA1, ERCC6L, GTSE-1) were selected out after mapping candidate genes to 
GSE15641 and two of them (SKA1, ERCC6L) were significantly related to overall survivals of ChRCC patients.

Conclusions:  In summary, our findings identified molecular markers correlated with progression and prognosis of 
ChRCC, which might provide new implications for improving risk evaluation, therapeutic intervention, and prognosis 
prediction in ChRCC patients.
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Background
Renal cell carcinoma (RCC) is a heterogenous disease, 
which is composed of ccRCC and nccRCC [1]. Over 
the past few years, targeted therapies have significantly 
improved overall survival (OS) and relapse free survival 
(RFS) of patients with ccRCC [2]. However, ascribing to 

relatively low incidence (25–30%) and rare clinical trails 
of nccRCC, the optimal targeted therapies for nccRCC 
patients still remain uncertain [3]. ChRCC, taking up 
4–5% of RCC, is the second common subtype of nccRCC. 
Although the tumor grade or stage of ChRCC is relatively 
low, there is no significant difference between patients 
with localized ChRCC and ccRCC in 5-year cancer-spe-
cific survival rates (P = 0.98) [4]. Due to the poor out-
comes of ChRCC, it’s urgent to identify novel molecular 
biomarkers to evaluate the prognosis of ChRCC patients, 
which might help to assess the malignancy and provide 
therapeutic potential for this disease.
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WGCNA is a method commonly used to explore the 
complex relationships between genes and phenotypes. 
This method is able to transform gene expression data 
into co-expression modules and provide insights into 
signaling networks that may be responsible for pheno-
typic traits of interests [5–7]. WGCNA is widely used in 
various biological processes, such as cancer, neurosci-
ence and genetic data analysis, which is quite helpful for 
the identification of potential biomarkers or therapeutic 
targets [8–11]. Not only can it analyses mRNA level of 
tumor samples, but also work on microRNA or lncRNA 
datasets of neoplasms to find candidate biomarkers for 
prognosis and treatment [12, 13].

In this study, WGCNA method was firstly used to analyze 
clinic traits and gene expression data of ChRCC samples 
provided by TCGA database to identify key genes associ-
ated with tumor prognosis and progression. Our findings 
may be very beneficial to assess malignant potential of 
ChRCC and offer therapeutic methods to this neoplasm.

Methods
Data sources and data preprocessing
Gene expression data and patient clinic traits of ChRCC 
were downloaded from The Cancer Genome Atlas (TCGA) 
database (https​://cance​rgeno​me.nih.gov/). Annotation infor-
mation of microarray was used to match probes with cor-
responding genes. The average value was calculated out for 
those genes corresponding to more than one probes, while 
probes matched with more than one gene were eliminated.

Screening for differentially expressed genes
The “DEseq2” R package was used to screen DEGs 
between ChRCC samples and paired normal tissues in 
the expression data. The DEGs threshold was set at a |log-
2FoldChange| > 0.585 and adj.P.value < 0.05. After DEGs 
were screen out, flashClust tool package in R language 
was used to perform cluster analysis of ChRCC samples.

Co‑expression network construction and module analysis
Firstly, expression data profile of DEGs was tested by 
to check if they were the good samples and good genes. 
Afterwards, power value was screened out by WGCNA 
[14] algorithm which is implemented in the R software 
package (http://www.r-proje​ct.org/). Scale independ-
ence and average connectivity degree of modules with 
different power value was tested by gradient method 
(the power value ranging from 1 to 20). The appropri-
ate power value was determined when the degree of 
independence was above 0.85 and average connectivity 
degree is relatively higher [8]. Once the power value was 
determined, the scale-free gene co-expression networks 
were constructed by WGCNA algorithm. Besides, the 
corresponding genes information of each module was 

extracted out. The minimum number of genes in each 
module was set as 50 for the high reliability of the results.

Interaction analysis of co‑expression modules of ChRCC​
After co-expression modules were identified by WGCNA 
algorithm. Heatmap was painted to describe the strength 
of the interactions between different modules by heat-
map function embedded in R language.

Construct module‑trait relationships of ChRCC and key 
module identification
The correlation between module eigengenes (MEs) and 
phenotype (clinic traits) was used to evaluated module-trait 
associations. MEs were considered as the major component 
in the principal component analysis for each gene mod-
ule. We calculated the correlation between MEs and clini-
cal trait to identify the relevant module. Gene significance 
(GS), which was defined as the log10 transformation of the 
P value (GS = lgP) in the linear regression between gene 
expression and clinical information, was calculated to evalu-
ate correlation strength. Modules with the highest correla-
tion coefficients among all modules were usually considered 
as the key module and selected for further analysis.

Functional enrichment analysis of the key module
The information of genes in key modules was upload to 
Enrichr online database to perform GO and KEGG path-
way analysis [15, 16]. Analysis results were extracted out 
under the condition of P < 0.05 after correction [17]. The 
top 10 GO terms were visualized if there were more than 
ten terms, so as to KEGG pathways.

Selection of candidate hub genes
Hub genes, with highly intramodular connectivity, have 
been shown to be functionally significant. In this study, 
candidate hub genes were defined by module connectiv-
ity, measured by module membership (MM) > 0.8 and 
clinical trait relationship, measured by significance of 
the Pearson’s correlation (GS. Pathologic stage > 0.2) [18]. 
Furthermore, we uploaded all genes in the hub module 
to the STRING database, choosing confidence > 0.4 to 
construct protein–protein interaction (PPI). After setting 
degree cut-off = 5, node score cut-off = 0.2, k-core = 2, 
and max. depth = 100, the most significant sub-module 
was selected by using plug-in MCODE [9]. Genes both 
in co-expression network and MCODE sub-module were 
regarded as candidate hub genes for further analysis.

Hub genes identification and validation
Another independent dataset GSE15641 contain-
ing six ChRCC samples and 23 normal tissues was 
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extracted and performed on GEO2R analysis (https​://
www.ncbi.nlm.nih.gov/geo/). |log2FoldChange| > 1 and 
P.Value < 0.05 as criterion, DEGs were identified. Candi-
date hub genes were mapped to DEGs in GSE15641 to 
find the real hub genes. For further validation, real hub 
genes were upload to online TCGA database to perform 
survival analysis (http://gepia​.cance​r-pku.cn/). ChRCC 
patients were divided into two groups according to 
median expression of each hub gene (high vs. low) and 
Kaplan–Meier survival analysis was conducted.

Statistical analyses
Two-tailed Student’s t-test was used for significance of 
differences between groups. Statistical analyses were 
performed with GraphPad Prism 6.02. Statistical sig-
nificance was set at probability values of P < 0.05.

Results
DEGs screening
The gene expression profile of 66 ChRCC samples were 
download from TCGA database. A total of 2215 DEGs 
(1741 up-regulated and 384 down-regulated) between 
ChRCC samples and normal tissues were screened out 
under the threshold of |log2FoldChange| > 0.585 and 
adj.P.Value < 0.05. These 2215 DEGs were then selected 
for subsequent analysis.

Construction of co‑expression modules of ChRCC​
All DEGs were included for constructing co-expression 
modules by WGCNA algorithm. The “flashClust tool” 
package was used to perform the cluster and trait anal-
ysis and results were shown in (Fig. 1). First of all, the 
appropriate power value was screened out (Additional 

Fig. 1  Clustering dendrogram of 66 tumor samples and heatmaps of clinical traits. The clustering was based on the expression data of DEGs 
between ChRCC samples and non-tumor samples. The color intensity in heatmaps was proportional to older age, higher pathological stage. In 
neoplasm and survival status, white means patient neoplasm free or live, while red means patient with tumor or dead

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://gepia.cancer-pku.cn/
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file  1: Fig S1). When the power value was equal to 5, 
scale free networks were constructed with independ-
ence degree up to 0.85 and the relatively higher average 
connectivity (mean connectivity = 6.04). As a result, 
eight distinct gene co-expression modules were iden-
tified by the appropriate power value (5) in ChRCC 
after excluding the grey module. Constructed mod-
ules painted with different colors and cluster trees of 
DEGs were shown in (Fig. 2). Gene numbers and mod-
ule names were shown in Table 1. Interactions between 
eight co-expression modules were subsequently 

analyzed. The heatmap demonstrates the Topological 
Overlap Matrix (TOM) among all genes in the analysis. 
Light color represents low overlap and darker red color 
represents higher overlap. As a result, each module 
showed independent validation to each other (Fig. 3).

Identification of key modules corresponding to clinic traits
The correlations between module eigengene and clinic 
traits were shown in (Fig.  4). The brown module was 
selected as key module for taking up top three highest 
correlations with progression and survival of ChRCC 
(R2 = 0.48 and P = 5e−05 with pathologic stage, R2 = 0.41 
and P = 6e−04 with neoplasm status, R2 = 0.52 and 
P = 8e−06 with living status). Afterwards, we plotted 
scatter plots of GS vs. MM (module membership) in the 
brown modules with clinic traits respectively (Additional 
file 2: Fig S2).

Functional enrichment analysis of genes in the key module
To obtain further insight into the function of genes in 
the hub module, all genes in the brown module were 
uploaded to Enrichr online database to conduct GO and 
KEGG pathway analysis. According to P-value of each 
term, top 10 biological process and KEGG pathways 
were extracted out (Additional file 3: Table S1 and Addi-
tional file 4: Table S2) and visualized. GO analysis results 

Fig. 2  Clustering dendrogram of DEGs, with dissimilarity based on topological overlap, together with assigned module colors

Table 1  The number of  genes in  eight constructed 
modules

Modules Freq

Black 148

Blue 498

Brown 222

Green 179

Pink 82

Red 149

Turquoise 574

Yellow 199
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showed genes in brown module significantly enriched 
in mitotic cell cycle transition, mitotic spindle assem-
bly, mitotic spindle organization, regulation of cell cycle 
process, etc. KEGG pathway analysis revealed cell cycle, 
oocyte meiosis, progesterone-mediated oocyte matura-
tion pathways were significantly enriched (Fig.  5). All 
these results implied that dysfunctional mitotic cell cycle 
may contribute to tumorigeneses of ChRCC.

Selection of candidate hub genes
Under the condition of MM > 0.8 and GS. Pathologic 
stage > 0.2, 39 genes in brown module were taken out 
(Fig.  6a). PPI network were constructed under the cut-
off of confidence > 0.4, 32 genes were filtered out after 
MCODE process (Fig. 6b). 29 candidate genes identified 
both in co-expression network and MCODE sub-module 
were show in Table 2.

Fig. 3  Visualizing the gene network using a heatmap plot. The heatmap depicts the Topological Overlap Matrix (TOM) among all genes in the 
analysis. Light color represents low overlap and progressively darker red color represents higher overlap. The gene dendrogram and module 
assignment are also shown along the left side and the top
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Identification and validation of hub genes
1794 DEGs (884 up-regulated, 910 down-regulate) 
were identified in GSE15641. All candidate genes were 
mapped to DEGs in GSE15641, four genes (SKA1, 
ERCC6L, POLQ, GTSE1) were found to be differentially 
expressed both in TCGA and GSE15641 datasets. While 
expressions of POLQ in two datasets were opposite (up-
regulated in TCGA, down-regulated in GSE15641). Thus, 
SKA1, ERCC6L and GTSE1 were regarded as the real 
hub genes in ChRCC by WGCNA analysis. Expressions 
of real hub genes between ChRCC samples and normal 
tissues were shown in (Fig. 7). Survival analysis of these 
genes showed over-expressions of SKA1 and ERCC6L 
are significantly related to shorter overall survival time 
(Fig. 8).

Discussion
ChRCC is an uncommon, but not rare, malignant dis-
ease representing ~ 5% of histologic spectrum of can-
cer arising from kidney [19]. However, patients with 
ChRCC have a relatively low risk of tumor progression 
and cancer-specific death [20], the clinical outcomes of 
target therapies between ChRCC and ccRCC were not 
significantly different in metastatic disease [21]. To the 
best of our knowledge, there are no effective treatments 
for patients with metastatic ChRCC or any preventions 
for tumor recurrence. Thus, it’s important to get a bet-
ter understanding of molecular mechanism of ChRCC 
and identify potential biomarkers to evaluate the bio-
logical behavior of this malignancy.

Fig. 4  Module-trait heatmap. Each row corresponds to a module eigengene, column to a trait. Each cell contains the corresponding correlation 
and P-value
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WGCNA has many prominent advantages over 
other methods since the analysis explores associa-
tions between co-expression modules and clinic traits 
and the results had much higher reliability and bio-
logical significance [22]. In this study, a total of eight 

co-expression modules were constructed by the 2215 
DEGs from the 66 human ChRCC samples by WGCNA 
method, which was used to detect the relationship 
between ChRCC transcriptome and clinic traits. We 
calculated the correlations between co-expression 

Fig. 5  Functional analysis. a Gene ontology analysis of genes in brown module. b KEGG pathway enrichment analysis of genes in brown module. 
The x-axis shows the − log10 (P-value) of each term and the y-axis shows the GO and KEGG pathway terms
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Fig. 6  Candidate hub gene identification. a Scatter plot of module eigengenes in brown module. The vertical line represents cutoff of module 
membership = 0.8, the horizontal line represents cutoff of gene significances in pathologic stage = 0.2. Genes on upper right were selected out. b 
PPI network of genes in MCODE sub-module

modules and pathologic stage, neoplasm status and liv-
ing status. Brown module with the highest correlation 
with clinic traits were regarded as the key module to 
explore primary cause for disease progression.

For further analysis, genes in brown module with 
high module membership (> 0.8) and significance of 
correlations with pathologic stage (> 0.2) were filtered 
out. Meanwhile, MCODE analysis was performed on 
brown module to find a panel of genes with high con-
nective degrees [9]. 29 candidate hub genes were iden-
tified by overlapping results of co-expression analysis 
and MCODE analysis. GO and KEGG analysis showed 
that dysregulation of cell cycle may be the underlying 
mechanism of tumorigeneses of ChRCC.

29 candidate hub genes were subsequently validated 
in GSE15641 dataset, four candidate genes (SKA1, 
ERCC6L, POLQ, GTSE1) differentially expressed both 
in TCGA and GSE15641 database were considered as 
real hub genes. After excluding POLQ for conflicting 
expression level in two databases, two of three hub genes 
(SKA1, ERCC6L) were found to be significantly corre-
lated with shorter overall survival time under their over 
expressions.

SKA1 was a microtubule-binding subcomplex of 
the outer kinetochore which is essential for proper 

chromosome segregation. It played an important role on 
tumorigenesis in multiple malignancies [23, 24]. SKA1 
over-expression led to cancerization in human prostate 
epithelial cells via the induction of centriole over-dupli-
cation [25]. Depletion of SKA1 inhibited cell prolifera-
tion in gastric cancer by blocking cell cycle in S phase 
[26]. What’s more, SKA1 was proved to be an oncogene 
in ccRCC which could be down-regulated by antitumor 
miR-10a-5p transfection [27]. ERCC6L gene, also named 
PLK1-interacting checkpoint helicase (PICH), was a 
member of the SNF2 protein family (SWI/SNF catalytic 
subunit SNF2). It was a mitotic target and substrate of 
polo-like kinases (PLKs) which regulates multiple pro-
cesses in mammalian cell mitosis [28]. Downregulation 
of ERCC6L decreased cell viability in RCC cell lines by 
blocking mitogen-activated protein kinase (MAPK) 
signaling pathway and interactions with protein PLK1 
[29]. Protein encoded by GTSE-1 modulated cell migra-
tions in an EB1-dependent manner. Up-regulation of 
GTSE1 expression could be associated with increased 
invasive potential in breast cancer [30]. Depletion of 
GTSE-1 enhanced mitotic centromere-associated kine-
sin (MCAK) activity in mitotic cells, leading to chro-
mosomal instability (CIN) which was presented in most 
solid tumors [31]. Silencing GTSE-1 expression inhibits 
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proliferation and invasion of hepatocellular carcinoma 
cells [32]. Based on many studies about three hub genes, 
we could find their important roles in tumorigenesis and 
metastasis. Targeting these biomarkers and other candi-
date hub genes participating in cell cycles could provide 
therapeutic potentials for ChRCC.

Some limitations exiting in our studies should be men-
tioned. The most vital genes out of 29 candidate hub 
genes couldn’t been filtered out under restrictions of the 
bioinformatics methods. Multi-central and large sample 
studies on ChRCC expression profiles were needed for 

Table 2  Candidate hub genes identified by co-expression and MCODE methods

Gene symbol Co-expression analysis MCODE analysis

GS.Pathologic_
stage

GS.Neoplasm_
status

GS.Survival_
status

MM Connectivity degree MCODE_score

ASPM 0.3698 0.3874 0.5063 0.9254 50 39

KIF14 0.4161 0.3991 0.4492 0.9193 50 39

TPX2 0.4019 0.3765 0.4620 0.9429 53 39

NEK2 0.3730 0.3988 0.5093 0.9240 52 39

MKI67 0.4088 0.4114 0.4970 0.9361 53 39

NCAPG 0.3806 0.4425 0.5053 0.9282 51 39

DLGAP5 0.3549 0.4440 0.5035 0.9360 54 39

KIF4A 0.4325 0.4104 0.4824 0.9581 56 39

KIF20A 0.4190 0.4013 0.4783 0.9259 50 39

FOXM1 0.4174 0.4091 0.4626 0.9225 51 39

CDKN3 0.3534 0.4401 0.5048 0.9209 49 39

BIRC5 0.3988 0.4194 0.4129 0.8940 48 39

CDC25C 0.4268 0.4004 0.4570 0.9084 47 39

CCNB2 0.3533 0.3397 0.4443 0.9002 46 39

PBK 0.3964 0.4196 0.4888 0.8895 47 39

POLQ 0.4818 0.3971 0.5722 0.9018 45 39

MELK 0.4246 0.3989 0.4592 0.9284 51 39

CENPA 0.4223 0.4006 0.4285 0.9002 47 39

SKA1 0.4019 0.4533 0.5004 0.9159 51 39

HJURP 0.4001 0.3558 0.4416 0.9128 50 39

TROAP 0.3900 0.3643 0.4276 0.8959 46 39

BUB1 0.3927 0.3514 0.4558 0.8284 39 39

ERCC6L 0.4544 0.3660 0.5429 0.9243 50 39

TTK 0.4380 0.3833 0.5951 0.8440 40 39

MCM10 0.4108 0.4499 0.3941 0.8043 41 39

CDC45 0.3597 0.4241 0.4214 0.8697 45 39

GTSE1 0.4334 0.2835 0.4238 0.9186 50 39

NEIL3 0.4386 0.4524 0.4932 0.9085 48 39

DEPDC1 0.4054 0.4806 0.5418 0.9443 54 39
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Fig. 7  Expression levels of real hub genes. a Expression levels of real hub genes between tumor samples and normal tissues in TCGA database. b 
Expression levels of real hub genes between tumor samples and normal tissues in GSE15641 dataset

validation of our findings. However, this couldn’t be ful-
filled due to limited online databases for ChRCC.

Conclusions
Our study used weighted gene co-expression analysis to 
construct a gene co-expression network, identify and val-
idate the key module and hub genes associated with the 
progression and prognosis of ChRCC. Functional analysis 

of hub genes reveal mitotic cell cycle dysregulation could 
be the underlying mechanism of ChRCC. Three real hub 
genes including SKA1, ERCC6L and GTSE-1 were iden-
tified. SKA1 and ERCC6L were validated in association 
with poor prognosis of ChRCC. However, further molec-
ular biological experiments are needed to confirm the 
function of these biomarkers in ChRCC.

Fig. 8  Validation of real hub genes by survival analysis between high expression group (red line) and low expression group (blue line). a SKA1, b 
ERCC6L, c GTSE1
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Additional files

Additional file 1: Fig S1. Analysis of network topology for various soft 
thresholding powers. The left panel shows the scale-free fit index (y-axis) 
as a function of the soft-thresholding power (x-axis). The right panel 
displays the mean connectivity (degree, y-axis) as a function of the soft-
thresholding power (x-axis).

Additional file 2: Fig S2. (a) Scatterplot of Gene Significance (GS) for 
pathologic stage vs. Module Membership (MM) in the brown module. 
(b) scatterplot of Gene Significance (GS) for neoplasm status vs. Module 
Membership (MM) in the brown module. (c) scatterplot of Gene Signifi-
cance (GS) for survival status vs. Module Membership (MM) in the brown 
module.

Additional file 3: Table S1. GO enrichment analysis in brown module.

Additional file 4: Table S2. KEGG pathways enrichment in brown 
module.
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